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Understanding a text is interpreting it. Every text has an interpretation.
Every interpretation has an interpretation.

The question is: is ℵ0

enough for understanding?





Resumo
Metaprogramação é a manipulação de programas por programas. Quando feito em tempo
de compilação, metaprogramação permite que código seja gerado e adicionado em um
programa. Suas construções podem ser reinterpretadas, mudando a semântica do código.
Isto possibilita a geração automática de código repetitivo, suporte a Linguagens Específicas
de Domínio e a realização de novas conferências no programa além daquelas já feitas pelo
sistema de tipos da linguagem. Contudo, o suporte à metaprogramação pelas linguagens
existentes é falha. Cada uma delas possui um ou mais dos seguintes problemas: algumas
funcionalidades estão ausentes, a metaprogramação é feita pela manipulação de estruturas
de baixo nível, o metaprograma pode alterar código não diretamente ligado ao local onde
ele foi chamado, metaprogramas podem ser não determinísticos e não modulares, erros não
são apresentados no seu contexto e de maneira amigável e pode-se impedir o compilador
de fazer as conferências normais (mudando radicalmente a semântica da linguagem). A
linguagem Cyan possui um Protocolo de Metaobjetos (PMO), um tipo de suporte à
metaprogramação que utiliza metaobjetos capazes de analisar e alterar o programa. Cyan
possui a maioria das funcionalidades de outras linguagens em relação à metaprogramação
e inúmeras características únicas. Há vários tipos de metaobjetos, todos eles, exceto
um, são variações de uma mesma ideia. Mudanças são feitas localmente em relação aos
códigos que ativam os metaobjetos e estes são codificados de maneira modular. Erros são
apresentados no contexto em que eles ocorrem com explicações detalhadas. Metaobjetos
podem adicionar comportamento e código, nunca remover nada. Finalmente, código é
produzido usando strings, não estruturas de baixo nível. O Protocolo de Metaobjetos de
Cyan foi utilizado para a construção de metaobjetos em inúmeros domínios, evidenciando
a sua adequação à solução de problemas reais.

Palavras-chaves: protocolo de metaobjetos, reflexão computacional, metaprogramação,
linguagens de programação, linguagens orientadas à objeto, linguagem Cyan, metaobjeto.





Abstract
Metaprogramming is the handling of programs by programs. When done at compile time,
metaprogramming allows code to be generated and added to a program. Its constructs can
be reinterpreted, changing the semantics of the code. This enables the automatic generation
of repetitive code, support for Domain Specific Languages, and the realization of new checks
in the program beyond those already made by the language type system. However, support
for metaprogramming by existing languages is flawed. Each of them has one or more of the
following problems: some features are missing, metaprogramming is done by manipulation
of low-level structures, the metaprogram can change code not directly connected to the
location where it was called, metaprograms may be nondeterministic and non-modular,
errors are not presented in their context and in a user-friendly way, and one can prevent the
compiler from making regular checks (radically changing the semantics of language). The
Cyan language has a Metaobject Protocol (PMO), a type of metaprogramming support
that uses metaobjects capable of analyzing and altering the program. Cyan has most of the
functionalities of other languages in relation to metaprogramming and numerous unique
features. There are several kinds of metaobjects, all but one are variations of the same idea.
Changes are made locally in relation to the codes that activate the metaobjects and these
are coded in a modular way. Errors are presented in the context in which they occur with
detailed explanations. Metaobjects may add behavior and code, never remove anything.
Finally, code is produced using strings, not low-level structures. The Metaobject Protocol
of Cyan was used for the construction of metaobjects in many domains, demonstrating its
adequacy to the solution of real problems.

Key-words: metaobject protocol, computational reflection, metaprogramming, program-
ming languages, object-oriented languages, Cyan language, metaobject.
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1 The Cyan Metaobject Protocol

This chapter describes the original part of this thesis, the Cyan Metaobject Protocol
(MOP). The MOP describes the interactions between the compiler, the base program and
its annotations, the metaprogram, the compiler, and the MOP library. The MOP defines
when and which metacode is called for each program annotation. The Cyan compiler
is implemented in Java making it easy to build metacode in Java. Since Cyan code is
translated into Java code, metacode can also be implemented in Cyan. The compiler is
able to use either Java or Cyan as the metaprogramming language.

The next section explains a complete example of a Cyan program that uses
metaprogramming. The explanation shows how the MOP works and fixes the terminology
used in this chapter. Metacode in Cyan is composed of Java classes and Cyan prototypes
that implement interfaces of a MOP library. These interfaces are described in section 1.2.
The Cyan MOP addresses most of the problems of ?? as is attested in section 1.4. Some
shortcomings of MOP are presented in section 1.4.

1.1 A Complete Example Explained

The base program and the metaprogram are linked by syntactic elements in
the base program called annotations or metaobject annotations as shown in Listing 1.1.
Prototype Person uses three annotations: property, init, and compilationInfo, each
one preceded by “@”. Annotation init takes a parameter and is attached to prototype
Person. Its associated metaobject creates an init method, a constructor, to initialize field
name. Annotation property is attached to the declaration of field name and its associated
metaobject creates get and set methods for it. Annotation compilationInfo takes one

Listing 1.1 – Prototype Person that uses metaobject annotations
1 package human
2

3 @init(name)
4 object Person
5 @property var String name
6 func test {
7 let Array<String> list = @compilationInfo("field list");
8 list println;
9 }

10 end
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Listing 1.2 – Prototype Student
// this is a comment
// the delimiters for ’doc’ are {* and *}
// the delimiters for ’replaceCallBy’ are {:< and >:}

@doc{* returns the double of the argument *}
@replaceCallBy(once){:< 2*n >:}
func twice: Int n -> Int = n + n;

literal string parameter and generates a literal array with the prototype fields.

Annotations can take as parameters one or more of the following literals: basic
values (0, 2.71, ’A’), literal arrays, literal tuples, literal maps, and any combination of
these. There may be a text between delimiters after the annotation name (if there is no
parameters) or after ) (if there are parameters). An example is the text

2*n
between delimiteres {:< and >:} of Listing 1.2. This text is called attached text or attached
DSL1 code. Annotation doc, in this example, also takes an attached text, which is the
documentation in english of method twice:. There are rules for the creating of delimiters,
described by Guimarães (??). For short, the characters allowed are:

=!?$%&*-+^~/:.\\|([{<>}])

And the right delimiter should mirror the left one. In this text, we will use {* and *} in
the remaining examples.

Annotations can be attached to declarations or be expressions. In Listing 1.1, init
and property are attached to the prototype and to a field and compilationInfo is an
expression. Annotations replaceCallBy and doc are attached to method “twice:”.

Each Cyan source file holds a compilation unit composed of a single prototype
and import declarations. Thus, source files are in a one-to-one relationships to program
prototypes. The first compilation phase of a Cyan source file is parsing, when the compiler
builds an Abstract Syntax Tree (AST). For each annotation, the compiler creates three
objects: a metaobject, an object of the AST that is private to the compiler, and a wrapper
object of the private AST object. The later is a simplified and read-only version of the
compiler AST object. Both AST objects keep information on the annotation such as its
name, parameters, and attached text.

A metaobject is an object of a Cyan prototype or a Java class. We will consider
1 Domain Specific Language
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Figure 1 – Relation between metaobjects, annotations, metaobject classes, MOP interfaces,
and compilation phases

metaobjects are implemented in Java unless said otherwise. A metaobject class should
inherit from class CyanMetaobjectAtAnnot.2 If the metaobject is implemented in Cyan,
its prototype should inherit from an superprototype with this same name.

Figure 1 relates all previously cited elements. A program with an annotation
property appears on the left and above, represented as a rectangle. For each annotation
there is an AST object of the compiler wrapped by another AST object (the later is
used by the MOP). Both are represented as rounded rectangles in the figure. On the left
and bottom, there is the metaobject corresponding to the annotation property. There is
a one-to-one relationship between metaobjects and AST objects. The figure also shows
that the metaobject is an instance of class CyanMetaobjectProperty that inherits from
CyanMetaobjectAtAnnot and implements interface IAction_afterResTypes, overriding
the interface method afterResTypes_codeToAdd. This method generates get and set
methods for the name field. The binary of class CyanMetaobjectProperty is supplied with
the Cyan basic libraries. Appendix B presents the complete Java code of the class of
metaobject property2. This is a simplified version of property.

We will use “metaobject property” for the metaobject associated with the property
annotation of Listing 1.1. There is no ambiguity because there is only one annotation and,
therefore, only one metaobject. Therefore, the annotation name will be used to identify its
associated metaobject if no confusion arises.

A package in Cyan is a collection of prototypes, each one one in a file within the
same package directory. A special package subdirectory contains compiled versions of
2 “AtAnnot” means an “Annot”ation that starts with “At” (@).



26 Chapter 1. The Cyan Metaobject Protocol

Figure 2 – The relation to the compiler to the MOP libraries

Figure 3 – The compilation phases and their links to methods of metaobjects at compile-
time

metaobject classes or prototypes (.class files). Importing a package in a compilation
unit means loading the package metaobjects. Thus, they can be used in that compilation
unit. For each .class file of the imported package, the compiler creates an object and
calls its getName method. The string returned is the annotation (and metaobject) name.
Package cyan.lang is automatically imported by Cyan compilation units. It holds several
largely-used metaobjects, including all metaobjects used in Listing 1.1.

There is a package in Cyan and another in Java with the prototypes and classes
used by the MOP. Both packages are called the “MOP library”. The Cyan package
mirrors the Java package, as shown in Figure 2. Classes CyanMetaobjectAtAnnot and
IAction_afterResTypes belong to the Java MOP library. The equivalent prototypes,
with the same names, belong to the Cyan MOP library.

Figure 3 shows, on the left rectangle, the six compilation phases of the Cyan
compiler. Each source file goes through all phases. The first phase, parsing, does the
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1 package main
2

3 object VeryUseful extends Useful implements ILog
4 func factorial: Int n -> Int {
5 // non-recursive, just for fun
6 var Int r = 1;
7 for Int elem in 1..n {
8 r = r*elem
9 }

10 return r
11 }
12 func log: String what {
13 logArray add: what
14 }
15 func getLogArray -> Array<String> = logArray;
16 let Array<String> logArray = Array<String>();
17 end

Figure 4 – Type resolution by the Cyan compiler

syntactical analysis and builds the AST. Some Cyan constructs are associated with a
type, such as expressions (all of them), fields, local variables, implemented interfaces,
superprototypes, and so on. Their AST objects have a type field that is set to null when
the objects are created (the compiler is implemented in Java). All source files of a program
are first parsed and, then, they can undergo the remaining compilation phases.

In phase resTypes, the type field of all AST objects that represent constructs
outside method bodies are resolved. Grayed constructs in Figure 4 are outside method
bodies associated with a type. The field type of their objects are set in phase resTypes.
The underlined constructs in this Figure are inside method bodies and are associated with
a type. The field type of their objects are set in phase semAn.

The compiler calls some metaobject methods in phase afterResTypes, after
resolving types. The method of metaobject property that adds get and set methods is
called in this phase. Phase semAn is the second part of the semantic analysis (the first
is resTypes). It resolves the types of all Cyan constructions that were not treated in the
resTypes phase. It also does all remainding checks demanded by the language. Some
metaobject methods are called in phase after semantic analysis, afterSemAn. This phase
is only used by the MOP. The last phase is code generation, it is not used by the MOP.

Phases parsing, afterResTypes, semAn, and afterSemAn are used by the Cyan MOP.
They are represented in Figure 3 using non-dashed rectangles. Phases afterResTypes and
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Figure 5 – The compilation phases and their links to the interfaces of the MOP library

afterSemAn would not be necessary if the language did not have a MOP. Each compilation
phase is associated with several interfaces of the MOP library as shown in Figure 5. An
interface is associated with exactly one phase and its name ends with its phase name.

The compiler creates, in phase parsing, a metaobject for each annotation. Then, in
each phase associated with interfaces, the compiler calls all of the metaobject methods,
declared in interfaces of that phase, of all metaobjects of all program prototypes. In the
Person example of Listing 1.1, on the right, the dashed rectangle shows a list of metaobjects
associated with this prototype. There are three metaobjects because there are three anno-
tations associated with prototype Person. For this prototype, the compiler calls method
afterResTypes_codeToAdd of metaobjects init and property in phase afterResTypes.
And calls method semAn_codeToAdd of object compilationInfo in phase semAn. Method
afterResTypes_codeToAdd is declared in interface IAction_afterResTypes and semAn_codeToAdd
is declared in interface IAction_semAn.

The compiler calls some metaobject methods when some events happen. As exam-
ples,

a) IActionMethodMissing_semAn methods are called when the compiler does not
find a method that matches a message passing;

b) ICheckSubprototype_afterSemAn methods are called when a prototype is
inherited.

Some interface methods are called when declarations or annotations are processed. For
example, metaobject methods declared in IAction_afterResTypes are called when the
annotation is processed in phase afterResTypes.
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Listing 1.3 – Prototype Person that uses metaobject annotations
1 package human
2

3 object Person
4 var String name
5 func test {
6 let Array<String> list = [ "name" ];
7 list println;
8 }
9 func getName -> String = name;

10 func setName: String name { self.name = name }
11 func init: String name {
12 self.name = name
13 }
14 end

Metaobjects can generated code, in string format, that is inserted, by the compiler,
in the program source code. However, the program is changed only during the current
compilation. That is, the original files are not modified. In the example of Listing 1.1,
metaobject property generates methods getName and setName: and metaobject init
generates an init: method. The compiler inserts, in the source file and in phase after-
ResTypes, the generated methods. Then, this source code goes through phases parsing
and resTypes again. Phase afterResTypes is skipped so that the metaobject methods
associated with this phase are not called again — that prevents an infinite loop. In phase
semAn, metaobject compilationInfo generates string

"[ \"name\" ]"
that is inserted in the code. The compiler has to compile the source code again starting
with parsing. In this time, phase afterResTypes is skipped and the compiler does not
call metaobject methods declared in interfaces associated with phase semAn. That also
may prevent infinite loops. Listing 1.3 shows the final code of prototype Person with
some auxiliary code leaved out. Note that the number of compilation phases a source
code undergoes is finite even when metaobjects generate code. At most, a source code
goes through phases parsing, resTypes, afterResTypes, parsing, resTypes, semAn, parsing,
resTypes, semAn, afterSemAn, and code generation.

Future versions of the compiler will, hopefully, not compile the source code again
after metaobjects generate code. The compiler will only compile the generated code and
inserts its AST in the prototype AST.
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1.2 The Interfaces of the MOP Library

The compiler calls metaobject methods at compilation phase according to the
interface the methods were declared. Thus, the interfaces of the MOP library are used
to direct Cyan metaprogramming. This sections describes these interfaces and how they
direct the compilation. The Java MOP library is used, although everything described here
also applies to the Cyan MOP library.

The remainder of this text uses some terminology that is now described. If an
annotation is attached to a prototype or textually inside it, we say that the prototype
is the current prototype of the annotation. In Listing 1.1, the current prototype of all
annotations is Person. Similarly, the current compilation unit of an annotation is the
compilation unit in which the annotation is. If an annotation is textually inside a method
of attached to a method, we say the method is the current method of the annotation. Thus,
method twice: is the current method of annotation replaceCallBy of Listing 1.2 and
test is the current method of annotation compilationInfo of Listing 1.1. In this last
figure, init and property have no current method.

Cyan methods of the current prototype are called base methods or, if there is no
confusion, just methods. Methods of metaobject classes or methods of interfaces of the
MOP library will be called metamethods or just methods if no confusion arises.

The goals of a metaobject defines which interfaces its class should implement. If
the metaobject should adds fields and methods to the current prototype, its class should
implement interface IAction_afterResTypes. It the metaobject is an expression, like
compilationInfo of Listing 1.1, its class should implement interface IAction_semAn. And
so on. The most important decision relating to a metaobject is taken before the coding of
its methods. It is the choice of the interfaces its class will implement. In contrast to this, in
some languages the main decisions are taken at metaobject runtime, which is compile-time
for the program being compiled.

Metaobject classes inherit from class CyanMetaobjectAtAnnot that inherits from
CyanMetaobject, both from the MOP library. A metaobject method may need to know
its annotation, the current prototype, its environment, and so on. A method inherited
from CyanMetaobjectAtAnnot return the AST object of the annotation (see the right
arrow labeled “refer to” in Figure 1). This object holds the annotation parameters, line
number, attached DSL code, and the declaration the annotation is attached to (if any).
Every method declared in any MOP interface takes a parameter with information on
the annotation environment: the current method, the current prototype, the current
compilation unit, the statements of methods of the current prototype, and so on. The
type and name of this parameter varies according with the compilation phase and method
name. The type and name can be WrEnv env, ICompiler_semAn compiler_semAn, and



1.2. The Interfaces of the MOP Library 31

Figure 6 – The information available in each compilation phase

the like. This parameter restricts the information available in each compilation phase.
For example, the AST object representing statement methods is not available in phase
afterResTypes. It is available in phase IAction_semAn. The most important information
a metaobject has in each compilation phase is shown in figure Figure 6.

The following sections describe the interfaces of the MOP library that can be
implemented by metaobject prototypes.

1.2.1 Interfaces for Creation of New Prototypes

New prototypes can be created in phases parsing, afterResTypes, and semAn. For
each phase, there is an interface whose name is composed of IActionNewPrototypes_ and
the phase name. The single method of each interface, when overridden in the metaobject
class, should return the prototype name and its code as a tuple. Both as strings. The new
prototype’s package must be the package of the current compilation unit. That is, an
metaobject can only create a prototype in the package of its associated annotation.

Why do three interfaces for prototype creation are needed? Why not just one?
There are two reasons: (a) the semantic analysis is made in phases, first resTypes (outside
method statements) and then semAn (method statements); (b) The latter phases provide
more information than the former ones. Therefore, a prototype used, for example, as the
type of a method parameter should exist in phase resTypes. It either exists in the original
program or is created by a metaobject in phase parsing. Consider a prototype that is the
type of a local variable whose declaration does exist at the start of phase semAn. That
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Listing 1.4 – Prototype Person that uses metaobject annotations
1 // return the factorial of 10
2 func fat10 -> Int =
3 // calculates at compile-time the factorial of 10
4 @eval("cyan.lang", "Int"){*
5 var r = 2;
6 for n in 3..10 {
7 r = r*n
8 }
9 return r

10 *};

is, the local variable declaration was not added by metaobjects acting in phase semAn.
This prototype should exist at the start of phase semAn. It either exists in the original
program or it was created in phases parsing or afterResTypes.

A local variable declaration could have been created by metaobjects acting in phase
semAn. If the variable type (a prototype) did not exist before phase semAn, it can be
created in this phase. Ideally, a prototype is created as late as possible because more
information is available in later phases. However, it may be necessary to create it earlier
because it is used in early compilation phases.

1.2.2 Interfaces of Phase parsing

Annotations may have an attached DSL code, usually given between {* and *} as
eval shown in Listing 1.4. Interface IParseWithCyanCompiler_parsing has a method
with a parameter that is a restricted view of the Cyan compiler. The parameter has
methods for lexical analysis and parsing of Cyan types, expressions, and statements. It is
the ideal tool to use when the attached DSL code is similar to Cyan. Each method returns
an AST object. In the above example, the AST objects created during parsing are later
used, in phase semAn, for interpreting the code at compile-time.

Interface ICompilerInfo_parsing is used to pass information, like documentation,
from the annotations to declarations. As an example, metaobject doc, cited in section 1.1,
uses this interface for adding documentation to packages, prototypes, methods, and fields.
Interface IAction_parsing declares a method to add code after the annotation (it will
be removed in the next MOP version). Phase parsing has also interfaces for generating
code and passing information to declarations.
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1.2.3 Interfaces of Phase afterResTypes

Interface IAction_afterResTypes declares four methods. Method
afterResTypes_beforeMethodCodeList

returns a list of 3-tuples, each one composed of a method name (a string), a list of
statements (another string), and a boolean value. The list of statements is added at the
beginning of the method of the current prototype given in the first tuple element. If the
boolean value is true, the metaobject is requesting exclusive rights to add statements at
the beginning of the method. Therefore, if two metaobjects try to add statements to the
same method and at least one of them request exclusive rights, the compiler issues an
error.

Method
afterResTypes_renameMethod

is used for renaming methods. However, a method with the old method name should be
added to the prototype. This prevents difficult-to-understand compilation errors. As an
example, the developer could see, in the IDE, a base method but the compiler would issue
the error “method was not found” in a message passing that should call that method.

A method signature is the method declaration without its body or the expression
assigned to it. Parameter names are optional. The signature of a field is composed of var
or let, the type, and the field name.

var Int count = 0;
let String name;
func getCount -> Int = count;
func add: String

at: Int, Int
doc: String {
...

}

The signatures of the methods and fields given above are

var Int count
let String name
func getCount -> Int
func add: String

at: Int, Int
doc: String

Method afterResTypes_codeToAdd: of interface IAction_afterResTypes is used
to add fields and methods to the current prototype. It returns a tuple composed of two
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elements: (a) base fields and methods and (b) the signatures of these fields and methods
separated by “;”

Tuple2<StringBuffer, String>
afterResTypes_codeToAdd(

ICompiler_afterResTypes compiler,
List<Tuple2<WrAnnotation,

List<ISlotSignature>>> infoList )

Parameter compiler is a restricted version of the Cyan compiler. It supplies some useful
methods such as to return the fields and methods of the current prototype, the AST object
of the current prototype, and so on. infoList, the second parameter, is a list of tuples,
each one composed of the AST object of an annotation and a list of slot signatures. A slot
is either a method or a field. The compiler calls method

afterResTypes_codeToAdd
passing, as the second argument, an empty list in the first time this method is called for
each metaobject of a prototype. Parameter infoList is only useful when method

boolean runUntilFixedPoint()

of interface IAction_afterResTypes returns true. In this case, it is assumed that the
code generated by other metaobjects of the same prototype should be known by the
metaobject. Let us explain that using an example.

Metaobject addFieldInfo is used for demonstration only. It adds, to the current
prototype, a field whose name is the first annotation parameter initialized with the number
of the fields of the current prototype. The class of this metaobject implements interface
IAction_afterResTypes.

1 @addFieldInfo(fieldNum)
2 @addFieldInfo(numOfFields)
3 object TestField
4 var Int count = 1;
5 func getCount -> Int = one;
6 end

In this example, if method runUntilFixedPoint of the class of addFieldInfo returns
false, the afterResTypes_codeToAdd methods of the metaobjects associated with the
annotations of lines 1 and 2 would generate

let Int fieldNum = 2;
let Int numOfFields = 2;

The compiler calls methods afterResTypes_codeToAdd passing, as the second argument,
an empty list because runUntilFixedPoint returns false. Consequently, one metaobject
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Figure 7 – Flow of control in algorithm FixMeta with two metaobjects

does not view the base fields added by the other. Both view the original prototype, which
has a single field.

If runUntilFixedPoint returns true, method afterResTypes_codeToAdd: is
called multiple times according to the algorithm FixMeta of Listing 1.5. Each metaobject
knows the fields added by the other in the second time afterResTypes_codeToAdd: is
called.

Algorithm FixMeta takes two lists as input, fullList and roundList. The former
contains all metaobjects of the current prototype whose classes implement interface
IAction_afterResTypes. The latter is a sublist of fullList containing the metaobjects
whose methods runUntilFixedPoint return true. The for statement of lines 3-9 collects
all base method and field signatures generated by all metaobjects into a list infoList.
In lines 12-30, the algorithm makes rounds of calls. Each round is composed of calls to
method afterResTypes_codeToAdd: of all metaobjects of roundList. These calls are
made in lines 16-26. After each round, the algorithm checks, in line 12, if all metaobjects
produced the same code as before. It they did, the loop ends. If the number of rounds is
greater than the default number of rounds allowed, five, the algorithm issues an error (line
29). The maximum number of rounds can be changed by a compiler option.

Figure 7 shows the flow of control of algorithm FixMeta when used with two metaob-
jects. In the figure center, the two rectangles represent the calls to the afterResTypes_codeToAdd:
methods. Each one produces code of fields and methods (e.g. “code by A”) and the signa-
tures of these fields and methods (e.g. “sign. by A”). The arrows show that the signatures
are used as input to calls to method afterResTypes_codeToAdd: in the next round.

Let us return to the addFieldInfo example. Method runUntilFixedPoint of the
metaobjects returns true. Therefore, there is a new round of calls to method

afterResTypes_codeToAdd:
of the two addFieldInfo metaobjects. In this second round, the second method parameter,
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Listing 1.5 – Algorithm FixMeta
1 Algorithm FixMeta (fullList , roundList )
2 infoList = empty list
3 for every metaobject in fullList {
4 call method afterResTypes_codeToAdd of the metaobject
5 passing an empty array as the second parameter .
6 This method returns a tuple. Add the slot
7 signatures of the second tuple element to
8 list infoList .
9 }

10 somethingChanged = true;
11 count = 1;
12 while somethingChanged {
13 newInfoList = empty list
14 // each ’while ’ loop is a round
15 somethingChanged = false;
16 for every metaobject in roundList {
17 call method afterResTypes_codeToAdd of the metaobject
18 passing infoList as the second parameter .
19 This method returns a tuple. Add the slot
20 signatures of the second tuple element to a
21 list newInfoList .
22 if the code produced by this call are
23 different from the code produced by the
24 same metaobject in the previous round , stored
25 in infoList , set somethingChanged to true
26 }
27 infoList = newInfoList ;
28 ++ count;
29 if count > maxNumRoundsFixMetaDefaultValue { error; }
30 }

infoList, refers to a list of tuples. Each tuple is composed of the AST object of an
annotation that produced the list of base field and method signatures of the second tuple
element. The first tuple contains a reference to the AST object of the annotation of line
1 of the example and a list containg the signatures of fields fieldNum and numOfFields.
The second contains a reference to the annotation of line 2 and the same signature list as
the first tuple.

In this second round of calls, both metaobjects can adjust their generated code
to take into consideration the code produced by other metaobjects. The real number of
fields, assigned to the generated fields, is the original number of prototype fields (1) plus
the number of fields generated by all metaobjects, 2. Therefore, the code generated by
the metaobjects is “let Int fieldNum = 2;” and “let Int numOfFields = 2;”. In the
third round, the generated code does not change and the algorithm ends. Even if just one
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metaobject returns a different code from the previous round, the algorithm goes through
a new round of calls with all metaobjects of roundList.

The Cyan compiler checks whether the elements of the tuple returned by
afterResTypes_codeToAdd:

match. Thus, the compiler checks if the base fields and methods of the first tuple element are
in the second tuple element and vice-versa. Method afterResTypes_codeToAdd: should
return a tuple with empty strings, if used only for checks.

1.2.4 Interfaces of Phase semAn

Interface IAction_semAn has a single method that returns a string. This method
may be used for checks (if it returns null or the empty string) or to add code after the
annotation. Some annotations are expressions, like compilationInfo of Listing 1.1 or
eval of Listing 1.4. Their metaobject classes should implement interface IAction_semAn.

Annotations associated with metaobject prototypes implementing interface
IActionVariableDeclaration_semAn

should be attached to local variable declarations. The single interface method adds code
after the variable declaration and has access to the variable name, type, and expression
used to initialize the variable (if any).

Interface IActionMessageSend_semAn is implemented by metaobject classes for
intercepting message passings. The associated annotations should be attached to base
methods. Suppose a metaobject M is associated with an annotation attached to method m.
As a result, M can intercept message passings that could, potentially, call m. Metaobject M
may check the message arguments, at compile-time, and replace the message passing by
another expression. For each message passing, more than one method may be called and
there may exist more than one annotation attached to every method. Therefore, we need
rules for defining which metaobject replaces the message passing by an expression.

During phase semAn, the compiler collects the base methods that could be called
for every message passing. If the message receiver is T, the compiler collects the T base
methods that could be called. Then, it puts in a list the metaobjects associated with these
base methods that implement interface IActionMessageSend_semAn. The metamethods of
these metaobjects, declared in this interface, are called. There are three possibilities in
relation to the number of metaobjects that return non-null or non-empty strings:

1. more than one, which is ambiguous. The compiler issues an error;

2. exactly one. The compiler replaces the message passing by the returned code;

3. none. The compiler searchs for methods that match the message passing in the
superprototypes and superinterfaces of T (in this order).
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For interface IActionMessageSend_semAn, the textual annotation order in a prototype
is not important because at most one metaobject per prototype is allowed to return a
non-null or non-empty string.

The metaobject class of replaceCallBy, shown in Listing 1.2, implements this
interface. The metaobject replaces the message passing “t twice: 4 + 1” by

{ var tmp343 = 4 + 1; ^2*tmp343; } eval

tmp343 is a temporary variable name.

Interface IActionMethodMissing_semAn allows the introduction of virtual methods
into prototypes. A virtual method does not exist but its existence is simulated. In this
case, a metaobject replaces the message passing that would call the method by an
expression. As an example, a metaobject could read a file with thousands of color names,
associate a number to all of them, and simulate the existence of methods with the
color names. The metaobject replaces a virtual method call by the number associated
to the color. Metaobject grammarMethod described in section 2.1 implements interface
IActionMethodMissing_semAn to simulate the existence of a method whose keywords are
specified using a regular expression. It makes it easy to create Domain Specific Languages
using only regular Cyan message passings.

Let us explain how the compiler uses interface IActionMethodMissing_semAn.
When there is no matching method for a message passing, the compiler puts in a list moList
all metaobjects implementing interface IActionMethodMissing_semAn and whose annota-
tions are in prototype T, the type of the message passing receiver. Then, a metamethod
of each metaobject of moList is called. This is the metamethod declared in the metaob-
ject that overrides a method of interface IActionMethodMissing_semAn. This interface
declares two methods: one for unary and another for keyword message passings.

The value returned by each metamethod of metaobjects of moList can be a null,
an empty string (with code), or otherwise. There are three possibilities based on the
number of metaobjects’ methods that return non-empty strings:

1. more than one. The compiler issues an error;

2. exactly one. The returned code replaces the message passing. This replacement is
visible in the next compilation phase, afterSemAn;

3. none. The same algorithm is applied to the superprototype of T (implemented
interfaces are not taken into account).

Interface IActionFieldAccess_semAn is used for intercepting field access. It de-
clares two methods: one is called when the field is retrieved and the other called when the
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field is in the left-hand side of an assignment. The compiler replaces the get or set of the
field by the code returned by these metamethods. Annotations associated to metaobject
classes that implements this interface can only be attached to prototype fields.

Several annotations whose metaobject classes implement IActionFieldAccess_semAn
may be attached to a single field. When the compiler finds a get or set of the field, it calls
the appropriate metamethods of the metaobjects associated to the annotations. If more
than one metamethod returns a non-null and non-empty string, the compiler issues an
error.

Interface IActionFieldMissing_semAn is used for introducing virtual fields to
prototypes. There are two declared methods in the interface: one called when a non-
existing field is get and the other when it is set. Annotations associated to metaobjects
whose classes implement this interface should be attached to prototypes. The compiler
issues an error if a field is accessed and more than one metaobject is able to replace this
access by code.

When the compiler finds a get or set of a field that does not exist, it calls the
appropriate metamethods of all metaobjects that could handle this event. These metaob-
jects are those whose annotations are attached to the current prototype and whose classes
implement interface IActionFieldMissing_semAn. If more than one metaobject method
return a non-empty string, the compiler issues an error.

In phase semAn, the Cyan compiler processes the AST in the textual order of the
statements’ declarations. That is, the compiler resolve types and do checks in textual
order. Therefore, a metaobject M2 whose associated annotation a2 appears after annotation
a1 knows the types associated to expressions between a1 and a2. The metaobject M1
associated to a1 does not.

The term “AST” used in this paper refers, unless stated otherwise, to the wrapped
version of the real Abstract Syntax Tree, which is used by the compiler. The former
tree is read-only and contains only methods that return information on the code. It is
created by on-demand, lazily. Metaobject metamethods may get AST objects using several
mechanisms: accessing parameters, calling parameter methods, and calling methods of the
metaobject itself. AST objects have information on the current prototype, method, etc.
The Visitor Design Pattern (GAMMA et al., 1995) may be used for visiting AST objects.

Method replaceStatementByCode is declared in class
CyanMetaobjectAtAnnot

which is inherited by every metaobject class whose annotations start with @ (all annotations
seen till now). This metamethod is used for replacing a statement or expression by a
code given as string. The statement is given as an AST object. Therefore, any metaobject
method can, in phase semAn, replace any statement of the current prototype by any other
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code. Security mechanisms do not allow metaobjects of one prototype access statements
of another prototype.

Metaobject shout, used for demonstration only, uses the visitor methods of the
AST for visiting all expressions of the current method. It replaces all strings by the
equivalent ones in uppercase. Method semAn_codeToAdd of its class follows.

@Override
public StringBuffer semAn_codeToAdd ( ICompiler_semAn compiler_semAn )
{

// ’annot ’ is the AST object of the annotation
final WrAnnotationAt annot = this. getAnnotation ();

// the annotation is attached to method ’dec ’
final WrMethodDec dec = ( WrMethodDec ) annot. getDeclaration ();

// ’accept ’ is the AST method implementing the
// visitor pattern

dec.accept( new WrASTVisitor () {
// only literal strings are visited
// literal strings in the Cyan code are
// represented by WrExprLiteralString AST objects

@Override
public void visit( WrExprLiteralString node , WrEnv env) {

final StringBuffer strUpper = new StringBuffer ();
final StringBuffer str = node. getStringJavaValue ();

// convert to uppercase
for (int i = 0; i < str.length (); ++i) {

strUpper .append( Character . toUpperCase (str.charAt(i)));
}
replaceStatementByCode (node ,

strUpper , node. getType (), env );
}

}, compiler_semAn .getEnv ());

return null;
}

1.2.5 Interfaces of Phase afterSemAn

From this compilation phase onwards, metaobjects cannot change the code. There-
fore, checks made in this phase will not be invalidated by code changes made afterwards.
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An annotation of a metaobject whose class implements interface ICheckSubprototype_afterSemAn
should be attached to a prototype.

interface ICheckSubprototype_afterSemAn extends
ICheck_afterResTypes_afterSemAn , IStayPrototypeInterface {

void afterSemAn_checkSubprototype (
ICompiler_semAn compiler_semAn , WrPrototype subPrototype );

}

The single interface method, defined in the metaobject, is called when the prototype
is inherited, even if indirectly.3 The second metamethod parameter is the AST object
representing the subprototype that inherits the prototype with the annotation. Therefore,
the metaobject can check the subprototype.

Interface ICheckSubprototype_afterSemAn is used for checks related to inheri-
tance:

a) check whether the subprototype defines either none or all methods of a set of
methods;

b) check if a prototype P inherits from a given superprototype whenever P imple-
ments an interface II. This is a language feature of language Hack (HACK,
2020). The check would be made by a metaobject associated to an annotation
attached to II;

c) check if the interrelationships among the methods of a prototype are kept in
the subprototypes. The pattern of calls among the methods of a prototype
should be documented if it is intended to be inherited (BLOCH, 2018). Since
a subprototype needs to know this call pattern, inheritance violates encapsu-
lation (SNYDER, 1986). A metaobject whose annotation is attached to the
superprototype can check if the subprototype follows the method call patterns
expected by the superprototype.

An annotation of a metaobject whose class implements interface ICheckOverride_afterSemAn
should be attached to a base method.

interface ICheckOverride_afterSemAn extends
ICheck_afterResTypes_afterSemAn ,
IStayPrototypeInterface {

void afterSemAn_checkOverride (
ICompiler_semAn compiler , WrMethodDec method );

}

3 If prototype C inherits from B that inherits from A, thus C indirectly inherits from A.
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The compiler calls the single interface method, defined in a metaobject, whenever the base
method is overridden in a subprototype. The second metamethod parameter is the AST
object of the overridden base method.

An annotation of a metaobject whose class implements interface ICheckDeclaration_afterSemAn
should be attached to a declaration, which may be a local variable, field, method, or
prototype.

interface ICheckDeclaration_afterSemAn extends
ICheck_afterResTypes_afterSemAn {

void afterSemAn_checkDeclaration ( ICompiler_semAn compiler );
}

The declaration can be obtained from parameter compiler.

Message passings should not be checked by metaobjects implementing interface
IActionMessageSend_semAn

of phase semAn. This is because, in this same phase, metaobjects may add new code
which may invalidate the checks. Message passings should be checked by metaobjects
whose classes implement interface ICheckMessageSend_afterSemAn. The compiler calls
the methods defined in this interface as described for interface IActionMessageSend_semAn
with one difference: metamethods of all metaobjects (whose classes implement this interface)
are called. Therefore, the compiler calls all metamethods of annotations associated to
superprototypes.

1.2.6 Interface for Metaobject Communication at Compile-Time

Metaobjects of the same prototype whose prototypes implement interface
ICommunicateInPrototype_afterResTypes_semAn_afterSemAn

can communicate before phases afterResTypes, semAn, and afterSemAn. When analyzing
a prototype and before any of these phases, the compiler collects in a list all metaobjects
whose classes or prototypes implement this interface. Then, by calling a metaobject method,
overridden from the interface, it collects the objects each of these metaobjects want to
share. After that, the compiler calls another metaobject method with the list of shared
objects.

1.2.7 Interface for Communicate Compiler Errors

The annotations in the program being compiled can inform the compiler that
it has errors. The class associated with the annotation has to implement interface
IInformCompilationError. If the compiler does not sign an error in the line pointed out
by the annotation, the compiler issues an error saying that iteself has an error.
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1.3 Other Metaobject Kinds
This section describes metaobjects whose annotations are of a different kind than

those already presented. These metaobjects should implement interfaces or inherit from
classes not yet described. They have all or most of the power of regular metaobjects.

1.3.1 Annotations to the Project

A project file, detailed in section A.9, contains a code of a DSL called Pyan for
describing a Cyan program. It should contain a program keyword followed, optionally, by
package declarations. It is assumed that all directories of the project file directory contain
program packages unless they start with “--”. A package can also be given explicitly. We
repeat here an example of section A.9.

program at "C:\Dropbox\Cyan\cyanTests\tese"
main main.Program // the main prototype
package main at "C:\Dropbox\Cyan\cyanTests\tese\main"
package cap.dynamic at "C:\Dropbox\Cyan\cyanTests\tese\cap\dynamic"

Annotations may be attached to the program and packages in Pyan code.

@setVariable(testOverride, true)
program

@checkStyle
package main at "C:\Dropbox\Cyan\cyanTests\simple\main"
package cyan.math at "C:\Dropbox\Cyan\lib\cyan\math"

Annotation setVariable associates an identifier or string to any literal value. In this
example, it associates testOverride to true.

Annotation checkStyle may be attached to several kinds of declarations, including
prototypes. checkStyle does a raw style checking considering the identifiers only, it is a
demonstration metaobject. In this example, the annotation is attached to package main.

The Cyan compiler, Saci, is also responsible for compiling the project file. It parses
and builds an AST for the Pyan code before the start of the Cyan compilation. The
parsing phase is called dpp for During Pyan Parsing. Interface IAction_dpp should be
implemented by classes of metaobjects that should act in phase dpp.

public interface IAction_dpp {

void dpp_action ( ICompiler_dpp project );
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}

Interface ICompiler_dpp does not currently declare any methods by itself although it
inherits from IAbstractCyanCompiler (see section E.2).

Metaobjects setVariable and checkStyle belong to different kinds of metaob-
jects. The class of the setVariable metaobject implements ICompiler_dpp and method
dpp_action is called during Pyan code parsing.

The class of the checkStyle metaobject does not implement ICompiler_dpp and
therefore its methods are not called during Pyan parsing. Annotations of this metaobject
can be attached to prototypes and for this reason its annotations can be attached to the
program or to packages. If checkStyle is attached to a package, the result is the same as
to attach it to every prototype of the package. If annotation checkStyle is attached to
the program, the result is the same as to attach it to every prototype of the program.

1.3.2 Annotations for Creating Prototypes Before Compilation

Cyan programs can be composed of source files of any language in addition to
those containing Cyan prototypes. The only requirement is that there is a metaobject
able to convert the source file into one or more prototypes. A file whose name does end
with “.cyan” should be put in directory --dsl of a Cyan package. This is called a DSL
directory.

For each file with a extension ext in a DSL directory, the compiler looks for a
metaobject whose class inherits from

CyanMetaobjectFromDSL_toPrototype
and whose method getName returns "ext". The extension name is user-defined, it can be
anyone. The metaobject class should override method

List <Tuple3 <String , String , char []>>
parsing_NewPrototype ( ICompiler_dsl compiler_dsl )

inherited from its superclass. When the compiler finds a file ending with extension ext in
a directory DSL of a package, it looks for a metaobject whose name is ext and calls the
above method. This is made before phase parsing of the compilation to produce one or
more Cyan prototypes. This method returns an array of tuples, each one composed of a
prototype name, the file name in which this prototype should be, and the prototype code.
A package can only create new prototypes inside itself. Therefore, there is no package
name in the returned tuples.

The Pyan source file can import packages to the whole program or only to a package.
This is just importation of metaobjects, not prototypes. In Listing 1.6, the metaobjects
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Listing 1.6 – Pyan file with ’import’ declarations
import cyanHelper at "C:\ Dropbox \tests\ cyanHelper "
program

import stylePack
@myCheckStyle
package main
package company

of package cyanHelper are visible to the whole program during Pyan processing and
stylePack is visible only to package main. Annotations of a metaobject are allowed in any
place it is visible. A visible metaobject can be used to process DSL files. Hence, if method
getName of a metaobject of package cyanHelper returns "python", this metaobject will be
used to process a file with this extension in a DSL directory of package company. And it is
legal to attach annotation myCheckStyle to package main assuming there is a metaobject
in package stylePack whose method getName returns myCheckStyle.

If the name of a file in directory DSL starts with an uppercase letter, method
dpa_NewPrototype should return exactly one tuple. The prototype name should be exactly
equal to the file name unless the prototype is generic. In this last case, the file name should
match the prototype name according to the rules of file names for generic prototypes.

If the name of a file in directory DSL starts with lowercase letter, method
parsing_NewPrototype

should return one or more tuples. The names of the prototypes of each tuple need not be
related to the name of the file of directory DSL.

CyanMetaobjectFromDSL_toPrototype is one of the Cyan ways of supporting Lan-
guage Oriented Programming, a paradigm first proposed by Ward (WARD, 1995). The
idea is that a software system encompasses several small domains and there should be a
language for each of them. This paradigm needs easy-to-use tools for building other tools for
languages such as compilers, debuggers, and IDEs. These tools are called Language Work-
benches (ERDWEG et al., 2015) and, from a language description, are able to generate tools
for the language, even including full IDEs. Class CyanMetaobjectFromDSL_toPrototype
is small step in supporting Language Oriented Programming. Its importance is that the
compiler of the main language, Cyan, is aware of the DSLs and supports them.

1.3.3 Literal Numbers as Annotations

Cyan supports literal numbers ending with either the name of the type or the first
uppercase letter of the name:

var size = 100Int;
var count = 10I;



46 Chapter 1. The Cyan Metaobject Protocol

let pi = 3.141592Double;
let e = 2.7182818284D;

The language also supports literal numbers that are annotations. There are metaobjects
associated with them with most of the power of regular metaobjects. For example, there is
an annotation bin for binary numbers:

assert 101bin == 5;
assert 111bin == 7;

The metaobject class of bin is in package cyan.lang and therefore it is always imported.

A number ending with an identifier is considered a metaobject annotation if the
identifier is not Byte, B, Short, S, Int, I, Long, L, Float, F, Double or D.

The class of a metaobject for a literal number should inherit from class
CyanMetaobjectNumber

The subclass of this class, CyanMetaobjectLiteralObject
implements interface

IAction_semAn
The code generation is made by method semAn_codeToAdd declared in interface IAction_semAn.

Method semAn_codeToAdd of a metaobject of a user-defined literal number should
produce an expression. Classes of metaobjects of literal numbers can implement interfaces
of the MOP library that are compatible with IAction_semAn and that do not act in phase
afterSemAn.

1.3.4 Literal Strings as Annotations

Literal strings preceded by an identifier are considered metaobject annotations.
They may be used for DSL code or special strings. Package cyan.lang offers two metaobject
classes, one for strings without escape characters and the other for regular expressions.
Package cyan.util offers support for XML strings.

// cyan.util was imported
let mydog = xml"""

<dog>
<name> Meg </name>
<age> 3 </age>

</dog>
""";

// unescaped strings are prefixed with ’n’ or ’N’
assert n"\n\r" size == 4;

// r"str" is translated into RegExpr("str")
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assert "six" ~= r".*i.*";

The classes of metaobjects of literal strings must inherit from class
CyanMetaobjectLiteralString that implements interface

IAction_semAn
The constructor of CyanMetaobjectLiteralString takes an array of String elements,
the prefixes allowed for the literal string.

As with literal numbers, method semAn_codeToAdd of a metaobject for user-defined
literal strings should generate an expression. The metaobject class can implement interfaces
compatible with IAction_semAn. The class should not implement interfaces of phase
afterSemAn.

1.3.5 Macros as Annotations

Cyan supports macros which are considered special metaobjects. A macro call is
considered an annotation whose associated metaobject class should inherit from class
CyanMetaobjectMacro of the MOP library. This class implements interfaces IParseMacro_parsing
and IAction_semAn. A macro metaobject defines keywords that can start a macro and
keywords that can be used in it (they are unrelated to the Cyan keywords). A metaobject
method, overridden from IParseMacro_parsing, is responsible for parsing the macro call
and building the AST. It is expected that this AST is used by the metaobject method
that overrides the only method of IAction_semAn.

A macro call in Cyan always starts with a macro keyword. After it, the macro may
use any syntax, although it necessarily must use at least the Cyan compiler for lexical
analysis. assert is an example of a Cyan macro. Its full code is in section E.5. A code

assert n"\n\r" size == 4;

is replaced by something like the following.

if ! (n"\n\r" size == 4) {
"Assert failed in line 58 of prototype ’main.Test’" println;
"Assert expression: ’n\"\n\r\" size == 4’" println;

}

Unlike other metaobject annotations, the original annotation, the macro call, is deleted
from the source code before the new code is inserted. Therefore a macro class cannot
implement any interfaces that act in compilation phase afterSemAn.

Cyan offers only low-level support for macros, even lower than that of Lisp. However,
a future work will add a small change in the MOP that will allow other metaobjects to
produce macro metaobjects at compile-time. With this change, an annotation in Cyan
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of a would-to-do metaobject class defmacro could take a DSL that specifies the macro,
much like the macro specification in language Rust (Rust. . . , 2018), and produce a new
macro metaobject.

1.3.6 Annotations Attached to Types

A pluggable type system is a set of algorithms for type checking that may be
incorporated into the compiler for the whole or part of a compilation. It is a pluggable
system. In Cyan, a type in the source code may have an attached annotation that demands
additional checks in the use of the type in that specific place. The regular type checking
is not changed but additional checkings are allowed by the type annotation. Therefore,
the type of a variable may be “T@plug” to mean that it will undergo extra checks by
metaobject plug. The effect is local, only this variable is affected. Some examples will
make that clear.

Line 1 of the following code declares a variable whose type is Char with an attached
annotation letter (declared in package cyan.lang). The associated metaobject checks
if the values assigned to the variable are letters. When a literal char is assigned to the
variable, the check is made at compile-time. If an expression is assigned, the check is
postponed to runtime. An exception is thrown if the check fails. Metaobject range assures
that the variable is between the first and second values of the annotation parameters. A
String variable may only contain valid regular expressions if @regex is attached to its
type. There is a compile-time error if its parameter is not a regular expression, as would
happen in line 174 if uncommented. If an expression that does not match the regular
expression is assigned to the variable, there would be a runtime error, an exception is
thrown.

1 var Char@letter ch = ’a’;
2 ch = ’b’;
3

4 var Int@range(1, 12) month = 12;
5 // if uncommented, compile-time error
6 // month = 13;
7

8 var Char@range(’a’, ’f’) af = ’c’;
9 // if uncommented, compile-time error

10 // af = ’m’;
11

12 var String@regex("[_A-Za-z][_A-Za-z0-9]*") id;
13 id = "pluggableTypeTest";

4 We use class java.util.regex.Pattern.
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14 // if uncommented, compile-time error
15 // id = "#id";
16 // if uncommented, compile-time error
17 // var String@regex("[0-9") wrongRegExpr;
18 // if uncommented, compile-time error
19 // id = "0not an id";
20 var String s = "not an id, there are spaces";
21

22 {
23 // exception ExceptionStr will be thrown
24 id = s;
25 } catch: CatchStr;
26

27

28 var Int@restrictTo{* self prime *} aPrime = 5;
29 {
30 var p = 3;
31 // exception ExceptionStr will be thrown
32 // 4 is not prime
33 aPrime = p + 1;
34 } catch: CatchStr;
35 {
36 // exception ExceptionStr will be thrown
37 // 9 is not prime
38 aPrime = 9;
39 } catch: CatchStr;
40

41 var Int@type(inBytes) size, numBytes;
42 var Int@type(inKbytes) numKbytes;
43 size = 100; // ok
44 numBytes = size;
45 // if uncommented, compile-time error
46 // numKbytes = numBytes;

Annotation restrictTo takes an attached expression that, when evaluated, should be
true. “self” inside this expression represents the value of the variable. Hence, in line 28,
the metaobject checks if 5 is a prime number using method prime of Int. This metaobject
only do runtime checks.

Metaobject type takes a tag parameter. A variable whose type is annotated with
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type can only receive values of that type or values whose types are annotated with the
same tag. Therefore, the assignment of line 43 is correct, the value 100 has type Int, a
non-annotated type. In line 44, one tagged value is assigned to a variable whose type is
tagged. It is correct because the tags are the same. However, there will be a compile-time
error in line 46, if uncommented. The tags are different.

The pluggable type system of Cyan is part of the Metaobject Protocol and it
can use most of the interfaces of the MOP library. There are a few limitations. The
metaobject associated with the type annotated cannot generate code after the annotation
using interfaces IAction_parsing and IAction_semAn. The annotation should only be
attached to the types of variables, parameters, fields, and return value of methods. The
annotation cannot be attached to the superprototype that comes after keyword extends,
to the interfaces that come after implements, or to generic prototype parameters.

An annotation to a type is associated with a metaobject as any other annotation.
The metaobject should implement interface

IActionAttachedType_semAn
Before explaining when the metaobject methods of this class are called, let us list the
statements that are assignment-like:

a) assignments. Because of polymorphism, the right-hand side of an assignment
may be a subtype of the type of the left-hand side. A variable whose type T is
annotated may receive in an assignment an expression whose type is subtype of
T.5 This type may not have annotations, it may have the same annotation as T,
or it may have a different kind of annotation;

b) parameter passing, which is just a different kind of assignment from the real
arguments of a message passing (right-hand side) to the formal parameters of a
method (left-hand side);

c) method return and function return, which are also kinds of assignments. The
right-hand side is the returned expression. The left-hand side is an implicit
variable that has the same type as the method or function;

d) type-case statements (section A.3). It is not necessary to cover this kind
because the type of a type expression cannot have an attached annotation and
neither can the type that appears after keyword case;

e) for statements. A value is assigned to the for variable in each iteration.
However, the type of this value cannot have an attached annotation. It would
be necessary to have an Iterator prototype whose real parameter, a type,
have an attached annotation. Currently, a type with an annotation cannot be a

5 That includes T itself.
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parameter to a generic prototype. So, statement for only works with regular
types.

Consider that all statements cited have a left-hand side and a right-hand side. The
metaobject methods of the metaobject associated with an annotation attached to a type
are called in these statements when the left-hand or the right-hand side has a type with
an attached annotation. The metaobject method

semAn_checkLeftTypeChangeRightExpr
declared in

IActionAttachedType_semAn
is called when the type of the left-hand side has an attached annotation. The metaobject
method

semAn_checkRightTypeChangeRightExpr
declared in the same interface is called when the type of the right-hand side has an
attached annotation. Both methods return the expression that replaces the right-hand
side. If the types of the left-hand side and right-hand side have attached annotations and
both generate code for replacing the right-hand side, the compiler will issue an error.

Method doNotCheckIn of IActionAttachedType_dsa return a list of tuples, each
composed of a package and a prototype name. In each of the prototypes of the list, the
methods for checking types, shown below, are not used for this metaobject.

dsa_checkLeftTypeChangeRightExpr
dsa_checkRightTypeChangeRightExpr

This is useful when some trusted code needs to convert values of one type to another.
For example, a would-to-be-made annotation sql may be attached to a String to mean
it contains valid SQL code (BATRA, 2018). The prototypes of the list returned by
doNotCheckIn are allowed to have methods that take a string as parameter, check if it
contains a valid SQL code, and return it with type String@sql. That is, the prototypes of
the list are the ones trusted by the designer of metaobject sql. Assuming all SQL code is
produced by these trusted prototypes, the conversion methods dsa_check... of the class
of sql should always issue an error. Convertion is only allowed in the chosen prototypes.

Annotation setVariable attached to the program or a package in the project file
is used for defining trusted prototypes for a given annotation. Use

@setVariable(moNameDoNotCheckIn, [ "P1", ..., "Pn"])
for assuring that prototypes P1, . . . Pn are trusted for metaobject moName. Pi is the full
path of a prototype, with its package.

For example, if the annotation name is tainted, the project file would be as follows.

@setVariable( taintedDoNotCheckIn, [ "badToGood.CastT2UT" ] )
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program
package main

Thus, prototype badToGood.CastT2UT is not subject to the rules of metaobject tainted,
its conversions are not checked for this specific metaobject. That is, methods

dsa_checkLeftTypeChangeRightExpr
dsa_checkRightTypeChangeRightExpr

of metaobject tainted are not used in this prototype.

The Cyan MOP only considers project variables of the form moNameDoNotCheckIn
if method allowDoNotCheckInList of metaobject moName returns true. The default is
false and in this case @setVariable simply does not work.

1.3.7 Codegs, the Visual Metaobjects

Programming in all of the main languages is made through the use of a text editor,
even when using an IDE. Although graphical tools may be used for generating code, they
are external to the language. The compiler does not interact with them, the compiler is
always called after the tools and therefore data is not exchanged in both directions.

This section describes Codegs,6 visual metaobjects that act both at editing time and
at compile-time. For that, it is necessary an IDE plugin that has been built by Cassulino
(SOUZA, 2017) in his master thesis. The plugin works in Eclipse (ECLIPSE, 2018). At
editing time, when the mouse hovers over a Codeg annotation, a method of the Codeg,
a metaobject, is called. It is expected that it opens up a window to gather data. After
the user gives the data, she or he closes the window and the editing continues. Afterward,
during compilation, the compiler asks the Codeg which data was gathered at editing time.
It may be used for checks and for generating code. Before going into the details, we will
show an example.

There is a Codeg called color that helps to choose a color visually at editing time
in the Eclipse IDE with the Codeg plugin. During the compilation, the annotation is
replaced by the chosen color. In the IDE, if the mouse hovers over an annotation like
@color(red), a window opens up as displayed in Figure 8. The color may be chosen
visually and the annotation parameter, red, may be changed. The first parameter of a
Codeg annotation is called label. It must be an identifier. If two Codeg annotations of
the same source file use the same label, they keep the same data. Any changes in one are
reflected in the other.

6 pronounced as the words code and eggs together. The meaning is “originator of code”.
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Figure 8 – Codeg color

After the user chooses a color, she or he should press button “Ok”. The color window
is closed and the editing may continue. It is expected that a Codeg window has an “Ok”
button. The color chosen is stored in a hidden file by the compiler (this is soon explained).
During the compilation, the metaobject associated with annotation @color(red) has
access to the content of the file saved at editing time with the color chosen. It is used to
generate the correct color number. Therefore, the color annotation has type Int and,
effectively, is replaced by a number in phase semAn.

Another interesting Codeg that is cyan, the same name as the language. This
Codeg employs the Cyan interpreter (section 2.3) for interpreting Cyan code at editing
time. The user can type statements in a text window and click the Run button to interpret
them. The output or any compilation errors are shown in an output window. Or can click
on the Live button for automatic interpretation: after some tenths of a second of the last
key pressed, the interpreter is automatically called.

1.3.7.1 The Plugin

The Codeg plugin calls the Cyan compiler to parse the source code being edited
every few milliseconds after the user stops typing. Only the first compilation phase, parsing,
is done. That is enough for identifying the imported packages and loading their metaobjects.
A Codeg should be imported from a package as any other metaobject. In the example of
Figure 8, Codeg color is in package cyan.lang (it will be moved to a more appropriate
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Plugin Saci Color

parseSingleSource()

error messages
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Figure 9 – The sequence diagram of calls between the compiler and the Codeg plugin

place in the future).

After the parsing, Saci knows which annotations are associated with Codegs and
where they are in the source code, their line, column, and offset from the start of the text.
When the user hovers the mouse over the text being edited, the Codeg plugin knows the
offset of the mouse pointer in relation to the start of the text, an information supplied by
Eclipse. The plugin calls method searchCodegAnnotation of Saci that returns the Codeg
that is over the mouse pointer or null if none. If a Codeg is returned, the plugin calls
method eventCodegMenu passing the metaobject as a parameter. The sequence diagram
of these calls is displayed in Figure 9.

char [] eventCodegMenu ( CyanMetaobject cyanMetaobject )
byte [] getUserInput (

ICompiler_ded compiler_ded ,
byte [] previousCodegFileText );

Method eventCodegMenu of Saci is responsible for calling method getUserInput of the
Codeg. It is expected that this method gather user input through a Graphical User
Interface.

The compiler calls getUserInput passing two parameters. The first one is a
restricted view of the compiler. The second one is the text stored in a hidden file associated
with the Codeg annotation. The value returned by getUserInput is written to this file.
Therefore, during an edition, if getUserInput is called two times and in the first one the
user gives an input (press “Ok”), parameter previousCodegFileText in the second call is
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the value returned by the first call. In the first time, null is passed as this parameter.

The byte array returned by getUserInput is read and written as a text in the
hidden file. It is usually the code of a small DSL that represents the data collected by the
Codeg GUI. The file is managed by the compiler, users need not be aware of it.

At compilation time, the byte array returned by getUserInput is got by calling
method getCodegInfo of the Codeg annotation, a method of class

WrAnnotationAt
Then, inside a method like semAn_codeToAdd of a Codeg, the byte array recorded in a file
at editing time is retrieved by the expression

this. getAnnotation (). getCodegInfo ()

1.3.7.2 Interface ICodeg

A Codeg is a metaobject whose class implements interface ICodeg. There are no
special restrictions on which interfaces of the MOP library a Codeg class may implement.
Hence, Codegs have the full power of the Cyan MOP. They can even have an attached DSL
code. This code may be the text returned by getUserInput, for example. To synchronize
the GUI with the Codeg annotation (including its attached text), the Codeg class should
redefine method newCodegAnnotation (see next example) that returns a string that
replaces the whole annotation, including the parameters and attached DSL code. The IDE
plugin calls this method and does the replacement.

public interface ICodeg {

byte [] getUserInput (
ICompiler_ded compiler_ded ,
byte [] previousCodegFileText );

default boolean demandsLabel () { return true; }

default String newCodegAnnotation () { return null; }

default String getNewFirstParameter () { return null; }

// some methods are elided

}

Method getNewFirstParameter returns just the new first annotation parameter,
the label. Again, the IDE plugin is responsible for changing the source code. This is used
in Codeg color in which the label can be changed in the window shown in Figure 8.
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Method demandsLabel returns true by default. Therefore, unless said otherwise, every
Codeg annotation should have a first parameter that is a label. Some Codeg annotations
may not have a label but it is demanded that they are replaced, at editing time, by an
expression or some other code. With this feature, user-defined literal numbers can be
Codegs. Currently, only the class of literal number bin implements ICodeg. When the
user hovers the mouse over 101bin, a window opens. The user can choose a number either
in binary or in decimal. When “Ok” is pressed, the source code is changed.

Method getUserInput takes a first parameter of type ICompiler_ded, an interface
that inherits from IAbstractCyanCompiler (section E.2). This interface declares a few
methods beyond the inherited ones. There are methods that return information on the
fields and methods of the current prototype and on the visible local variables (at the
annotation). The information is in the form of strings (it should be because the AST
has not been typed yet). Therefore, a Codeg window may show to the user a list of
fields or methods of the current prototype and let she or he chooses one to apply some
transformation.

A Codeg class may implement interface ICommunicateInPrototype_ded for metaob-
ject communication at editing time. After the user stops typing, the IDE plugin calls the
compiler for parsing the source file being edited. After the parsing, Saci calls the methods
of this interface of the Codegs in the source file. It works like the regular metaobject
communication of Subsection 1.2.6 but at editing time. So it is possible to build a master
Codeg that manages all Codeg annotations in a source file.

1.4 The Cyan MOP and the Problems with Metaprogramming

This section shows how the Cyan MOP addresses some of the problems with
metaprogramming described section ??. The problem name is in boldface and a short
description of it is in italics. Methods of interfaces IAction_dpp (subsection 1.3.1, used
in the project file), CyanMetaobjectFromDSL_toPrototype (subsection 1.3.2, for creating
new prototypes before the compilation) and ICodeg (subsection 1.3.7, for visual data
input) act before the compilation of any source files. They are not discussed here because
they cannot be directly compared with features of other metaprogramming systems.

MessWithOthers A metacode in a file changes another source file.

The creation of new prototypes by the use of interfaces with names
IActionNewPrototypes_phaseName

does not cause this problem, which only occurs when a metaobject in one source file is
able to change another file.

A metaobject whose current prototype is P may replace a message passing that is in-
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side another prototype Q when the metaobject class implements interfaces IActionMessageSend_semAn
or IActionMethodMissing_semAn. This replacement is expected, it should obey the mes-
sage passing semantics. Therefore, we consider that this non-local change, from P to Q,
does not cause problem MessWithOthers. This problem only happens if the changes are
unexpected.

All interfaces other than IActionMessageSend_semAn or IActionMethodMissing_semAn
can only replace or add code to the current prototype. Several mechanisms guarantee that:

a) the AST is read-only and, therefore, a metaobject cannot use AST objects to
change the code;

b) there is no metamethod of any interface of the Cyan MOP for replacing or
adding code to a prototype different from the current prototype;

c) a statement is replaced by a code, given as a string, by metamethod replaceStatementByCode
described in section 1.2.4. The AST object representing the statement is passed
as an argument to this metamethod. Methods of the MOP library, includ-
ing those of AST classes, do not leak AST of base method statements to
metaobjects of other prototypes. That is, an exception is thrown whenever
a metaobject whose current prototype is P calls a method getStatement or
getStatementList that returns the AST object of a statement or list of state-
ments of another prototype Q. All metamethods that reveal private parts of a
prototype, including method statements, have security checks for preventing
leakage. The exception is thrown at compile-time. Note that there is no need
to put this type of test on all AST methods. For example, there are no checks
in method getStatementList of the AST class of Cyan statement while. If a
metaobject has a reference to an AST object representing a while statement,
it has already passed a check previously.

WhoDependsOnWho Metacode are not taken into account when the compiler builds the
dependency graph among source files.

Some metamethods of the MOP library return information that links two prototypes
or source files.7 For example, a metaobject whose current prototype is P asks for the
superprototype of another prototype Q. Therefore, whenever Q changes, P has to be
recompiled. Metamethods that link two prototypes in this way also add the dependencies
in a compiler dependency table.8 There are statements at the start of every metamethod
that link two prototypes to test and add the dependency to the table.

As an example, a metaobject whose current prototype is P walks in the P AST and,
after calling several AST methods, get a reference to another prototype R. The compiler
7 Every prototype is in its own source file.
8 Currently, this table is not used by the compiler. It will be in future versions.
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will add the dependency from Q by P to the table. All AST methods that are related to
dependencies between prototypes have statements to add entries to the dependency table.

KnowsFriendsSecrets Metacode in one source file know private information of another
file.

The program view of a metaobject is the same as the view of its current prototype.
This is enforced by two techniques:

a) AST metamethods return more or less information according to the caller. The
amount of information is exactly the same the compiler makes available to the
caller. For example, the AST class that represents a prototype is WrProgramUnit.
It declares a method getMethodDecList that returns prototype method list.
Lets assume that a metaobject whose current prototype is P calls method
getMethodDecList of the AST object that represents prototype Q. One of
the arguments to this method is the compilation environment (usually, the
parameter name is env). Using env, the method is able to know the caller, P.
getMethodDecList returns a list of Cyan methods that includes the Q public
methods and, based on the relationships between P and Q, it also returns: (a)
the methods of Q whose visibility is package9 if P and Q are in the same package;
(b) the methods of Q whose visibility is protected10 if P is a subprototype of Q;

b) if a metaobject whose current prototype is P tries to retrieve private infor-
mation about another prototype Q using a method of the AST, this method
throwns an exception. An example of that was given in MessWithOthers
with method getStatementList. Another example is method getFieldList
of WrProgramUnit. It also takes an argument that is a compilation environment.
If a metaobject whose current prototype is P calls this method of the AST
object representing another prototype Q, it throws an exception.

The checks cited above are made with a compilation environment object of class
WrEnv that is passed as an argument to metaobject methods or retrieved from other
metaobject method arguments. It cannot be user-created because its constructor takes
an object of a class hidden to metaprogrammers. If a developer could create an object of
WrEnv, she or he could build it to falsify the original object. Hence, a metaobject whose
annotation is inside P could call, without errors, method getFieldList of a Q AST object
because it pretended to be inside Q.

Compiler-Interactions Metacode interact with compiler low-level structures.

Metaobjects use wrapped versions of the compiler data structures. Therefore, we

9 A method preceded by the Cyan keyword package. It is visible in all package prototypes.
10 Methods preceded by the Cyan keyword protected, visible in all subprototypes.
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consider that the problem Compiler-Interactions is addressed by the Cyan MOP for several
reasons:

a) metaprogrammers need not to know complex compiler classes because they
handle wrapped and simplified versions of these classes. The wrapped AST
classes were designed based on the Cyan language which is less subject to change
than the compiler;

b) the wrapped data structures are read-only. There is no way of crashing the
compiler by calling the wrong methods;

c) metaobjects do not add code by handling the AST (calling its methods or
changing fields). Therefore, metaobjects cannot bypass a compiler check by
adding code after the compiler does that check.

WhoDidWhat The compiler does not link an inserted code to the metacode that made
the insertion.

Metaobjects ask the compiler to add or replace code, they never do this directly.
The compiler keeps track of the metaobjects that asked for the changes and, if there
is a compilation error aftwards, it points out exactly which annotation introduced the
malformed code. The line, column, and source file of the annotation is shown in the
compiler error message.

OrderMatters The order metacode is called inside a source file changes metacode behavior.

From now on, we will use metaobject class for the class of the metaobject (it is in
the metaprogram). During a compilation phase and for each prototype, the compiler calls
the metamethods of the interfaces associated to that phase in the textual order of the
corresponding metaobject annotations. As an example, suppose there are three annotations
inside a prototype: @aaa, @bbb, and ccc. Textually, they appear in this order in the source
code. The classes of metaobjects associated with annotations @aaa and @ccc implement
interface IAction_semAn of the MOP library. In phase semAn, the compiler will call the
metamethods semAn_codeToAdd (the single method of the interface) of the metaobjects
associated with @aaa and @ccc.

The textual annotation order in the source code is irrelevant if the metamethod
call order is not important. The following paragraphs examine all interfaces to discover if
the metamethod call order is important or not.

Metaobjects can generate new prototypes but these are created in a new file.
Therefore, their creation order is irrelevant. If two metaobjects try to create prototypes
with the same name, the compiler issues an error. In phase parsing, the calling order of
metaobject methods is irrelevant because: (a) code added by metaobjects will be only



60 Chapter 1. The Cyan Metaobject Protocol

visible, by other metaobjects, in the next phase and (b) information such as documentation
can be added by metaobjects to declarations; however, this data cannot be read in phase
parsing. Metaobjects can communicate with each other in phases afterResTypes, semAn,
and afterSemAn (subsection 1.2.6). The compiler coordinates the communication by first
collecting data that every metaobject wants to communicate, which is an object for every
metaobject (or null). These objects are placed in a list that is shared with all metaobjects.
Therefore, the annotation order is not relevant. Metaobjects can warn the compiler that it
should issue an error if their classes implement the interface

IInformCompilationError
of subsection 1.2.7. The order of the annotations is irrelevant since the metaobjects will
warn the compiler regardless of their position in the source code.

There are four methods in interface IAction_afterResTypes.

afterResTypes_renameMethod
afterResTypes_beforeMethodCodeList
afterResTypes_codeToAdd
runUntilFixedPoint

The first one in this list is used to rename methods. The calling order is not important
because at most one metaobject can rename each base method. If two or more metaobjects
try to rename the same base method, the compiler issues an error. The second method
adds statements at the beginning of base methods. Statements generated by two or more
metaobjects to be added to the same base method are added in the textual order of
the metaobjects’ annotations. Therefore, the calling order, which is the textual order, is
important. The metaprogrammer may demand a metaobject is the only one allowed to
add code to a given base method. In this case, if other metaobjects try to add statements
to the base method, the compiler will issue an error.

The compiler calls method afterResTypes_codeToAdd: in algorithm FixMeta.
The methods of all metaobjects associated with the same prototype are called in rounds. In
each round, all metaobjects have access to the same information, produced in the previous
round. Therefore, the calling order is irrelevant.

In phase semAn, metaobjects whose classes implement interface IAction_semAn
can only add code after the annotation. The metamethod calling order is not important
because the code added will only be visible in the next compilation phase, afterSemAn.
The single method of interface IActionVariableDeclaration_semAn can add code after
a local variable declaration. If several annotations add code to the same local variable
declaration, the code added follows the textual annotation order. However, this is not a
serious problem because the annotations and the added code are textually very close to
each other.
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Methods of interfaces IActionMessageSend_semAn, IActionMethodMissing_semAn,
IActionFieldAccess_semAn, IActionFieldMissing_semAn, and IActionAttachedType_semAn
replace a message passing, field access, or an expression by some other code. At most one
metaobject can replace a message passing, field access, or expression by some other code.
Therefore, the calling order is not important.

The order of calling the metamethods is not important in the afterSemAn phase
because, in this phase, the source code is immutable.

In all phases but semAn, all metaobjects view the AST of the previous phase (maybe
changed by it) and therefore subproblem DifferentViews does not occur. However, in
phase semAn, the compiler assigns types to AST objects representing expressions in textual
order. Therefore, if one annotation comes after another, the first will view a more complete
AST than the last. Hence, subproblem DifferentViews does occur in this case.

Metaobjects can associate to declarations11 documentation, examples, and features
(each composed of a name and a literal object). If a metaobject associates, for example,
a feature with a declaration that is got by another metaobject in the same compilation
phase, the annotation order is important.

// add feature ("x", 0) to the current prototype
@aaa
// generate code if feature "x" is associated with the
// current prototype
@bbb

In this example, if annotation @bbb is put before @aaa, metaobject bbb will not generated
code (assuming feature x has not been associated with the current prototype previously).
However, this cannot happens because documentation, examples, and features can only be
added to declarations in phases parsing and afterSemAn and they can only be read in the
other phases. Therefore, in each phase all metaobjects share the same program view and
subproblem DifferentViews is not caused by information added or got from declarations.

In each compilation phase, metaobjects view the AST built or changed in the
previous phase, they do not view the changes made in the same phase. In phase

afterResTypes_codeToAdd:,
metaobjects that participate in algorithm FixMeta view the signatures generated by other
metaobjects. All of them view the same information and therefore they share the same
program view.

If metaobjects do checks in phase afterSemAn, subproblem InvalidateChecks of
OrderMatters does not happen because, in this phase, the program cannot be changed

11 The program, packages, prototypes, methods, fields, and local variables
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anymore. If a metaobject do checks in other compilation phases, it is badly designed.
Therefore, we consider that the Cyan MOP addresses the subproblem InvalidateChecks.

InfiniteMetaLoop Metacode can generate metacode that, in its turn, generate metacode,
and so on.

This problem cannot occur in Cyan because, although the code added by metaob-
jects can contain annotations, their associated metaobjects are only active in the next
compilation phase.

Nontermination Metacode may not finish its computation.

Metaobject methods cannot take more than a time limit, given by a compiler
option, to finish their executions. Otherwise, the compiler exits after issuing an error
message. Therefore, the Cyan MOP addresses problem Nontermination.

Nondeterminism Metacode is nondeterministic.

Metaobjects can read and write to files, get the current time, call a random number
generator, interact with the network, and so on. That makes metaobjects nondeterministic.
There is no easy way to make them deterministic. That could only be done if they use
a special language in which any interactions with the world are prohibited. A restricted
version of interpreted Cyan could be used for that. However, this would place such great
limitations on metaobjects that we prefer not to use this solution.

NoGeneratedCodeGuarantees Metacode may generate defective code.

In Cyan, metaobjects can generate malformed code. However, the compiler will
point out any defective code introduced by metaobjects.

NoContracts The contract between the metacode and the base code is explicitly stated.

The Cyan MOP does not require a contract between the base code and metaobjects.
However, this contract can be specified by metaobject concept of subsection 2.2. In
the following example, let us assume that metaobject addSort adds a sort method to
PersonList for sorting the list.

@addSort
@concept{*

Person has [
func <=> Person -> Int

]
PersonList has [

func sort
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]
*}
object PersonList

...
end

This metaobject requires that Person has a <=> method12 used in the sort method.
Metaobject concept is used for enforcing that Person has a <=> method and for demanding
that the final version of PersonList has a sort method. If we assume that only addSort
adds code to PersonList, concept is demanding that this metaobject adds a sort method
to this prototype.

C++ concepts for templates (GREGOR et al., 2006) were motivated by a problem
similar to NoContracts. In this language, concepts are predicates on generic prototype
parameters. They restrict parameters. For example, a concept may demand that a parameter
has a method compareTo that would correspond to the Cyan method <=> in the previous
example.

Metaobjects generate code that may not fit any patterns and, therefore, the code
would not be easily described by a DSL code. And the requirements on metaobject
parameters and environment may be arbitrarily complex. Therefore, the requirements
and demands should be specified by a DSL that could be as complex as the metaobject
metacode. Therefore, it is not worthwhile to solve the NoContract problem in Cyan. On
the other side, C++ concepts support a simple DSL with easily described requirements
because the code of instantiated classes is generated from a template (the template class)
and the demands on the parameters are simple.

CircularDependency Metacode may depend on information produce or changed by other
metacode. This dependency relation may be circular.

In phase parsing, metaobjects cannot view the code or information generated
by other metaobjects. Therefore, this problem does not occur in this pase. Algorithm
FixMeta of subsection refafixMeta deals with some kinds of circular dependencies in
phase afterResTypes. All metaobjects that participate in this algorithm have the same
information on the current prototype. However, no algorithm, includingFixMeta, is able to
deal with unsolvable circularity. As an example, suppose a metaobject field0 generates,
for each field f, another field with name f0 if there is no field with this name. If the current
prototype has a single field f, the metaobject would generate fields f0, f00, f000, and so
on. In this case, algorithm FixMeta would run the maximum number of rounds and issue
an error.
12 e1 <=> e2 returns -1, 0, or 1 if e1 is less than, equal, or greater than e2, respectively.
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Figure 10 – Dependencies among prototypes

There may be circular dependencies among metaobjects of several prototypes as
shown in the example of Figure 10. An arrow from prototype X to Y means that the single
metaobject of X uses information about Y. Metaobject createMethod adds to the current
prototype method

func numMethodsY -> Int = numMethods;
in which Y is the annotation parameter and numMethods is the number of methods declared
in Y. Currently, all of the createMethod metaobjects will generate incorrect code because
base methods are added in phase afterResTypes and, in this phase, metaobjects view AST
generated in phase resTypes. Methods added in phase afterResTypes are not considered.
Therefore, the value each numMethodsY method returns is 0. Let’s assume that metaobjects
view the code added by other metaobjects in the compilation phase afterResTypes. In this
case, whenever the order that the metaobjects add code to their prototypes, one of them
will generate incorrect code: the number returned by the base method numMethodsY will
be 0 when it should be 1.

Circular dependency among metaobjects of different prototypes in phase after-
ResTypes could be addressed by extending algorithm FixMeta to deal with all prototypes
of a dependency cycle. But how to build this cycle? It could be the dependency graph built
by the compiler, before phase afterResTypes, based on the types used by the prototypes
(considering every type appearing outside method bodies in the prototype). This would
not work in the example of Figure 10. Metaobject createMethod adds a dependency from
its current prototype and its parameter. This dependency is not discovered by the compiler
in phase resTypes because the parameters to the annotations are just symbols, they do not
represent the types with the same name. The dependency would be discovered in phase
afterResTypes during the execution of algorithm FixMeta, when it should be added to
the algorithm data. The dependencies added during FixMeta execution could be removed
in the next round of calls. Any language solution to this complex mesh would make the
Cyan MOP too complex for regular use.

In phase semAn, there may be circular dependency for the same reasons it occurs
in phase afterResTypes. Algorithm FixMeta could be adapted to address some kinds
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of circularity. However, we deemed that is not worthwhile since no real case of circular
dependency in phase semAn was found either in the literature or in real-case examples of
metaprogramming languages. The program code cannot be changed from phase afterSemAn
onwards and, therefore, there cannot be any circular dependency.

A metaprogramming system with severe restrictions on how it changes the code
and does checks will have few or none of the problems described in this section. This is not
the case with the Cyan MOP. It is powerful enough to implement complex metaobjects as
demonstrated in chapter 2 which presents some non-trivial metaobjects that could not
have been done in a limited metaprogramming system.

1.5 Shortcomings of the Cyan MOP

The code generated by a metaobject in a compilation phase may contain annotations.
However, the associated metaobjects will never generate code in the same phase. They
will only be activated in the next phase. Therefore, a metaobject cannot make use of
annotation generation in order to help itself generate code. As an example, suppose we
want to implement metaobject propertyAll that takes pairs (name, Type) and generates,
for each pair, a field (with that name and type) and get and set methods. This metaobject
cannot generate, for each field, the code

@property var Type name
because @property would only be activated in the next compilation phase, semAn, when
it does not generate code. Metaobjects can only be composed by putting code generation
methods into a library imported by several metaobject classes or prototypes.

Some features are missing in the Cyan MOP:

a) to intercept compiler error and warning messages. Metaobjects should be able
to intercept and change the error and warning messages. For example, to make
them clearer;

b) generate code in the subprototype of an annotated superprototype. Currently,
inheritance is intercepted but the subprototype can only be checked;

c) intercept code generation. The target language could be changed or the generated
code could be optimized.

In phase afterResType, metaobjects of the same prototype can view the code
generated by others because of algorithm FixMeta. This does not happens in phase semAn.
The consequences are that some uncommon metaobjects cannot be implemented correctly.
For example, suppose annotation @printStat generates

numStat println;
in which numStat is an Int literal, the number of statements of the current method (the
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annotation is inside this method). Since a metaobject cannot view the code generated by
others, numStat may not reflect the final code.

func wrong {
@printStat
@printStat

}

The final code of the method above is

func wrong {
1 println;
1 println;

}

It should be

func wrong {
2 println;
2 println;

}

This problem can be solved if algorithm FixMeta is adapted for phase semAn. That would
be worthwhile if metaobjects that need to know the code generated by others in phase
semAn are common. There are not — we could not find any metacode in any language
that needs this feature. Therefore, FixMeta was not adapted to phase semAn.
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2 Metaobjects in Action

This chapter presents metaobjects used in the Cyan libraries and some others
that are themselves research topics. They attest that the Metaobject Protocol of Cyan
is robust enough to build complex metaobjects in many different domains. That means
the mechanisms used by the Cyan MOP to address the problems with metaprogramming
(section 1.4) do no limit significantly the MOP’s power. This chapter is organized as
follows. Section 2.1 describes metaobject grammarMethod for the fast building of DSLs
using method keywords and regular expressions; that is, using only regular Cyan syntax.
Annotations of metaobject concept of section 2.2 take a DSL code for restricting the type
parameters of a generic prototype. They check the correctness of an instantiation of a generic
prototype instantiation before the actual instantiation. The result are better specified
generic prototypes and clearer error messages. Section 2.3 presents some metaobjects able
to interpret Cyan code at compile-time. The make it easy to build metaobjects because
there is no need of creating a Java class or a Cyan prototype. The metaobject code is
given with the annotation.

The last section shows the relationships among metaobjects and the language Cyan
and its libraries. The language was designed simultaneously with the metaobjects it uses.
Cyan would be very different without them. Package cyan.lang, imported automatically
by every source file, depends heavily on metaobjects. If they were not used, many language
features would have to be designed to support this library.

2.1 Grammar Methods

Annotation grammarMethod permits the definition of Domain Specific Languages
(DSL) using message keywords. Although the DSL is limited to use message keywords,
expressions, and a regular language, it is easy to define. The annotation should be attached
to a method and it should have an attached DSL code. The example of Listing 2.1 shows
a method addAll: annotated with grammarMethod. We say that addAll: is a grammar
method.

The attached DSL code is a regular expression containing message keywords, types,
parentheses, and regular expression operators. All of the usual operators are supported:
| for alternative, + for one or more repetitions, * for zero or more repetitions, and ?
for optional regular expression. Because of the annotation grammarMethod, an object of
MyList may receive a message with multiple add: keywords, as happens in line 3 of the
following example.
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Listing 2.1 – Grammar method addAll:
1 object MyList
2

3 @grammarMethod{*
4 (add: Int)+
5 *}
6 func addAll: Array<Int> array {
7 for elem in array {
8 list add: elem
9 }

10 }
11

12 func getList -> Array<Int> = list;
13

14 let Array<Int> list = Array<Int>();
15 end

1 func myListTest {
2 let myList = MyList();
3 myList add: 0 add: 1 add: 2;
4 var s = "";
5 for elem in myList getList {
6 s = s ++ elem
7 }
8 assert s == "012";
9 "myListTest" println;

10 }

There is no method add:add:add: in MyList. The metaobject grammarMethod intercepts
messages for which there is no method. It then replaces the message passing by a message
using keyword addAll: and an array as argument. Therefore,

myList add: 0 add: 1 add: 2;

is replaced by

myList addAll: [ 0, 1, 2 ];

In order to understand the following sections, it is important to distinguish two DSLs
related to grammar methods. The code of the first one is attached to the annotation
grammarMethod. It is a regular expression. Hence, the code itself is a grammar definition.
A code of the second DSL is a message passing that should obey the regular expression.
In the example above, it is “add: 0 add: 1 add: 2”.
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The grammar of the DSL for regular expressions is given in the next subsection. All
code attached to an annotation grammarMethod, a regular expression, should be recognized
by this grammar. The text attached to each annotation defines a regular expression that
is also a grammar. The message passing should be recognized (or matched) by this regular
expression in order to use the grammar method.

2.1.1 The Metaobject Class

The metaobject class of grammarMethod implements several Java interfaces of the
MOP library. We explain two of them. The first is IParseWithCyanCompiler_parsing.
The DSL code attached to the annotation is parsed with the help of the Cyan compiler.
The parsing_parse of IParseWithCyanCompiler_parsing builds an Abstract Syntax
Tree based on the DSL grammar that follows. KeywordGrammar is the start grammar
rule. IdColon represents a message keyword which is an identifier attached to a colon, like
“add:”.

KeywordGrammar ::= “(" KeywordUnitSeq “)" “∗" |

“(" KeywordUnitSeq “)" “+" |

“(" KeywordUnitSeq “)" |

“(" KeywordUnitSeq “)" “?"

KeywordUnitSeq ::= KeywordUnit |

KeywordUnit KeywordUnit { KeywordUnit } |

KeywordUnit KeywordUnit { “|” KeywordUnit }

KeywordUnit ::= SelecGrammarElem |

KeywordGrammar

SelecGrammarElem ::= IdColon |

IdColon Type1, Type2, ... Typen |

IdColon Type1 |

IdColon “(" Type “)" ( “∗" | “+" )

When the compiler finds a message send for which there is no adequate method,
it looks for a metaobject attached to the receiver type or its methods that can handle
this “missing method error”. That is, the compiler looks for a metaobject whose class
implements IActionMethodMissing_semAn. If the receiver type is a prototype with a
grammar method, the compiler calls method

semAn_missingKeywordMethod
of its attached metaobject. This method has access to the AST of the DSL code, which
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is stored in a field of the metaobject. It then tries to match the AST with the message
passing. Therefore, there is an attempt to do a pattern matching of the DSL code attached
to the annotation, a regular expression, to the message passing. If they do not match,
method semAn_missingKeywordMethod returns null and possibly other grammar methods
may try a match. If no metaobject can handle this “method missing” problem, the compiler
issues an error.

If there is a match, the grammarMethod metaobject has to replace the message
passing by another message passing using the method to which the annotation is attached
to. That is, a message passing with add: keywords to a MyList object is changed to a
message passing to addAll:, the method to which the annotation is attached. All of the
objects of the message passing are grouped into a single object which may be composed of
arrays, tuples, and unions. The next Subsection explains how to calculate the type of this
object, which is also the type of the single parameter of the annotated method.

2.1.2 Rules for the Method Parameter Type

The previous Subsection presented the grammar of the DSL of metaobject grammarMethod.
The metaobject uses this grammar for two goals:

a) to build a single object from the arguments of all keywords of a message passing
that would cause the “method missing” error. This object is passed to a call to
the annotated method. In the example

myList add: 0 add: 1 add: 2
the object passed as parameter to addAll: is [ 0, 1, 2 ].

b) to check the type of the single parameter of the method annotated with
grammarMethod. This type should be equal to the type of the object described
in item a). It should reflect the DSL code of the attached annotation.

The type of the parameter of the annotated method is calculated according to the
rules of table 1. The type associated with the rule in the left is in the right. “typeof(P)”
is the type associated with the grammar production P. If there are many occurrences of a
rule name R, we use Ri for the ith occurrence of the rule. That is, when using the rule

A ::= B { B }
B3 is the third occurrence of B in an expression. Note that, in the table, a type may itself
be a union type like Int|String.

Table 2 displays some high-level examples of regular expressions and their types
according to table 1. If the expression contains several symbols, as

R R ... R
Ti is the type associated with the ith occurrence of R. Table 3 shows some real examples
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Table 1 – The types associated with rules of the grammarMethod DSL

Rule Type
KeywordGrammar ::= “(” KeywordUnitSeq “)” “*”

Array<typeof(KeywordUnitSeq)>
KeywordGrammar ::= “(” KeywordUnitSeq “)” “+”

Array<typeof(KeywordUnitSeq)>
KeywordGrammar ::= “(” KeywordUnitSeq “)”

typeof(KeywordUnitSeq)

KeywordGrammar ::= “(” KeywordUnitSeq “)” “?”

Union<some,
typeof(KeywordUnitSeq),
none, Any>

KeywordUnitSeq ::= KeywordUnit typeof(KeywordUnit)
two or more KeywordUnit
KeywordUnitSeq ::= KeywordUnit KeywordUnit

{ KeywordUnit }
Tuple<typeof(KeywordUnit1),
..., typeof(KeywordUnitn)

KeywordUnitSeq ::= KeywordUnit |

KeywordUnit { | KeywordUnit }
Union<f1, typeof(KeywordUnit1),...,
fn, typeof(KeywordUnitn)>

KeywordUnit ::= SelecGrammarElem typeof(SelecGrammarElem)
KeywordUnit ::= KeywordGrammar typeof(KeywordGrammar)
SelecGrammarElem ::= IdColon Any
SelecGrammarElem ::= IdColon T1 T1
with n >= 2
SelecGrammarElem ::= IdColon T1, T2, ... Tn Tuple<T1, T2, ... Tn>
SelecGrammarElem ::= IdColon “(” Type “)”
( “*” | “+” ) Array<typeof(Type)>

of regular expressions with their types.

2.1.3 A More Complex Example

The example that follows uses all but the * operator. The parameter of the method
attached to the grammarMethod operator should have a type that matches the regular
expression according to rules given in Subsection 2.1.2. It is usually difficult to find the
type by oneself. Thus, let the compiler help you. Just put the name of the parameter
without the type. The metaobject issues an error and tells the correct type.

package main

object Player
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Table 2 – High-level regular expressions and their types

Expression type
T1 T1
R R ... R Tuple<T1, T2, ..., Tn>
Id “:" R R ... R Tuple<T1, T2, ..., Tn>
Id “:" Any
Id “:" T T, which must be a type
Id “:" “(" T “)" “*" Array<T>
Id “:" “(" T “)" “+" Array<T>
"(" R ")" typeof(R)
"(" R ")" "*" Array<typeof(R)>
"(" R ")" "+" Array<typeof(R)>
"(" R ")" "?" Union<some, typeof(R), none, Any>
T1 "|" T2 "|" ... "|" Tn Union<f1, T1, f2, T2, ..., fn, Tn>
R "|" R "|" ... "|" R Union<f1, T1, f2, T2, ..., fn, Tn>

@grammarMethod{*
( (playVideo: String (duration: Int)?) |

playMusic: String |
pause: Int |
stop:
)+

*}
func action:

Array<
Union<f1,

Tuple<
String, // video name

// duration
Union<some, Int, none, Any>

>,
f2, String, // music name
f3, Int, // seconds to pause
f4, Any // stop

>
>
params {

// code that plays everything
// see the complete code at www.cyan-lang.org

}
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Table 3 – Regular expressions and their types

Int Int
add: Int Int
add: Int, String Tuple<Int, String>
add: (Int)* Array<Int>
add: (Int)+ Array<Int>
(add: Int)* Array<Int>
(add: Int)+ Array<Int>
(add: Int | String) Union<Int, String>
(add: (Int | String)+) Array<Union<Int, String>>
(add: Int | add: String) Union<f1, Int, f2, String>
key: Int value: Float Tuple<Int, Float>

nameList: (String)* (size: Int)?
Tuple<Array<String>,
Union<some, Int, none, Any>>

coke: Any
coke: | guarana: Union<f1, Any, f2, Any>
(coke: | guarana:)* Array<Union<f1, Any, f2, Any>>
(coke: | guarana:)+ Array<Union<f1, Any, f2, Any>>

((coke: | guarana:)+)?

Union<some,
Array<Union<f1, Any, f2, Any>>,
none, Any>

((coke: | guarana:)?)+

Array<Union<some,
Union<f1, Any, f2, Any>,
none, Any>>

amount: (gas: Float | alcohol: Float)
Tuple<Any, Union<f1, Float,
f2, Float>>

end

The regular expression of the text attached to the annotation grammarMethod says that in a
message passing there may be a repetition of following keywords: playVideo:, playMusic:,
pause:, and stop:. After playVideo: there may appear a keyword duration: that takes
an Int as parameter. stop: should be the last keyword in a message, a fact that is not
checked. This prototype can be used as follows.

Player()
playVideo: "Color demo" duration: 30
playVideo: "Reef fish"
pause: 10
playMusic: "Bach BC Allegro"
stop:;

The arguments to the message passing are grouped by the grammarMethod metaobject
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into a single object passed as parameter to method action:. This object is in section E.6.

2.1.4 Additional Checks

A regular expression may not be enough for assuring the validity of a message
passing. Additional checks may be needed, as in the example of prototype Player in which
the last keyword in a message passing should be stop:. A more interesting example is
that of a language-C like printf method of prototype Out:

@grammarMethod{*
( printf: (Any)+ )
checkPrintf

*}
func printfAll: Array<Any> array {

// elided
}

The regular expression allows a message passing with incorrect parameters like

Out printf: "%d is %s", "zero", 0;

To allow additional checks, a list of action functions can be given after the regular expression
in the text attached to the annotation grammarMethod. In the above example, there is one
action function, checkPrintf. Therefore, the source code of prototype Out should import a
package with a metaobject that implements interface IActionFunction and that has name
checkPrintf. It does because this action function belongs to package cyan.lang. The
search for an action function of a given name is made with method searchActionFunction
of the parameter of method parsing_parse, declared in IParseWithCyanCompiler_parsing.

Metaobject grammarMethod calls each action function of the list following the
regular expression. It passes as argument a tuple consisting of the object that received the
message and the AST object of the message. In the example, the receiver object is Out
and the AST object would represent

"%d is %s", "zero", 0

The action function should return null if there is no error or a string that is an error
message.

Note that an action function can be used to implement the parsing of a non-regular
grammar. If the grammar use the keywords kw1:, kw2:, ... kwn:, the regular expression
could be

( kw1: (Any)* | kw2: (Any)* ... kwn: (Any)* )+
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This regular expression matches any expression that uses the cited keyword with any
number of arguments (except Nil, of course). Now an action function can be used to reject
some of the message passings accepted by the regular expression, thus implementing the
syntactic and semantic analysis of a non-regular grammar.

2.1.5 Discussion

An embedded Domain Specific Language employs the same syntax and semantics
of a host language. DSL code is just regular code of the host language but it expresses a
domain more clearly. Embedded DSLs are supported by many object-oriented languages
such as Groovy (DEARLE, 2010), Scala (??), and Ruby (FLANAGAN; MATSUMOTO,
2008).

In Cyan, embedded DSLs can be implemented with regular code, probably using
anonymous functions and runtime metaprogramming. And they can also be implemented
using grammar methods. The DSL grammar is that given in the text attached to the
annotation grammarMethod. The code of the DSL is the message passing for which the
compiler does not find an appropriate method.

The metaobject grammarMethod automatizes several tasks that should otherwise
be made by the programmer:

a) it does the syntactical analysis of the message passing using the grammar of the
regular expression. The lexical analysis was previously made by the compiler;

b) it automatically builds the AST of the message passing according to the attached
regular expression. For that, it uses the AST object of the message passing built
by the compiler.

The Cyan statements of a grammar method, the one to which the annotation is
attached to, are responsible only for associating a semantics to the message passing. In the
MyList example, the semantics would be to add the elements to the list. In the Player
example, the semantics is to call methods for playing videos, playing music, pausing, and
stopping everything.

The object passed as an argument to the grammar method is built from arrays,
tuples, and unions. Therefore, to interpret it in the grammar method, it is necessary
to scan arrays, access tuple elements, and introspect unions. That can be made with
the for statement, methods fi (i a number) of prototypes Tuple<...>, and statement
type-case.

Grammar methods resemble not too vaguely the macros of language Rust (Rust. . . ,
2018) (KLABNIK; NICHOLS, 2022), which uses regular expressions for specification.
However, Rust macros operate at the syntactic level only, the regular expressions cannot
match the types of arguments of the macros. The grammarMethod metaobjects match both
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the syntax, a sequence of message keywords and arguments, and the types of arguments
and keyword parameters. Macros in Scala (BURMAKO, 2018) also consider the types,
but they do not use regular expressions for pattern matching (in macros). Only * can be
used, as in regular Scala code, to mean “zero ou more”. For example, c.Expr[String]*
means “zero ou more String expressions”.

Polymorphism does apply to grammar methods. Thus, the regular expressions of
two annotations may be (add: Int)+ and (add: String)+. And a grammar method may
be overridden in a subprototype as any other method.

2.2 Concepts for Generic Prototypes
Cyan supports generic prototypes, which are abstractions of prototypes over one or

more type parameters (see section A.5). The language does not restrict type parameters
in any way, type checking in generic prototypes is only made after they are instantiated
with real types. Errors in the instantiated prototype are difficult to interpret because
they are caused by code that was not made by the user of the generic prototype. And
they may be deep in a stack of generic instantiations: a generic prototype may instantiate
other generic prototype and the error may appear only in this last one. As an example,
prototype GroupList<T> of Listing 2.2 assumes its parameter T has methods

func unit -> T
func * T -> T
func inverse -> T

because of the message passings of lines 9 (and 22), 14 (and 27), and 25 (and 27). There is
an implicit requirement on the formal type parameter T that depends on the source code
of GroupList.

If GroupList is instantiated with a type that does not declare one of the three
methods, there is a compile error. Saci shows the error in a line of GroupList, breaking
modularity. Users of a prototype have to know details of a prototype in order to use
it. The interface is not enough. This problem is ameliorated by commenting the generic
prototype parameters. The requirements for each of them is expressed in words. This
is what most languages do. However, the compiler cannot check the demands expressed
in the comments, this is not the ideal solution. There is one more problem with generic
classes and prototypes: the error messages may be very clumsy.

Gregor et al. (GREGOR et al., 2006) mention the error caused by the use of generic
function sort with incorrect arguments. The GNU C++ compiler, in 2006, reported
more than two kilobytes of output with six different error messages. Generic classes and
functions in C++ are called templates. An instantiation of a template class (function) is
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Listing 2.2 – Generic prototype GroupList
1 package main
2

3 object GroupList<T>
4

5 func add: T elem { array add: elem }
6

7 func multAll -> T {
8 if array size == 0 {
9 return T unit;

10 }
11 else {
12 var p = array[0];
13 for n in 1..< array size {
14 p = p * array[n]
15 }
16 return p
17 }
18 }
19

20 func inverseMultAll -> T {
21 if array size == 0 {
22 return T unit;
23 }
24 else {
25 var p = array[0] inverse;
26 for n in 1..< array size {
27 p = p * array[n] inverse
28 }
29 return p
30 }
31 }
32

33 let Array<T> array = Array<T>();
34

35 end
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made by creating a brand new copy of the class (method) with the instantiation arguments.
Just like Cyan and unlike languages like Java and Scala, in which the same class is used
for all instantiations. In these languages, the problems cited till now do not happen. But
there is a price for that: there are many restrictions on the use of type parameters and
instantiated generic classes. In Java, the type parameter of a generic class1 cannot be a
primitive type, new instances of it cannot be created, and it cannot be the type of a static
field. There are also limitations of an instantiation G<R> of a generic class G<T>. Arrays
of G<R> are illegal, objects of G<R> cannot be thrown by command throw, and there are
limitations in the use of G<R> when overloading methods.

Concepts are predicates on template/generic parameters. They can be given as
comments in the code or there may exist a concept language to express them. In the
last case, the compiler has the power of restricting the legal parameters to a template
class/function or generic prototype. In this text, concepts always refer to the language
feature. They were proposed by Stroustrup (STROUSTRUP, 2003) for the language C++.
However, they have not been adopted yet, although they may be in C++ 20 (SMITH,
2018). Concepts are able to check the real arguments to a template/generic prototype before
the instantiation, issuing clear error messages. Concepts can also be used for compiling
template classes and functions before they are instantiated with real arguments. The
source code of a library need not be exposed to its users.

Cyan supports concepts through the metaobject concept whose annotations should
be attached to prototypes. The text linked to the annotation should be code of a con-
cept language. It can restrict the parameters and even the current prototype. Prototype
GroupList<T> can restrict parameter T using an annotation concept.

@concept{*
T has [

func unit -> T
func * T -> T
func inverse -> T

]
*}
object GroupList<T>

...
end

In an instantiation GroupList<Int>, the metaobject concept associated with the above
annotation issues two errors because Int does not define either unit or inverse methods.
The error is pointed out in the place of instantiation, not in the prototype GroupList.
Besides that, Saci gives the full stack of prototype instantiations. This is necessary
1 https://docs.oracle.com/javase/tutorial/java/generics/restrictions.html
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because there may be a chain of prototype instantiations and the error may be in the last
instantiated prototype. For example, suppose prototype Test declares a variable whose
type is A<Int>. Generic Prototype A<T> declares a variable whose type is GroupList<T>.
Therefore, there would be an error in GroupList<Int> and Saci shows the error message
and a stack of prototype instantiations:

In file C:\Dropbox\Cyan\cyanTests\simple\main\--tmp\A(Int).cyan
(line 7 column 28)
object/interface main.A<Int>
A concept associated with generic prototype ’main.GroupList<Int>’
expected that method ’unit’ were in prototype ’cyan.lang.Int’
Stack of generic prototype instantiations:

main.A<Int> line 7 column 28
main.Test line 364 column 13

public func run { var GroupList<Int> g }

2.2.1 The Grammar of the Concept Language

Metaobject concept supports many kinds of statements. The complete grammar
follows. In it, Id is a Cyan identifier, IdColon is an Id joined with a colon (as “at:”),
CType is a Cyan type, including “typeof(expr)”, which results in the type of expr. The
construct { A }⋆ is a repetition of zero or more A’s separated by commas. LeftSeq is a
left sequence of symbols whose definition is the same as the left sequence of symbols that
delimits the text attached to an annotation. Idem for RightSeq. TEXT is any text. The
initial grammar symbol is CL.

CL ::= { CStat [ “,” CMessage ] }⋆

CStat ::= CType “is” CType
| CType “implements” CType
| CType “subprototype” CType
| CType “superprototype” CType
| CType “interface”
| CType “noninterface”
| CType “identifier”
| CType “has” “[” { CSig } “]”
| CType “in” “[” { CType }⋆ “]”
| Axiom
| CCall
| ! CStat
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CSig ::= “func” ( CUnarySig | CKeySig )
[ “->” CType ] [ CMessage ]

CUnarySig ::= Id

CKey ::= IdColon { [ CType [ Id ] ] }⋆

CKeySig ::= CKey { CKey }

Axiom ::= “axiom” CKey LeftSeq TEXT RightSeq

CCall ::= Id { “.” Id } “(” { Id }⋆ “)”

CMessage ::= LiteralString

Statement “A implements B” of the concept language demands that A implements
interface B. A should be a non-interface prototype. Statement “B subprototype A” requires
that B be a subprototype of A, the same requirement of “A superprototype B”. Use A
interface if A must be an interface and A noninterface if A must be a non-interface
prototype. Statement T interface demands that T must be a identifier parameter, an
identifier starting with a lowercase letter.

“has”, as shown in the GroupList example, requires that a prototype declares a
list of methods. Here “prototype” may be an interface or a non-interface prototype. Use
“A in [ ... ]” if A should be one of the list elements. Operator ! negates the following
statement.

After each statement, there may appear an error message that is issued if the
statement test fails. An error message can also follow each method signature in a “has”
statement.

@concept{*
T has [

func unit -> T "T must have a method ’unit’"
func * T -> T
func inverse -> T

], "T must have methods unit, *, and inverse"
*}
object GroupList<T>

...
end

When the generic prototype is instantiated, the Cyan compiler replaces every formal type
parameter, as T, by the real parameter in all DSL code attached to all annotations of the
prototype. Thus, in GroupList<Int>, the first error message of this example becomes

"Int must have a method ’unit’"
Each metaobject class may choose if the formal parameter types are replaced by the real
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types in an instantiation. The default behavior is to replace them. A metaobject class
should override method

getReplacementPolicy()
if another replacement policy is desired.

“axiom” is used for generating test cases for the prototype attached to the annota-
tion concept. The metaobject creates a prototype with a method with the signature given
after “axiom” and with the code given between LeftSeq and RightSeq. This prototype is
written in the test directory of the project. In the example that follows, the LeftSeq is {%.
The test prototypes are only created if the annotation concept takes a parameter equal
to “test”.

@concept(test){*
T has [

func unit -> T "T must have a method ’unit’"
func * T -> T
func inverse -> T

], "T must have methods unit, *, and inverse"

axiom opTest: T a, T b, T c {%

if (a * (b * c) != (a * b) * c) ||
(c * (b * a) != (c * b) * a {
^"T is not associative"

}
^Nil

%},

axiom unitTest: T a, T b, T c {%

if (a * a unit != a unit * a) ||
(b * a unit != b unit * b) ||
(a unit * b unit != c unit * c unit) {
^"The unit element of T is not an identity"

}
^Nil

%},

axiom inverseTest: T a, T b, T c {%

if (a * a inverse != b unit) ||
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(a unit != b inverse * b) ||
(c inverse * c != T unit) {
^"The inverse operation is not working properly"

}
^Nil

%}

*}
object GroupList<T>

...
end

Code snippets of the concept language can be put in a file inside a directory called
--data of a package. The file must have a name

filename(Id,Id,...Id).concept
There should be no space after the “,” and the Ids may be used inside the file. In the DATA
directory of package cyan.lang, there are several of such files: lessThan(T).concept,
addable(T, R).concept, arithmetic(T).concept, etc. These concept files are used in-
side the DSL of an annotation concept as if they were functions of language C, but
preceded by the package name:

cyan.lang.lessThan(R)
When the metaobject concept finds such a statement, it loads the file lessThan(R).concept
and replaces all occurrences of identifier T by R. It then includes the transformed text into
the DSL code of the annotation. Hence, this kind of “function” call works like a language-C
include but with text replacement.

The text of a concept file should follow the grammar for the concept language.
It may have every statement of the language, including axioms. Therefore, it is easy to
generate test cases for prototypes that implement arithmetic and comparison operators.
Just use the concept annotation.

@concept(test){*
cyan.lang.arithmetic(MatrixElement),
cyan.lang.comparison(MatrixElement)

*}
object MatrixElement

...
end

Common predicates on types and common test methods can be gathered in packages
and shared. A prototype may check restriction of other types, even those of a library for
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which the source code is not available.2 Note that annotation concept is used in the above
example in a non-generic prototype.

The compile-time Cyan function typeof(expr) can be used with a parameter that
is either a prototype or a message passing to a prototype. This last form can be used to
retrieve the return type of a method, which can then be used in some statement.

1 @concept{*
2 typeof(R get) in [ typeof(S at: 0), typeof(T get) ],
3 S has [ func at: typeof(R get) -> Array<R>
4 func grab: typeof(R get) -> typeof(R collect)
5 ],
6 typeof(T get) is Int,
7 // same as above
8 typeof(T get) is typeof(0+1),
9 typeof(T with: Array<R>) has [

10 func size -> Int
11 func add: S
12 ],
13 typeof(T with: (R collect)) is Array<S>,
14 typeof(T get) is typeof(R get)
15 *}
16 object Twist<R, S, T>
17 // elided
18

19 end

Function typeof is used in several situations in this concept code. Line 2 of this example
demands that the return type of method get of type parameter R has a type equal to one
element of the list that follows, between [ and ]. Line 14 requires that the return types of
methods get of T and R be equal.

Currently, there is no way of referring to the type of a parameter of a method
in the concept language. Therefore, it is not possible, for example, to demand that the
parameter type has some methods. This is a planned feature.

Metaobject concept generates prototypes for testing the coverage of the DSL code
attached to the annotation. The problem to be solved is that the DSL code may not be
enough for assuring there will be no error when instantiating the generic prototype. For
example, the DSL code may demand that a real type argument has only the method

2 Currenty, Cyan does not support libraries of compiled code (as jar files in Java). The source code of a
library must be available and it must be compiled with the program.
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unit. But inside the generic prototype, there could be a message passing “inverse” to an
expression whose type is the formal parameter.

When annotation concept takes a parameter test, the metaobject creates, in the
test directory of the project, a subdirectory with several Cyan prototypes. These are not
related to the statements “axiom” of the DSL code. One of the prototypes declares a
variable whose type is the generic prototype with real parameters whose names are equal
to the formal parameters. In the GroupList example, the declaration would be

var main.GroupList<T> testVar;
The metaobject also creates a prototype for each formal parameter. Inside it, methods are
added to match the restrictions of the DSL code of annotation concept. Therefore, for
the GroupList example, the metaobject creates the prototype that follows.

object T
func unit -> T = T;
func * T tmp1155 -> T = T;
func inverse -> T = T;

end

This prototype was built based on all requirements on the parameter T of the generic
prototype. These demands may be spread in the DSL code of the annotation. Thus, if the
generic prototype has two formal parameters T and R and the DSL code demands that T
is superprototype of R, the test prototype for R would have the inheritance of T by R.

All prototypes just cited should be compiled. If there is a compilation error,
probably the concept code does not cover the uses of the type parameters inside the generic
prototype. For example, suppose that we remove the need for method inverse in the DSL
code of GroupList concept annotation. When the tests are compiled, there would be a
compilation error when message inverse is sent to an expression of type T. This is a clear
sign that the concept code is missing some restriction.

2.2.2 Concept Implementation

The metaobject class of concept implements the MOP library interface
IParseWithCyanCompiler_parsing for parsing the DSL code attached to the annotation.
An AST is built and stored in a field of the metaobject class. Method

bsa_checkProgramUnit
inherited from interface ICheckProgramUnit_bsa and implemented by the metaobject
class, does the semantic analysis of the expressions used in the DSL code. After that, it
checks if the demands of each statement are satisfied. Hence, any errors issued by the DSL
code is in fact issued by this method.
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The metaobject class of concept implements two other interfaces:
IActionProgramUnitLater_parsing
IListAfter_afterResTypes

A method of the first interface is called to insert the metaobject in a list that will later be
used by a method of the second interface, after_afterResTypes_action. If the concept
annotation has a parameter test, method after_afterResTypes_action produces test
prototypes for all the instantiated prototypes and for the generic prototype.

2.3 Metaobjects Coded in Interpreted Cyan
Several metaobjects take a Cyan-like language called Myan as the DSL attached

to the annotations. Myan is interpreted Cyan with the addition of parameterless methods
declared with func. Let us see an example.

package main

object Test
func run {

@action_afterResTypes_semAn{*
func semAn_codeToAdd {

"semAn_codeToAdd" println;
return "#semAn_codeToAdd println; getZero println; ";

}
func afterResTypes_codeToAdd {

"afterResTypes_codeToAdd" println;
return [. """ func getZero -> Int = 0;

""",
"func getZero -> Int" .]

}
*}
assert self getZero == 0;

}
end

The class of metaobject action_afterResTypes_semAn implements the following inter-
faces:

IParseWithCyanCompiler_parsing ,
IAction_afterResTypes ,
IActionNewPrototypes_afterResTypes ,
IAction_semAn ,
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IActionNewPrototypes_semAn ,
ICommunicateInPrototype_afterResTypes_semAn

In the Myan code attached to the annotation, there may be a method for each method
of these interfaces, except IParseWithCyanCompiler_parsing. In the example, there is a
method semAn_codeToAdd of interface IAction_semAn and a method

afterResTypes_codeToAdd
of interface IAction_afterResTypes. No method has parameters. They are implicitly
declared. Therefore, inside both methods there is a compiler variable. In the first method,
it has type ICompiler_semAn. In the second one, ICompiler_afterResTypes. Variables
metaobject and env are also implicitely declared. They refer to the metaobject associated
to the annotation and to the environment.

Every method has an implicitly declared signature that is equal to the corresponding
method of the Cyan interfaces for the MOP (See section 1.2). In particular, the return
type is equal to the corresponding method in the Cyan MOP. Therefore, method

afterResTypes_codeToAdd
should return an object of cyan.lang.Tuple<String, String> and

semAn_codeToAdd
should return an object of cyan.lang.String.

In this example, the afterResTypes method add to prototype Test a method
getZero. The semAn method adds to the current location two statements. Both methods
print, at compile-time, their names.

The self object of any Myan code has two methods:

a) call: that takes at least one and at most 11 parameters. The first one is the
name of an action metaobject that should have been imported by the current
compilation unit. “call:” calls method eval of this action metaobject passing
as parameter a tuple object with many information like the environment and
the other parameters to call:. For more details, see the documentation for
metaobject action_afterResTypes_semAn;

b) runFile: that takes at least one and at most 11 parameters. The first one is
the name of a file of a --data directory with extension myan. The file name
may be preceded by a package name, otherwise it is considered to be in the
current package. This file is loaded and the arguments to runFile: replace the
file arguments. Then the file statements are interpreted.

Given this introduction to Myan, we cite other metaobjects that also use this
language.

a) onDeclaration_afterResTypes_semAn_afterSemAn, that accepts methods from
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all interfaces of action_afterResTypes_semAn plus those of interfaces ICheckDeclaration_afterSemAn
and
IActionMethodMissing_semAn.

b) onDeclaration_afterSemAn, that accepts methods from all interfaces of action_afterResTypes_semAn
plus those of interface ICheckDeclaration_afterSemAn.

c) onFieldAccess, that accepts methods from all interfaces of action_afterResTypes_semAn
plus those of interface IActionFieldAccess_semAn.

d) onFieldMissing, that accepts methods from all interfaces of action_afterResTypes_semAn
plus those of interface IActionFieldMissing_semAn.

e) onMessageSend_semAn, that accepts methods from all interfaces of action_afterResTypes_semAn
plus those of interface IActionMessageSend_semAn.

f) onMethodMissing, that accepts methods from all interfaces of action_afterResTypes_semAn
plus those of interface IActionMethodMissing_semAn.

g) onOverride_afterResTypes_semAn, that accepts methods from all interfaces
of action_afterResTypes_semAn plus those of interfaces

IActionMethodMissing_semAn
ICheckOverride_afterSemAn

h) onSubprototype_afterResTypes_semAn_afterSemAn, that accepts methods
from all interfaces of
action_afterResTypes_semAn plus those of interfaces

ICheckSubprototype_afterSemAn
IActionMethodMissing_semAn

i) onMessageSend_afterSemAn, that accepts methods from the following inter-
faces:

ICheckMessageSend_afterSemAn
IAction_afterResTypes
ICommunicateInPrototype_afterResTypes_semAn

j) onOverride that accepts a list of Cyan statements in the attached DSL. These
statements are considered the body of method afterSemAn_checkOverride of
ICheckOverride_afterSemAn.

k) onSubprototype that accepts a list of Cyan statements in the attached DSL.
These statements are considered the body of method

afterSemAn_checkSubprototype
of ICheckSubprototype_afterSemAn
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l) onVariableDeclaration, that accepts methods from all interfaces of
action_afterResTypes_semAn

plus those of interface IActionVariableDeclaration_semAn.

As an example, Listing 2.3 shows a prototype Person. Annotation onSubprototype
to Person demands any subprototype overrides method printData. Using the implicitly de-
clared variable subPrototype, the Cyan code attached to the annotation looks for a method
with this name. If it is not found, an error is issued with method addError: of the metaob-
ject. Variable subPrototype corresponds to a parameter to method afterSemAn_checkSubprototype
of interface ICheckSubprototype_afterSemAn implemented by the class of onSubprototype.

Annotation onOverride is attached to method printData. It just calls the action
metaobject shouldCallSuperMethod defined in package cyan.lang. This metaobject
checks whether the first statement of the overridden subprototype method calls the
superprototype method.

The two annotations in Person have the semantics “printData should be overridden
in any subprototype of Person and the subprototype method should call the superprototype
method”.

Metaobject runFile works like action_afterResTypes_semAn but the Myan code
is read from the file that is the first parameter, which is optionally preceded by a package
name. The file should have extension myan and be in the --data directory of the package.

@runFile_afterResTypes_semAn("runFile_afterResTypes_semAn.
afterResTypes_semAn_test",

"with:1 do:1", "unary", 10)

The Myan file can have parameters in its name. They are textually replaced by the
parameters of the annotation (all of them but the first, which is the file name). Therefore,
in this example, there should be a file

afterResTypes_semAn_test(MetSig,UMS,Ret).myan
in directory --data of package runFile_afterResTypes_semAn. The parameters between
( and ) in the first name can have any names. But since the annotation has four parameters,
the file should have three parameters. The annotation parameters are also available inside
the Myan code through the expression

metaobject getAnnotation getJavaParameterList

which returns an List<Object> or through

metaobject getAnnotation getRealParameterList

which returns an object of List<WrExprAnyLiteral>.
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Listing 2.3 – Annotations with interpreted Cyan statements
1 package main
2
3 @onSubprototype {*
4 var Boolean found = false;
5 var methodList = subPrototype getMethodDecList : env;
6 var Int size = methodList size;
7 for i in 0..< size {
8 var method = methodList get: i;
9 if (method getName ) equals: " printData " {

10 found = true;
11 break;
12 }
13 }
14 if !found {
15 metaobject addError :
16 "’" ++ subPrototype getName ++
17 "’ is a subprototype of ’" ++
18 metaobject getAttachedDeclaration getName ++
19 "’ It should define a method ’printData ’." ++
20 " It does not";
21 }
22 *}
23 open
24 object Person
25 func init {
26 name = "noname"
27 }
28 func run {
29 }
30
31 @onOverride {*
32 call: # shouldCallSuperMethod ;
33 *}
34 func printData {
35 "name = $name" println
36 }
37
38 @property var String name
39 end
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Listing 2.4 – Example with metaobject runPastCode
1 package main
2 import cyan.io
3
4 object TestRunPastCode
5
6 func run {
7 self testImportProgram ;
8 self testPastCode ;
9 }

10
11 func fat: Int n -> Int {
12 if n == 0 { return 1; }
13 else { return n*( fat: n - 1); }
14 }
15
16 func testImportProgram {
17 var String color = favoriteColor ;
18 var TestRunPastCode past = self;
19 var Int f5 = 0;
20 @runPastCode (true ){*
21 import main
22 let TestRunPastCode p = TestRunPastCode new;
23 var Int fatorial5 = p fat: 5;
24 "At compile -time , factorial of 5 = " print;
25 fatorial5 println ;
26 return "f5 = " ++ fatorial5 ++ ";");
27 *}
28 if f5 == 120 {
29 " runPastCode was called with ’true ’" println
30 }
31 else {
32 " runPastCode was called with ’false ’" println
33 }
34 }
35
36 func testPastCode {
37 var TestRunPastCode past = self;
38 favoriteColor = "cyan";
39
40 @runPastCode (true , past ){*
41 " Favorite color = " print;
42 past getFavoriteColor println ;
43 *}
44 }
45
46 @property var String favoriteColor = "blue";
47 end
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Annotations of metaobject runPastCode take an attached Cyan code that:

a) may import packages of the current program that were previously compiled;

b) can save objects of the last program execution to be used in future compilations.

Listing 2.4 shows these two features. Annotation of lines 20-27 import the package main
if the first parameter to runPastCode is true. This results in a compilation error the
first time the program is compiled because there is no compiled main package yet. There
should be a successful compilation with the first parameter equal to false. In this case
the attached Cyan code to the annotation is ignored. In an succeeding compilation, the
parameter can be true as in this example. Then line 21 can import package main and use
prototype TestRunPastCode in line 22. At compile-time we are using a previous version
of the current prototype. In line 23, method fat: of TestRunPastCode is called and an
assignment “f5 = 120” is inserted in the source code. The if statement of lines 28-33
shows what happens when the parameter to the annotation is true or false.

In lines 40-43, annotation runPastCode has a second parameter, a variable name.
Any number of parameters are allowed, they may be local variables or prototype fields. If
the first annotation parameter is false, the metaobject will generate, for each variable
or field, code that stores the object it refers to, serialized, in a special file of directory
--tmp of the prototype. If the first parameter is changed, later on, to true, this object is
read from disk and it can be used in the attached Cyan code. In this example, initially
the first parameter to runPastCode is set to false and the program compiled. When the
program is run, an object of TestRunPastCode is stored in disk. Field favoriteColor of
this object is "cyan" because of line 38. If the first parameter is changed to true and the
program compiled again, variable past in line 42 will refer to the object saved in disk. Its
field favoriteColor will contain "cyan", this all at compile-time. It does not matter if,
in line 38, favoriteColor is initialized with another string.

Another metaobject worth to discuss is insertCode. The DSL attached to an an-
notation of insertCode is interpreted Cyan. The self object has two methods: insert:1
and insert:2. If the annotation is used outside methods and inside a prototype, method
insert:2 can be used to insert fields and methods to the prototype (in phase after-
ResTypes). The metaobject of the annotation of lines 1-8 insert three methods in the
current prototype:

func red -> Int = 0;
func green -> Int = 1;
func blue -> Int = 2;

1 @insertCode{*
2 var Int n = 0;
3 for elem in [ "red", "green", "blue" ] {
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4 var String s = " func $elem -> Int; ";
5 insert: s, " func $elem -> Int = " ++ n ++ ";" ++ ’\n’;
6 n = n + 1
7 }
8 *}
9 func insertCodeTest {

10 assert red == 0 && green == 1 && blue == 2;
11

12 var Int fat5;
13 @insertCode{*
14 var p = 2;
15 for n in 3..5 {
16 p = p*n
17 }
18 insert: " fat5 = $p;" ++ ’\n’;
19 *}
20 "The factorial of 5 is $fat5" println;
21 }

If the annotation is used inside a method, the code given as parameter to insert:1 is
inserted after the annotation in phase semAn. The metaobject associated to the annotation
in lines 13-19 insert the following statement after the annotation:

fat5 = 120;

Discussion on Metaobjects in Cyan

Software documentation describes a great deal of semantic restrictions that are not
expressed in the code. For example, the documentation of Person of Listing 2.3 would
describe that method printData should be overridden in any subprototype and that the
subprototype method should extends the superprototype method; that is, its first statement
should be a call to the superprototype method. However, without metaprogramming it is
not possible to express these restrictions in the code itself, as in the attached code of the
annotations of Person. Metaobjects can check that:

a) the parameters to a message passing are related to each other in a way described
by the method documentation. For example, the first parameter to method3

printf: of prototype Out should be a literal string that matches the other
parameters;

3 It is a virtual method. The real method is printfAll:.
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b) a field is accessed by only a selected set of methods or a private method is only
called by some methods;

c) a Cyan interface is only implemented by subprototypes of a given prototype;4

d) a prototype is inherit only by some classes;

e) a method of a prototype is only overridden in some prototypes.

f) a object of a prototype is correctly initialized;

g) tests for a method or prototype are always generated;

h) in a subprototype some sets of methods are always overridden together: none
or all of the set;

i) only some prototypes create objects of another prototypes;

j) a method of a prototype always calls another method of the same or another
prototype;

k) a method of a prototype neves calls a given method of the same or another
prototype;

l) no prototype of a given package import another specific package;

m) a test method should be added to a prototype after a day;

n) every prototype has a documentation with a minimum of Np words and that
every public method has a documentation of at least Nm words.

Metaobjects can also generate code whose usefullness have been previously discussed.
Checks and code generation are speeded up with the use of Myan and interpreted Cyan5

in metaobjects. But their importance is greater than that. Myan and interpreted Cyan
allows to fuse the program and the metaprogram in the same text file, making it easy to
express the semantics of the program in itself, outside of the documentation.

2.4 Metaobjects in Cyan Libraries
Metaobjects are largely used in the package cyan.lang whose prototypes are tighly

integrated with the language. This is unlike other languages, like C (KERNIGHAN, 1988),
in which the compiler knows very little about the standard libraries. The compiler interacts
with package cyan.lang because of several features of the language:

a) literals of a basic types such as 1 or "Hi!" are objects of prototypes of
cyan.lang;

b) literal arrays have types that are instantiations of generic prototype Array,
literal tuples are instantiations of Tuple, and literal maps of HashMap;

4 Language Hack (HACK, 2020) has such a feature, but in the language itself.
5 Myan allows the declaration of methods, interpreted Cyan allows only statements.
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c) the for statement demands that the type of the expression following “in”
implements an instantiation of interface Iterable;

d) there are no shared methods in Cyan, which would correspond to static
methods of Java, C♯, and C++. They can be simulated with metaobject
prototypeCallOnly that is in cyan.lang;

e) the exception handling system is implemented only with library objects. The
prototype of an exception object should inherit from CyException and exception
treatment is made with catch: methods of prototype Function<Nil>. All of
these methods are in package cyan.lang, which also keeps some metaobjects
used in Function<Nil> to check the real arguments of catch: message sends.

Metaobjects are used largely in prototypes of package cyan.lang and, since the
language itself depends on this package, the language also depends on metaobjects. A
dependency list follows.

a) Prototypes of basic types use metaobjects to communicate with their array
types. The prototypes inject methods in their arrays. For example, prototype
Int injects into Array<Int> the method

func sum -> Int

to sum the array elements.

b) A metaobject inserts a method sort into Array<T> if T defines the spaceship
operator, <=>.

c) Metaobjects create methods for Function<...>, Tuple<...>, and Union<...>
with any number of parameters. As an example, a method == is added to every
Tuple<...> prototype based on the == methods of the tuple elements. These
prototypes are not native to the language, they belong to package cyan.lang.
A literal array, tuple, or union is a special object that inherits from the adequate
prototype.

d) Methods eq: and neq: can only be defined in Any and the basic types. This is
checked by a metaobject.

e) A do-not-use-it metaobject javacode is extensively used in package cyan.lang
for injecting Java code inside Cyan. This was needed before the interoperability
between the two languages.

f) Method isA: of prototype Any tests whether the receiver is an object of the
argument, that should be a prototype. A metaobject checks if the argument is
really a prototype. This method is the equivalent of instanceof of Java and
is of other languages such as C♯ and Kotlin.
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g) Three annotations are attached to method == of Any. One checks if the argument
is compatible to the receiver. Hence, 0 == "zero" results in a compile-time
error. Other metaobject demands that, if == is overridden in a subprototype,
hashCode is too. The metaobject of the third annotation generates test cases if
the method is overridden and variable testOverride of the project is true.

h) Method functionForMethod: of Any takes the name of a method M as parameter,
a string, and return an anonymous functions with the same parameters as M.
The function calls M.

func functionForMethodTest {
// the same as to call ’to: 0’

assert (self functionForMethod: "to:1")
eval: 0 == "n = 0";

}

func to: Int n -> String = "n = $n";

Message passings functionForMethod: are intercepted by a metaobject that
create the functions at compile-time. The end result is that Cyan methods can
be used as if they were regular functions.

i) Inline methods in Cyan are simulated with metaobject replaceCallBy, the
language itself does not support it.

j) Annotation genericPrototypeInstantiationInfo is inserted at the beginning
of every prototype instantiated from a generic prototype. Its parameters have
information on the instantiation that caused the creation of the generic prototype
instantiation. Therefore, if there is a compilation error in the newly-created
prototype, the compiler points which caused it. For example, suppose a generic
prototype B is instantiated in prototype A. B in its turn instantiates a prototype
C. There is a compilation error in C. The compiler issues the error for the code
in C and show the stack of generic prototype instantiations: C, B, and A. For
each one, the file, line number, and column number of the instantiation are
shown.

This section did not present any research material. But it showed that metaobjects
are powerful enough to replace several constructs that otherwise should be part of the
language (most of the items above).
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3 Related Works

This chapter presents support for metaprogramming in several languages. Metacode
can represent and generate base code in several ways, which is explained in section 3.1.
Section 3.2 explains runtime metaprogramming and describes languages that support
it. Section 3.3 is on metaprogramming made at compile-time, which can be made using
Metaobject Protocols, Lisp-like quotations, and other mechanisms that are mainly employed
by newer languages.

3.1 How Code is Generated and Represented
Metaprograms can handle and generated code using several representations (SMARAG-

DAKIS; BIBOUDIS; FOURTOUNIS, 2015), described next.

3.1.1 As text

Code is represented as strings. Therefore, any base code passed on to metacode
is in string format, as is any code generated by metacode. Since strings do not keep any
extra code information, the generated code may have lexical, syntactic, and semantic
errors. This mechanism is used by Cyan for code generation as exemplified by metaobject
property2 of Appendix B.

3.1.2 Handling of the program Abstract Syntax Tree

Code is represented as AST objects if the compiler is implemented using an object-
oriented language. Therefore, code generation is the creation of AST objects that represent
it. There are some drawbacks of this approach. The developer has to understand countless
AST classes (In Cyan, there are more than one hundred AST classes) and code generation
is difficult because the mapping of code to AST creation is not trivial.

The benefit of this mechanism is that the generated code, an AST object, usually
does not have syntactical errors.1 However, they may be semantic errors that will be
caught by the compiler later on. A drawback of this approach, besides its complexity, is
that error messages are not clear because the compiler does not keep information about
the metacode that created the generated code. Therefore, in all metaprogramming systems
we are aware of, the compiler will not be able to pinpoint exactly who caused a problem.
Cyan is able to give precise error messages because the compiler tracks which metaobject
1 This is not true in Cyan: one can create an AST object representing a syntactical illegal expression

with a unary *; for example, “*2”.
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added which code. If the generated code has an error, the compiler will issue the error and
indicate the annotation associated to the metaobject that produced the ofending code.
The message will cite the line, name, and file of the annotation that caused the error. In
Cyan, errors are caught in the runtime of the metaprogram, which is the compile-time of
the base program.

3.1.3 Quoting

Quoting is a syntax mechanism for automatically transforming text into AST
objects. This construction is supported by many languages: Nemerle (NEMERLE, 2018),
Scala (ODERSKY LEX SPOON, 2016) (and possibly in the new Scala version, Scala
3 (SCALA. . . , 2022)), Converge (TRATT, 2005), Elixir (ELIXIR, 2018), MetaOCaml
(CZARNECKI et al., 2004), Template Haskell (SHEARD; JONES, 2002), and F♯ (PICK-
ERING; EASON, 2016), to cite a few of them. Quotations in Lisp are detailed later in
subsection 3.1.4 in the context of macros.

In F♯, quoted code is a text put between <@ and @>. It evaluates to an AST object.
Hence,

<@ n @>
evaluates to an AST object representing a variable n. An AST object can be inserted into
a quoted text using %. This operation is called splicing. Therefore, variable mixThem is
the AST of “n + p” (without the quotes!).

let n = 1
let p = 3
let quoteN = <@ n @>
let quoteP = <@ p @>
let mixThem = <@ %quoteN + %quoteP @>

printfn "%A" mixThem

The execution of this code produces

Call ( None , op_Addition ,
[ PropertyGet (None , n, []),

PropertyGet (None , p, []) ] )

This is the representation of the AST of the quoted text, “n + p”. Call represents the
call to function + and PropertyGet represents the getting of the values of local variables.
quoteN and quoteP have types Quotations.Expr<int>. This permits that the compiler
points any type errors when using quotes and splices.

let s = "ola"
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let quoteS = <@ s @>
let er = <@ %quoteS * %quoteS @>

The last line causes an error:

/home/jdoodle.fs(39,24): error FS0001: The type
’string’ does not support the operator ’*’

In F♯, untyped versions of quoted code exist, <@@ ... @@>. Untyped splicing is made with
%%expr.

In the Python-based language Converge (TRATT, 2005), quasi-quoted code is given
between [| and |] as in

[| code |]
Inside the text code, there may be annotation

${ otherCode }
In the generation of the AST object, otherCode is inserted into code. A text anotherCode
may be evaluated at compile-time using annotation

$< anotherCode >
It generates an AST object. It is as if the result of the evaluation were inserted in the
source code. Variables are renamed to ensure that there is no unintended variable capture
from the environment.

An example of quasi-quotes in Converge, taken from (LILIS; SAVIDIS, 2015),
follows.

1 code := [| 5 |]
2 square := [| ${code} * ${code} |]
3 result := $<square > // 25

In line 1, “[| 5 |]” creates the AST of 5 which is assigned to code. In line 2, code is
embedded in a quasi-quote used to build the AST of 5 * 5 which is assigned to square.
In line 3, square is evaluated at compile-time and the result, 25, assigned to result.
Therefore, the last line could be replaced by

result := 25
When the compiler finds ${code}, it transforms code into a string that is inserted into
the larger text, that inside [| ... |].

Insertion like ${code} is just string embedding in Cyan. The previous Converge
example, in Cyan, is:

1 var String code = "5";
2 var String square = "return $code * $code";
3 var result = CyanInterpreter eval: square;
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4 cast Int r = result {
5 r println;
6 }

Inside a literal Cyan string, there may appear a variable preceded by $. The variable value
is inserted into the string at runtime. Therefore,

"return $code * $code"
is equivalent to

code ++ " * " ++ code
In line 3 of the Converge example, square is evaluated at compile-time. In Cyan, this
demands the calling of the Cyan interpreter (line 3). The The return type of method eval:
of prototype CyanInterpreter is an union type. The returned value needs to be cast in
the last statement to Int. The above code could be in a base program or in a metaobject.
The Cyan interpreter is called at runtime of the code. To evaluate a string at compile-time,
use metaobject eval.

// the same as
// var value = 25;
var value = @eval("cyan.lang", "Int"){*

return 5*5
*};

Tratt shows an example in Converge, adapted from Template Haskell (CZARNECKI
et al., 2004), that creates power functions at compile-time. Each function is tailored to a
specific number of multiplications.

1 func expand_power (n, x):
2 if n == 0:
3 return [| 1 |]
4 else:
5 return [| ${x} * ${ expand_power (n - 1, x)} |]
6
7 func mk_power (n):
8 return [|
9 func (x):

10 return ${ expand_power (n, [| x |])}
11 |]
12
13 power3 := $< mk_power (3)>

mk_power(3) in the last line is evaluated at compile-time. The function return value is
the AST object of the function of lines 9-10. Therefore, power3 will refer to this function,
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which is

func (x):
return x * x * x * 1

expand_power and mk_power are normal functions that, because of $< ... > and ${ ... },
are called at compile-time. Function expand_power is called in line 10 because of annotation
${ ... }.

If the intention of the developer is to generate code, as in the mk_power example,
she or he can use the insertCode metaobject for that.

@insertCode{*
var body = " = x";
var sig = " func power_5: Int x -> Int ";
for n in 2..5 {

body = body ++ "*x";
}
insert: sig ++ ";", sig ++ body ++ " ; ";

*}
func makePowerTest {

assert power_5: 2 == 32;
}

The metaobject inserts into the current prototype the method
func power_5: Int x -> Int = x*x*x*x*x ;

MetaOCaml is an extension of the functional language OCaml that supports
runtime metaprogramming with quotations. Code may be produced at runtime and treated
as data. A function, for example, can be built at runtime and inserted in the environment.
Czarnecki et al. give a function eval' that generates quoted code for representations of
First-Order Logic sentences. The call of this function returns quoted code that can be
inserted in the current environment with the .! operator.

let eval expr env = .! (eval' expr env);

Quasi-quoted code may be ambiguous because the language may use the same
grammar rule to mean different things. Using the Cyan syntax, a quasi-quote with the
contents “var Int n;” would be ambiguous because it could represent the declaration
of a field or a local variable. This is addressed by some metaprogramming systems by
supplying several different kinds of quasi-quotes (BATORY; LOFASO; SMARAGDAKIS,
1998) (TRATT, 2008). There is no ambiguity in Cyan because the generated code is



102 Chapter 3. Related Works

represented as strings. Therefore, "var Int n;" becomes a field if it is inserted outside a
method, in phase afterResTypes, or a local variable if it is inserted in phase semAn.

Quasi-quotes are, therefore, simulated with string handling in Cyan, which is much
simpler for two reasons.

a) It uses regular Cyan string handling;

b) The base code and the metacode are clearly distinguished. The generated base
code is always represented as strings.

However, errors in the generated code are only caught by the compiler in the next
compilation phase. In a language supporting quase-quotation, some errors are caught when
a quase-quote is evaluated at compile-time.

In Cyan, the code snippets produced by metaobject methods, which are just strings,
are not checked when the method is running. Thus, the code below is perfectly valid in
Cyan, even considering dec is returned as the code generated by the metaobject method.

var String partial = "var Int n =";
var String dec = partial ++ " 0;";

In languages that use quasi-quotes, the equivalent code would cause a parsing error in
line 1 because the literal string would be represented using quasi-quotes and the compiler
would check if this is a valid statement or expression. It is not because the expression
assigned to n is missing.

3.1.4 Macros

Macros mean different concepts in different languages. In this paper, we assume
the Lisp definition of macros: a function called at compile-time2 whose return value, a
code, replaces the macro call. The first high-level language to support macros was Lisp 1.5
(HART, 1963) in 1963. To explain Lisp macros, it is first necessary to give a general view
of the language and explain how it support quotations.

Lisp (BARSKI, 2010) (SEIBEL, 2012) represents both data and programs using
the same structure, lists. A list (f a b c) is the call of function f with arguments a, b,
and c. Unless f is a special form which uses special syntax and evaluation rules.

(progn (print " everything ")
(print "is a list")
(print "in Lisp"))

2 Here, “compile-time” means “when the code is compiled”. In Lisp, code that may contain macros may
be created and executed at runtime.
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In this example, progn is a special form that evaluates its arguments in the order they
appear in the list. print is a function that prints its argument. A list that is not to be
evaluated should be preceded by ' or `.

`(1 2 3)

Here, 1 is not considered a function. Operator ` is called quasiquote and ' is called quote.

A value is inserted in a quoted list using the comma, also called the unquote
operator. This is not valid, in Common Lisp (BARSKI, 2010), if ' is used.

(let ((y 3)) (print `(+ ,y 5)))

This code prints
(+ 3 5)

because 3 is assigned to y and ,y is replaced by 3. After , there may be a list, which is
evaluated.

(let ((y 3)) (print `(+ ,(+ y 2) 5)))

The expression printed is
(+ 5 5)

Lisp macros make extensive use of quasiquotes, ` , comma (,), and ,@ operators.
The first three were explained in Subsection 3.2.1. Operator ,@ expands the list that comes
after it. That is, the list is inserted in the quoted code without the parentheses.

(let ((bd `(BB CC ))) (print `(AA ,@bd ,bd) ))

The above code prints

(AA BB CC (BB CC))

In the next example, a macro repeat-until takes a condition and a sequence of
elements collected with body. defmacro defines a macro whose parameters are condition
and a list body. A call to the macro is replaced by the quoted list in the second line.

( defmacro repeat-until ( condition &rest body)
`(loop while (not ,condition ) do (progn ,@body) ) )

The last three statements of the following code print the values from 0 to 9. let
declares and initializes a list of local variables, setf assigns an expression to a variable,
and progn takes a list of statements and executes them.

(let ((i 0))
( repeat-until (>= i 10)

(progn (print i) (setf i (+ i 1))) ) )
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Currently, languages Nemerle (SKALSKI; MOSKAL; OLSZTA, 2005), Rust (KLAB-
NIK; NICHOLS, 2022), and Scala (BURMAKO, 2013) supports macros that are more
powerful than those of Lisp.

Skalski, Moskal, and Olszta (SKALSKI; MOSKAL; OLSZTA, 2005) give an example
of a for statement added to Nemerle using a macro. The macro defines the syntax and
how code is to be generated to a for statement. Quasi-quotes are used to express the
generated code.

macro for (init, cond, change, body)
syntax ("for", "(", init, ";", cond, ";", change, ")", body)
{

// generate code here using quasi-quotes
}

In Scala (BURMAKO, 2018), quotes are used in macros. A macro is implemented
by a method that should return an expression whose type is an AST type.3 The functional
language Template Haskell allows code generation at compile-time using quotations and
splicing. An example, given by Sheard and Jones (SHEARD; JONES, 2002), creates a
zip3 function:

zip3 = $(zipN 3)

zipN is a function that produces quoted code and splicing is made with $( ... ) in
Template Haskell. Code that calls zip3 should be compiled after zip3 and zipN. This is
the usual requirement for statically-typed languages.

Macros are much more limited than Cyan metaobjects. They cannot :

a) intercept operations such as message passing, field access and inheritance. Or
errors such as field and method missing. They can only produce code locally;

b) check a source file as metaobjects do;

c) be attached to classes, methods, and fields for producing code or check those
entities;

d) rename methods.

Cyan does support macros which are metaobjects with most of the power of other
kinds of metaobjects. Cyan macros can implement almost any interface that acts until
phase semAn of the compilation. For example, a macro call can create new prototypes,
add fields and methods to the prototype it is used, communicate with other metaobjects,
3 Note that the AST type here may not be the same as the type of the Scala compiler. It may be an

interface with a more limited view of the objects or another class that wraps the original compiler
AST class.
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and so on. A macro class cannot implement interfaces whose methods are called in phase
afterSemAn. However, a macro metaobject can generate code that contains annotations
that act in phase afterSemAn. Cyan macros are difficult to build compared with macros
of other languages because there is no DSL for macro definition as in Rust (see Appendix
D of (KLABNIK; NICHOLS, 2022)). Cyan macros are not further discussed in this text.

Macros of Nemerle, Rust, and Scala can be roughly simulated in Cyan by metaob-
jects whose prototypes implement interface

IActionMethodMissing_semAn
If the compiler cannot find an adequate method, a metaobject method is called. It can
then apply any transformation to the message passing parameters and produce any code.
Just like a macro whose syntax is that of a message passing. Metaobject grammarMethod
presented in section 2.1 does just that.

3.1.5 Generic classes, functions, and prototypes

A generic prototype in Cyan, described in section A.5, is a prototype that accepts
parameters and, for each set of parameters, a new prototype is created by the compiler. As
an example, prototype Stack of package cyan.lang is a generic prototype that accepts
one parameter. Stack<Int> and Stack<String> are called instantiations of Stack and
they are two different prototypes that do not share any code. A generic prototype works as
a compile-time function that returns a new prototype for each set of parameters. Therefore,
generics are a code generation mechanism. This is not the case with generics in Java and
Scala. All instantiations of a class share the same code.

Generics are called templates in C++ (STROUSTRUP, 2013). As in Cyan, a
new class or function is created for each new set of parameters. C++ templates use a
functional Turing-complete language for template generation (VELDHUIZEN, 2003). The
same functionality is offered by metaobject insertCode of section 2.3. Code is generated
by a subset of Cyan itself interpreted at compile-time. The benefit of using a metaobject
like insertCode is that the language, a subset of Cyan, is much simpler than the C++
template language.

3.2 Runtime Metaprogramming

The definition of runtime metaprogramming (RTMP) that we use is “the handling
of a program by itself” at runtime. RTMP is usually called reflection (DEMERS; MALEN-
FANT, 1995) (BOBROW; GABRIEL; WHITE, 1993), the ability of a program treat itself
as data in two different ways, introspection and intercession. To introspect is to observe
itself, the program knows part of itself at runtime. Intercession is the ability of a program
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to change part of itself at runtime. Reification is the encoding of the program as data that
can be handled at runtime.

Most of the fundamental work on reflection was made by Smith (SMITH, 1984) in its
seminal article which is properly explained by Herzeel, Costanza, and D’Hondt (HERZEEL;
COSTANZA; D’HONDT, 2008). Smith categorizes reflection into structural reflection
and procedural reflection, nowadays called behavioral reflection (ORTIN; REDONDO;
PEREZ-SCHOFIELD, 2009). Structural reflection treats of the structure of the program.
In an object-oriented program, it would be the inheritance hierarchy, the methods and
fields of each class, the statements of each method, etc. Behavioral reflection is about to
exam and change the execution of a program. For example, intercepting a message passing
and making it call a method chosen at runtime, not the method that would normally be
called.

There are four kinds of combinations between introspect/intercede and struc-
tural/behavioral. A Ruby (FLANAGAN; MATSUMOTO, 2008) program may add a field
to a class at runtime (intercede/structural). In CLOS, the method dispatch mechanism4

may be changed at runtime (intercede/behavioral). It is possible to know the methods of a
Java class (introspect/structural) at runtime. In Ruby, it is possible to know if a message
may be sent to an object without causing runtime errors (introspect/behavioral).

A list of object-oriented languages supporting introspective reflection includes
Smalltalk (GOLDBERG; ROBSON, 1983), Self (UNGAR; SMITH, 1987), Java (GOSLING
et al., 2014), C♯ (C#. . . , 2020), Groovy (KöNIG, 2007), Scala (??), Kotlin (JETBRAINS,
2022), Ruby (FLANAGAN; MATSUMOTO, 2008), EcmaScript (ECMA International,
2011), and Python (SUMMERFIELD, 2009). The introspective abilities of Java are shown
in the following example.

1 public class Program {
2
3 final public void run () {
4 Method methodList [] = this. getClass ()
5 . getDeclaredMethods ();
6 for ( Method m : methodList ) {
7 System.out.print(m. getName () + " ");
8 }
9 System.out. println ("");

10 Field fieldList [] = this. getClass ()
11 . getDeclaredFields ();
12 for ( Field f : fieldList ) {
13 System.out.print(f. getName () + " ");

4 Which method is called for this message passing?
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14 }
15 }
16
17 String to(int n) {
18 return "" + n;
19 }
20
21 int count = 0;
22 String name = " Program ";
23
24 }

This code prints the name of all methods and all fields declared in the current class. this
is the object that received the message. “this.getClass()” in lines 4 and 10 returns an
object of class Class5 that describes the class of the receiver, Program in this example.
Method and Field are classes that describe a Java method and field respectively.

In lines 5 and 6 of the following example, a Method object representing method “to”
is assigned to variable method. The object representing the parameter type, int.class, is
passed as argument to getDeclaredMethod. In line 8, method “to” is called using method
invoke of class Method.

1 public class Behavior {
2
3 final public void runBehavioral () {
4 try {
5 Method method = this. getClass ()
6 . getDeclaredMethod ("to", int.class );
7 System.out. println (
8 method.invoke(this , 10) );
9 }

10 /*

11 getDeclaredMethod and invoke can throw

12 a lot of exceptions

13 */

14 catch ( NoSuchMethodException | SecurityException |
15 IllegalAccessException |
16 IllegalArgumentException |
17 InvocationTargetException e) {
18 e. printStackTrace ();

5 In reality, “Class<? extends Program>”, since the receiver of message getClass() is Program.
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19 }
20 }
21
22 String to(int n) {
23 return "" + n;
24 }
25 }

The next Subsections explain how runtime metaprogramming is supported by some
other languages of academic interest.

3.2.1 Lisp and its Dialects

To our knowledge, runtime metaprogramming in a high-level language arose in Lisp
with the eval function (MCCARTHY, 1981). eval is a Lisp interpreter that evaluates its
argument, an expression.

(print (eval `(+ 22 11) ))

The backquote symbol was used to pass a list as argument to eval. Without the backquote,
33 would be the eval argument which would be returned. eval can be used for adding
functions and even macros to the current environment.

Lisp function apply takes a quoted function identifier and a list of quoted arguments.
apply calls the function with the arguments:

(let ( (plus '+) )
(print (apply plus '(1 2))) )

This code associates the quoted + to variable plus and prints the call of this function with
arguments 1 2. The value printed is 3 as expected. This same goal was achieved with
method invoke of class Method inside the Java class Behavior of page 107.

Language 3-Lisp (SMITH, 1984) (HERZEEL; COSTANZA; D’HONDT, 2008)
is implemented with an infinite tower of interpreters. The user program is at level 0,
interpreted by a Reflective Processor Program (RPP) (RIVIèRES; SMITH, 1984) at level
1. Each RPP at level n is interpreted by a RPP at level n + 1. There are interactions
between the levels. Herzeel, Costanza, and D’Hondt (HERZEEL; COSTANZA; D’HONDT,
2008) give examples of reflection:

a) a function print-infix takes the internal representation of an expression and
prints it in the infix form. The call to print-infix should use operator ' that
returns the internal representation of an expression, which is at a level above
the current level (structural reflection);
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b) a function advise-before adds a statement, its second parameter, to the
function that is its first parameter (structural reflection);

c) a macro-like function when that simulates an if expression without the else
part (behavioral reflection).

3.2.2 Smalltalk

Smalltalk (GOLDBERG; ROBSON, 1983) (NIERSTRASZ; DUCASSE; POLLET,
2009) was the first object-oriented language to have an extensive support for runtime
metaprogramming. Introspective reflection is implemented through metaclasses, the classes
of classes. Almost everything in Smalltalk is an object, and every object is an instance of a
class. A class is also an object, instance of its metaclass. For each class there is exactly one
unnamed metaclass. There is an inheritance hierarchy among metaclasses that is parallel
to the class hierarchy. That is, if Student inherits from Person, the metaclass of Student
inherits from the metaclass of Person. That can be seen in the next example in which
methods super and superclass are called. Student class is the sending of message
class to object Student — the metaclass of Student is returned. Student superclass
returns the superclass of Student, Person. Method == returns True if two objects are the
same. This comparison returns True.

Student class superclass == Student superclass class

A metaclass is also an object, instance of class Metaclass. That means the object
returned by the message send below is an instance of Metaclass.

Metaclass class

The Smalltalk class hierarchy employs several twists in order to accommodate the design
goals of “classes are objects” and “classes have metaclasses”. One of them was just cited.
The other is that the class of the top of the hierarchy is Object, which does not inherit
from any other class. But the Object class inherits, indirectly, from Object. That is, the
metaclass of Object inherits from Object and the following code results in True.

Object class inheritsFrom: Object

Method inheritsFrom: returns True if the receiver is a class that inherits from the
argument. An excellent explanation of the Smalltalk hierarchy is given by Nierstrasz,
Ducasse, and Pollet (NIERSTRASZ; DUCASSE; POLLET, 2009). Figure 11 show the
inheritance hierarchy of classes Person, Student, and some fundamental classes for re-
flection. Figure 12 shows the instance-of relationships among the classes of Figure 11. In
both drawings, classes are represented as rectangles and metaclasses as dashed rounded
rectangles.
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Figure 11 – Inheritance hierarchy in Smalltalk

Figure 12 – Instance-of relationships in Smalltalk
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Listing 3.1 – Insertion of methods in a class in Smalltalk
1 SmallInteger
2 compile:
3 ’printInt [ Transcript show: ’’an integer ’’ ]’.
4
5 5 printInt.
6
7 "can 5 understand message ’+’ ? true is printed ."
8 (5 class canUnderstand: #+ ) printOn: stdout.
9

10 "prints ’true ’ "
11 "’perform ’ calls a method with the given"
12 " name and arguments "
13 ((5 perform: #+ with: 3) = 8 ) printOn: stdout.
14
15
16 SmallInteger removeSelector: #printInt.".
17
18 "runtime type error"
19 5 printInt .

The metaclass system of Smalltalk is for introspective reflection only. It is possible
to discover the superclass of a class, its instance variable and methods, its metaclass, and
so on. Intercession can be made with methods inherited from fundamental classes such as
Behavior. For example, it is possible to compile a method given as string and insert it
into a class using method compile: of Behavior. In the code of Listing 3.1, a method
printInt is added to class SmallInteger.6 Then it is removed, which causes a runtime
type error in the last message passing. Quotes, " are used for comments and # starts a
literal of Symbol, a subclass of String.

As another example, the following code changes the instance variables of a point
through reflection. instVarAt:put: sets a new value for an instance variable whose number
is given as the first parameter. That is, the instance variables are accessed as an array.

| p | "local variable declaration "
p := 5@5. "5@5 is a point"

p printOn: stdout. "print p in stdout"
Transcript show: ’ ’. "print a white space"
p instVarAt: 1 put: 0.
p printOn: stdout.
Transcript show: ’ ’.
6 This code was tested in site https://www.jdoodle.com/execute-smalltalk-online
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p instVarAt: 2 put: 1.
p printOn: stdout.

This code prints
5@5 0@5 0@1

Method doesNotUnderstand: is defined in class Object and therefore is inherited
by every Smalltalk class. It is called whenever a message is sent to an object that does not
have an appropriate method. It can be redefined to implement several features (FOOTE;
JOHNSON, 1989) such as dynamic fields, multiple views of an object (depending on the
context, doesNotUnderstand: calls another method or not), simulation of the addition
of methods at runtime, and persistent objects (doesNotUnderstand: does the persistent
tasks before forwarding the message to another object or calling another method).

Method doesNotUnderstand: allows one to interfere in the method dispatch system
(which method is called for a message?). Therefore it is one mechanism of the language
for behavioral reflection. The class and metaclass hierarchy of Smalltalk and the many
methods for introspection compose a Metaobject Protocol (MOP). A MOP is composed
by the support classes like Behavior and the description of the methods that allow a
program to view itself. Although a Smalltalk program can change itself (e.g. add a method
to a class), these changes are not made by the MOP.

Many object-oriented languages offer support for runtime metaprogramming, some
of them comparable to Smalltalk, like Groovy and Ruby. In these languages, objects can be
inspected, methods may be added to classes at runtime (or objects), and there is a method
with the same purpose as doesNotUnderstand: of Smalltalk. In particular, language Self
(UNGAR; SMITH, 1987) was built to be highly dynamic. At runtime, almost everything
is allowed, including changing the inheritance hierarchy.

3.2.3 3-KRS

Maes (MAES, 1987a) (MAES, 1987c) introduced the concept of runtime metaobjects
in 3-KRS, a Lisp-based language. Each object is associated with a metaobject that not
only has reflective information on it but also controls it. There is a one-to-one relationship
between an object and its metaobject, although these are constructed in a lazy way, only
when needed. This is necessary because classes, fields, methods, messages, and metaobjects
are objects. Laziness is necessary in order to prevent an infinite regress.

A metaobject may interfere in the method dispatch algorithm and inheritance.
Maes (MAES, 1987b) gives an example of a trace metaobject that can be attached to
an object in order to intercept message passings. Actions may be added before and after
the actual method is called. Another metaobject may be used for implementing multiple
inheritance in 3-KRS (MAES, 1987c).
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3-KRS separates explicitly the level of regular objects and the metalevel. There
is a clear protocol for communication between metaobjects and objects. Some standard
metaobjects are responsible for acting when no user-defined metaobject is available. These
standard metaobjects implement the original semantics of the language.

The Metaobject Protocol of 3-KRS is composed by metaobjects that implement the
original system behavior, their methods, and the interface between objects and metaobjects
(how one can interact with the other).

In language Green (GUIMARÃES, 1998), a restricted kind of metaobject, only
for intercepting message passing, can be efficiently implemented even in statically typed
languages, with zero overhead. This is achieved by changing the method table of a single
object. This table has pointers to the object methods and usually is shared among all
objects of a class. But it does not need to be so. A copy of the class table may be changed,
effectively introducing new methods or replacing existing methods.

3.2.4 The CLOS Metaobject Protocol

CLOS (KICZALES; RIVIèRES; BOBROW, 1991) (KICZALES et al., 1993) (PAEPCKE,
1993) (BOBROW; GABRIEL; WHITE, 1993) (DEMICHIEL; GABRIEL, 1987) is the
extension of Common Lisp (SEIBEL, 2012) with features for object-oriented programming.
The language has many particularities that are not commonly found in the most used
object-oriented languages. We show the smallest level of details necessary to understand
the CLOS Metaobject Protocol:

a) methods are defined outside classes. In the example of Listing 3.2, class Person
is between lines 6-10 and method pretty-print is in lines 12-15. A method is
called as a function, in line 26 method pretty-print is called with argument
meg, a global variable defined in line 19. The usual syntax for line 26 would be
“meg.prettyPrint()”;

b) method dispatch depends on all method arguments. In most languages, the
method is searched for in the class of the receiver of the message, which is the
class of meg in “meg.prettyPrint()”. In CLOS, the runtime system builds a
list of method that may be called, based on all method arguments, order it (the
most specific according to inheritance comes first), and calls the most specific
method. The list of methods with the same name is called a generic method;

c) some methods are tagged “before:” or “after:” and are called before or after
the more specific method in the list cited in the previous item.

Line 16-17 defines a method make-instance tagged “after:” whose first parameter
has name aClass whose type is class Traced-class. Method make-instance creates a
new object of its first parameter, it would be the “new” operator or method of most
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languages. In the message passings
(make-instance ’Person)

of lines 19-22, the default method make-instance is called and, after it, the method
of lines 16-17 is called. The reason is that ’Person is a class and classes are objects in
CLOS. The type of object ’Person is class Traced-class, as specified in line 10 by the
option metaclass:. Traced-class inherits from class standard-class, the superclass
of all metaclasses and the default metaclass. Whenever a class is created without option
metaclass:, its class will be standard-class. Methods like make-instance take a first
argument of this class.

Method make-instance, in line 17, increments slot numInstances of object Person.
Class fields are called slots in CLOS. In Java, line 17 would be

++aClass.numInstances;
Person is an object with a slot numInstances because its class, Traced-class, defines
a slot with this name in lines 2-4. The initial value of this slot is 0 (line 3) and it has
methods for getting and setting it (numInstances and setf). Method numInstances is
called four times in lines 28-32. The argument is object Person, which is returned by
method find-class and by class-of. The code of Listing 3.2 prints the following because
of lines 26, 29, and 32.

name: Meg , age: 3
4
4

In a ficticious Java dialect that supports a Metaobject Protocol, classes TracedClass and
Person would be as shown below.

class TracedClass extends StandardClass {
public int numInstances = 0;
// assume objects are created with makeInstances

@Override
public Object makeInstance (Object ... keys) {

Object obj = super. makeInstance (keys );
++ numInstances ;
return obj;

}
}

class Person metaclass TracedClass {
// the fields are public , no get

// and set as in CLOS

public String name = "Meg";
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public int age = 3;
public void PrettyPrint () {

System.out. println ("name : " + name +
" age: " + age );

}
}

Listing 3.2 – Metaclass traced-class in CLOS
1 ( defclass Traced-class ( standard-class )
2 (( numInstances
3 : initform 0
4 : accessor numInstances )))
5
6 ( defclass Person ()
7 ( (name : initform "Meg" : accessor name)
8 (age : initform 3 : accessor age )
9 )

10 (: metaclass Traced-class ))
11
12 ( defmethod pretty-print (( aPerson Person ))
13 (format t "name: ~a, age: ~a"
14 (name aPerson ) (age aPerson ))
15 )
16 ( defmethod make-instance :after (( aClass Traced-class ) &key)
17 (incf ( slot-value aClass ’numInstances )))
18
19 (defvar meg ( make-instance ’Person ))
20 (defvar doky ( make-instance ’Person ))
21 (setq meg ( make-instance ’Person ))
22 (setq doky ( make-instance ’Person ))
23 (setf (name doky) "Doky")
24 (setf (age doky) 6)
25
26 ( pretty-print meg)
27
28 (assert (= ( numInstances ( class-of meg )) 4 ) )
29 (print ( numInstances ( class-of meg )))
30
31 (assert (= ( numInstances ( find-class ’Person )) 4 ))
32 (print ( numInstances ( find-class ’Person )))
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Listing 3.2 exercises the MOP of CLOS. Class Person has a tailor-made metaclass
Traced-class for which method make-instance was specialized.7 Therefore Person has
a tailor-made instance allocation. By changing method make-instance of this example,
one could implement other features such as logging the creating of objects, collecting them
in a list, or initializing the object slots with non-default values.

Classes, methods, and generic methods are objects in CLOS whose classes (meta-
classes) are, by default, standard-class, standard-method, and
standard-generic-function. Methods are associated with every one of these metaclasses
for creating instances (like make-instance), allocating memory, calculating the precedence
of superclasses,8 ordering the methods of a generic method, calling a method, and so on.
Most of the classic book “The Art of Metaobject Protocol” (KICZALES; RIVIèRES;
BOBROW, 1991) is dedicated to explaining what to redefine in order to achieve a given
goal. A class like Traced-class may inherit from standard-class and be used to spe-
cialize a method like make-instance. Classes that explicitly declare their metaclasses, as
Person, are changed by them. To change the behavior of a generic method or method
one should create a subclass of standard-generic-function or standard-method and
associate the generic method or method with that class. By doing that, message passings
may be intercepted. An example is a metaclass that counts how many times a generic
method was called.9

CLOS allows the changing of almost every aspect of the language. This was
necessary because it was made to replace several Lisp dialects and the language should be
able to simulate them. This was possible only because of the MOP.

As a last example, Listing 3.3 shows a metaclass Get-print for which method
slot-value-using-class

is specialized in lines 3-7. The first parameter to this method, named aClass, has type
Get-print. In line 5, method format prints to the standard output "getting " followed
by the slot name.

7 method “specialized” is called, in most object-oriented languages, a “overridden” or “redefined” method.
8 Since the language supports multiple inheritance, the superclasses are ordered according to a precedence

list.
9 See page 109 of the book (KICZALES; RIVIèRES; BOBROW, 1991).
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Listing 3.3 – Intercepting slot access
1 ( defclass Get-print ( standard-class ) () )
2
3 ( defmethod slot-value-using-class (
4 (aClass Get-print ) instance aSlot )
5 (format t " getting ~s~%" ( slot-definition-name aSlot ))
6 ( call-next-method aClass instance aSlot)
7 )
8
9 ( defclass Person ()

10 (( name : initform "Meg" : accessor name)
11 (age : initform 4 : accessor age) )
12 (: metaclass Get-print ))
13
14 (defvar meg ( make-instance ’Person ))
15 (format t "~a~%" ( slot-value meg ’name ))
16 (format t "~a~%" ( slot-value meg ’age ))

The code of Listing 3.3 prints the following text because of lines 15 and 16.

getting NAME
Meg
getting AGE
4

3.3 Compile-Time Metaprogramming

Metaprogramming can be made at compile-time. A metaprogram can specify how to
change a base program, called simply program, or do additional checks in it. The program
is changed at compile-time and therefore there is a zero overhead at runtime, except, of
course, for code that is added to the base program.

Metaprogramming at compile-time has been used for:

a) extending a language with new features;

b) implementing Domain Specific Languages which may employ a completely
different syntax than the language;

c) generating boilerplate code, which is repetitive code or with little semantic
contents;
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d) doing additional checks in the program, even implementing a customized type
checker for the language.

The next Subsections explain the compile-time metaprogramming features of several
languages, starting with the old Lisp macros and ending with the new languages. Most of
the examples of this section were tested with online compilers.

3.3.1 OpenC++

Chiba (CHIBA, 1995) proposed a Metaobject Protocol for C++, resulting in the
language OpenC++. The compiler of OpenC++ first parses the code and builds an AST
object for it. Then, for each class and each method, a metaobject is created from classes
Class and Function. Method CompileSelf of each metaobject is called and given the
opportunity of returning a modified AST. The default behavior of Class and Function is
not change anything.

A subclass of class Function may override method CompileSelf to change the AST
of a method m, given that m declares this Function subclass as its metaclass. Class Class
declares several methods for intercepting method calls, variable declarations, creation of ob-
jects, and read and write of fields. Therefore, a subclass ClassFunctionCall of Class may
redefine a method CompileMemberFunctionCall for intercepting method calls. If a class
MyClass declares ClassFunctionCall as its metaclass, method CompileMemberFunctionCall
is called whenever the compiler finds a method call whose receiver is MyClass. This meta-
class method can then change or replace the AST of the method call.

The OpenC++ compiler supplies a function for producing AST object from a text.
That makes it easy to produce new code as text that is then translated into an AST object.
Chiba (CHIBA, 1995) presents a metaclass for persistent objects. The reading of a class
field is translated into the loading of an object from disk. This metaclass is implemented
by overriding some methods inherited from Class, among them the one that is called
whenever a class field is read.

3.3.2 OpenJava

OpenJava (TATSUBORI et al., 2000) (TATSUBORI, 1999) is an extension of Java
with a Metaobject Protocol somehow similar to OpenC++, although of a higher level. A
class in OpenJava10 is associated with a metaclass that may be user-defined. A metaclass in
OpenJava must inherit from class OJClass that declares methods for introspection and for
modifying the base class, the one associated with the metaclass. A class is associated with

10 The language was renamed OJ, see http://openjava.sourceforge.net/. However, we use “OpenJava”
because this is the name that appeared in the articles and Master dissertation that describe it.
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a metaclass using keyword instantiates as shown in the following code, from Tatsubori
(TATSUBORI et al., 2000).

class MyMenuListener
instantiates ObserverClass
extends MyObject
implements MenuListener

{ ... }

At compile-time, an object of the metaclass ObserverClass, a metaobject, is created and
it directs the compilation of MyMenuListener, the base class. Metaclass ObserverClass
overrides method

void translateDefinition()
to insert methods in the base class. This method, shown in Listing 3.4, calls introspective
methods from OJClass that are very similar to the ones of the Java library but with one
difference: they return information regarding the base class, not the metaclass, which is the
type of “this”. Classes OJMethod, OJField, OJConstructor, and OJModifier are used
for representing methods, fields, constructors, and field/method modifiers (like “public” or
“abstract”).

Listing 3.4 – Creating a new method. Source: (TATSUBORI et al., 2000)
1 void translateDefinition () {
2 // get the methods of the base class

3 OJMethod [] m = this. getMethods (this );
4 for (int i = 0; i < m.length; ++i) {
5 OJModifier modif = m[i]. getModifiers ();
6 if ( modif. isAbstract () ) {
7 // if the method is abstract ,

8 // create a new method

9 OJMethod n = new OJMethod (this ,
10 m[i]. getModifiers (). removeAbstract (),
11 m[i]. getReturnType (),
12 m[i]. getName (),
13 m[i]. getParameterTypes (),
14 m[i]. getExceptionTypes (),
15 makeStatementList ("return;"));
16 this. addMethod (n);
17 }
18 }
19 }
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This translateDefinition method scans all base class methods looking for abstract meth-
ods. When one is found, a new method is created in lines 9-15 with a single statement:

return ;
Then the new method is inserted in the base class in line 16.11

OJClass has methods for intercepting the allocation of objects of the base class
(with new), arrays of objects, method calls, field read and write, and casts of expressions
to the base class. For example, to intercept calls to methods of a base class, its metaclass
should override the following method.

public Expression expandMethodCall (
MethodCall expr , Environment env )

In OpenJava, metaclasses can only be associated with classes. A high-level library
of AST classes is used, with classes like OJField and OJMethod, instead of the real AST
classes.

3.3.3 Aspects

Teitelman (TEITELMAN, 1966) proposed, in 1966, advising a Lisp function with
new functions that would be called at its entry and exit points. Hence, a function (or even a
set of functions) would have a new behavior without editing it. These ideas were refined into
a new programming paradigm called Aspect-Oriented Programming (AOP) (KICZALES
et al., 1997). Code that implements an aspect of a program, like synchronization or error
handling, is scattered in the source code. In a language that supports AOP, an aspect can
be put in just one place, making it much more modular. But in order to be effective, the
aspect code is introduced, by the compiler, in specific points of the generated code. This
is called weaving.

The terminology of the paradigm is described in the items below using AspectJ
(KICZALES et al., 2001) (THE. . . , 2020), a Java extension for AOP.

a) Aspect is a concern that cross cut several classes. In AspectJ, it is a class-
like Java declaration that may declare methods, fields, pointcuts, advices, and
inter-type declarations.

b) Pointcuts are declarations that specify or pick out certain points of the code,
called joint points. For example, the pointcut

pointcut getting_a_Name :
call( void Person. getName () );

picks out the calls to method getName of class Person. The pointcut
11 It is supposed that the old abstract method is removed when the new method, that has the same

name, is inserted by “this.addMethod(n)”.
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pointcut getting_anything :
call( void Person.get *() );

selects all calls to methods of Person starting with get.

c) An advice is composed of a pointcut and code that should be run at it.

public aspect BeforeGetName {
// start of an advice

before (): getting_a_Name {
System.out. println (

" getting the name , of course");
}

// end of the advice

}

In this example, the string "getting ..." is printed before the getName method
is called. BeforeGetName is an aspect. Both pointcuts and advices may have
parameters, a feature that is not be explained here. There are several types
of advices. The main ones are “before”, shown in the above example, “after”
(called after the join points), and “around” (before and after the joint point).

d) Inter-type declarations are used for changing the code at compile-time. An
aspect may add fields, methods, and constructors to classes and make a class
inherit from another or implement an interface.

public aspect AddBirthdate {
public String Person. getBirthdate () {

return birthdata ;
}
public void Person. setBirthdate (String s) {

birthdate = s;
}

private String Person. birthdate ;

declare parents : Person implements Cloneable ;
}

This aspect adds two methods and one field to class Person. It also demands
that Person implements interface Cloneable.
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3.3.4 BSJ

The Metaobject Protocol of language OpenJava allows non-local changes, a meta-
class may modify code in other source files. Two metaclasses may transform the same code
region and the execution order is important for the end result. BSJ (PALMER; SMITH,
2011), Backstage Java, is a Java-based language with compile-time metaprogramming that
limits the effects of non-local changes, detects conflicts between different metaprogram
snippets, and directs the transformation order of the program by the metaprogram.

An example in BSJ follows. Between lines 6-10 there is a metaprogram, code run
at compile-time and delimited by [: and :]. This metaprogram calls a method of class
Utils12 that inserts a compareTo method in class Person.

1 #import static com. example .bsj.Utils .*;
2 public class Person {
3 private String givenName ;
4 private String middleName ;
5 private String surname ;
6 [:
7 generateComparedBy (context ,
8 <: surname :>, <: givenName :>,
9 <: middleName :>);

10 :]
11 }

Method generateComparedBy is not shown. It produces code using quosiquotes delimited
by <: and :>, which are also used in the above example in lines 8 and 9. The code is
inserted in the current class using a method of parameter context, which is the compilation
environment. A metaprogram can only change the declaration in which it is. For example,
the metaprogram of the example can introduce a method and add an interface to class
Person. But it cannot change other source files or even create a class outside Person in
this same source file.

Metaprograms are run on the original AST, not changed by any other metaprograms,
unless there are declared dependences on other metaprograms. BSJ use directives #target
and #depends for creating a dependency graph with the metaprograms. A metaprogram
that is in a target runs before its dependent metaprograms which can see the AST changed
by the target. The BSJ compiler uses a sophisticated algorithm to detect conflicts. This is
not simple because a metaprogram may produce code with metaprograms. These may be
marked as targets or they may depend on other metaprograms.
12 Class Utils is imported using #import static, which means the static methods of the class are

inserted in the name space of class Person. Therefore one can use generateComparedBy instead of
com.example.bsj.Utils.generateComparedBy.
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Java-like annotations are associated with classes that implement the interface
BsjMetaprogramMetaAnnotation. Method execute of the class is called passing a context
object as parameter, the environment of the annotation. Then, this method can insert
code in the AST using quasiquotes.

3.3.5 Xtend

Xtend (XTEND, 2020) is a Java extension that supports active annotations that
have some similarities with Cyan annotations. For example, the Xtend library annotation
@Data, when associated with a class, creates several methods, a constructor, and changes
all fields to final.13

@Data
class Person {

String name;
int age;

}

The declaration of Data is itself annotated.

@Target ( ElementType .TYPE)
@Active ( DataProcessor )
@Documented
@GwtCompatible
annotation Data {
}

The annotation target, to where it may be attached to, is specified using @Target with a
value of the Java enumeration ElementType.14 The parameter to @Active is the processor
class, a class with methods that transform the class annotated with @Data. The other
annotations to Data are not important here.

A processor class must implement one or more of four Xtend interfaces:

a) RegisterGlobalsParticipant for registering a new type. A method of this
interface should be implemented by the processor class to create a new empty
type such as an Xtend class or interface;

b) TransformationParticipant for adding, removing, or changing fields and
methods of any class or interface. In particular, the class attached to the
annotation, as Person of the previous example, can be changed;

13 After a value is assigned, the fields cannot change their values.
14 Defined at https://docs.oracle.com/javase/7/docs/api/java/lang/annotation/ElementType.html
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c) ValidationParticipant for checks only. The code cannot be changed anymore
and all types are resolved;

d) CodeGenerationParticipant for generating additional code such as XML files.

Each interface defines exactly one method. The processor class of Data, for example,
overrides method doTransform of TransformationParticipant in order to insert methods
into the associated class. It is important to note that an active annotation can change not
only its attached declaration but also any class/interface it can find through a findClass
or findInterface method.

Another example of active annotation is @Extract (XTEND, 2020). When attached
to a class MyClass, it creates an interface MyClassInterface with its method signatures.
Listing 3.5 presents the processor class of the active annotation @Extract. This code was
taken from the Xtend site (XTEND, 2020) and transformed in order to become more
Java-like. The superclass of class ExtractProcessor is

AbstractClassProcessor
which implements all the interfaces cited previously. Method doRegisterGlobals in lines
4-8 overrides a method defined in interface RegisterGlobalsParticipant. It creates an
empty interface with method registerInterface. The interface name is that returned
by method getInterfaceName. Parameter annotatedClass is what it says, the class that
is annotated, MyClass in the example.

Method doTransform overrides a method of interface
TransformationParticipant

In lines 17-19, it finds the interface created by doRegisterGlobals. Then, this interface
is added to the list of implemented interfaces of the annotated class (e.g. MyClass) in lines
23-25. A new method signature is created in lines 33-42 and inserted into the interface.
An anonymous function, between [ and ], is the second parameter to method addMethod.
It is executed in addMethod after this being redirected to the newly created method.
Therefore, the new bodyless method will have, for example, the same return type as the
original method of the annotated class. The ExtractProcessor is a processor class that
changes a type (an interface) that is not the annotated class.

The code of Listing 3.5 handles the AST or a simpler version of the AST. That
can be seen in lines 23-25 (add an interface to a list of implemented interfaces) and in
lines 33-42 (insert a method into an interface). There is another way of doing that using
code in text format. An example of that, from the Xtend site, is given in Listing 3.6. The
text between the ’’’ is a template expression, a multiline string that may have embedded
commands like IF and FOR. The variables between french quotes, « and », are replaced by
their values. Note that the AST is still used to add the method.
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Listing 3.5 – Processor class for Extract annotation
1 class ExtractProcessor extends AbstractClassProcessor {
2
3 override void
4 doRegisterGlobals ( ClassDeclaration annotatedClass ,
5 RegisterGlobalsContext context ) {
6 context . registerInterface (
7 this. getInterfaceName ( annotatedClass ) )
8 }
9

10 def String getInterfaceName ( ClassDeclaration
11 annotatedClass ) {
12 return annotatedClass . qualifiedName + " Interface "
13 }
14
15 override void
16 doTransform ( MutableClassDeclaration annotatedClass ,
17 extension TransformationContext context ) {
18 MutableInterfaceDeclaration interfaceType =
19 context . findInterface (
20 this. getInterfaceName ( annotatedClass ) )
21
22 // add interface interfaceType to the list of
23 // implemented interfaces
24 annotatedClass . implementedInterfaces =
25 annotatedClass . implementedInterfaces +
26 #[ interfaceType . newTypeReference ]
27
28 // add the public methods to the interface
29 for ( method : annotatedClass . declaredMethods ) {
30 if (method. visibility == Visibility .PUBLIC) {
31 // pass as parameter to addMethod
32 // a name , method.simpleName , and
33 // the new method data
34 interfaceType . addMethod (
35 method.simpleName , [
36 docComment = method. docComment
37 returnType = method. returnType
38 for (p : method. parameters ) {
39 addParameter (p.simpleName , p.type)
40 }
41 exceptions = method. exceptions
42 ]
43 ) // closing addMethod
44 }
45 }
46 }
47 }
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Listing 3.6 – Transforming string into an AST object in Xtend
1
2 observableType . addMethod (’set ’ +
3 fieldName . toFirstUpper ) [
4 addParameter (fieldName , fieldType )
5 body = ’’’
6 «fieldType» _oldValue = this.«fieldName»;
7 this.«fieldName» = «fieldName»;
8 _propertyChangeSupport . firePropertyChange (
9 "«fieldName»", _oldValue , «fieldName»);

10 ’’’
11 ]

3.3.6 Groovy

Language Groovy (KöNIG, 2007) is a Java-based language that supports compile-
time metaprogramming through AST transformations (GROOVY, 2018). There are two
flavors of them: local and global. Local AST transformations are applied to annotated
elements such as classes and interfaces. Global AST transformations are applied to every
source code in the compilation and they do not demand annotations.

The Groovy compiler has nine compilation phases: initialization, parsing, conversion,
semantic analysis, canonicalization, instruction selection, class generation, output, and
finalization.15 The AST is created in phase conversion and most of the checks are made in
phase semantic analysis. Phase class generation creates the bytecodes of each class (in
memory).

A local AST transformation is associated with an annotation name using the syntax
of the next example, taken from the Groovy site (GROOVY, 2018). Annotation Retention
uses the retention policy of Java.16 In this example, SOURCE means that the annotation is
used at compile-time only. Target takes as parameters the kinds of elements to which the
annotation can be attached to. In this example, it can be attached to a method.

// imports go here

@Retention ( RetentionPolicy .SOURCE )
@Target ( [ ElementType .METHOD] )
@GroovyASTTransformationClass (

[ "gep. WithLoggingASTTransformation " ] )
public @interface WithLogging {
}

15 Unfortunately, the Groovy documentation does not give enough details to a complete understanding
of the compiler phases.

16 See https://docs.oracle.com/javase/7/docs/api/java/lang/annotation/RetentionPolicy.html
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Listing 3.7 – Groovy class for WithLogging annotation
1 @GroovyASTTransformation (
2 phase= CompilePhase . SEMANTIC_ANALYSIS )
3 class WithLoggingASTTransformation
4 implements ASTTransformation {
5
6 @Override
7 void visit( ASTNode [] nodes , SourceUnit sourceUnit ) {
8 MethodNode method = ( MethodNode ) nodes [1]
9 def startMessage = createPrintlnAst (

10 " Starting $method .name")
11 def endMessage = createPrintlnAst (
12 "Ending $method .name")
13
14 def existingStatements = (( BlockStatement )
15 method.code ). statements
16 existingStatements .add(0, startMessage )
17 existingStatements .add( endMessage )
18 }
19
20 private static Statement
21 createPrintlnAst (String message ) {
22 ... // create an AST object
23 }

The last annotation, GroovyASTTransformationClass takes as parameters an array of
strings, each a Groovy class name. A method visit of each of these classes is called during
compilation to handle the annotation WithLogging.

The class specified in the declaration of annotation WithLogging is in Listing 3.7.
Annotation GroovyASTTransformation stipulates that method visit of lines 7-18 should
be called in phase semantic analysis. An annotation may be associated with transformation
classes that are used in several phases, although each class is used in exactly one phase.

Method visit takes a first parameter nodes that is an array with two AST objects.
The first is the AST object of the annotation itself. Through it, method visit can extract
the annotation parameters. The second array element is the AST object of the annotated
element. It would be the AST of sendMessage of the following example.

@WithLogging
void sendMessage (String msg) {

// elided

}

The second visit parameter, sourceUnit, is the AST object of the whole file in which
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the annotation is.

Annotations may change code they have access to by using AST methods. For
example, in lines 16-17 of Listing 3.7, two statements are inserted in the beginning and end
of the annotated method (e.g. sendMessage). AST objects may be created using several
strategies.

a) Creating objects from the AST classes:17

new ReturnStatement (
new ConstructorCallExpression (

classHelper .make(Date),
ArgumentListExpression . EMPTY_ARGUMENTS

)
)

b) With helper methods:

returnS (ctorX(make(Date )))

c) Using class AstBuilder from a specification:

new AstBuilder (). buildFromSpec {
returnStatement {

constructorCall (Date) {
argumentList {}

}
}

}

This example uses a construction of Groovy called builder. Method buildFromSpec
takes an anonymous function as parameter given between { and }. The pa-
rameter is not surrounded by ( and ). Method buildFromSpec changes the
this of the anonymous function in order to call methods like returnStatement
that return an AST object. This method also takes an anonymous function as
argument.

d) Using class AstBuilder from a string:

new AstBuilder (). buildFromString (’new Date ()’)

e) Using class AstBuilder from code:

new AstBuilder (). buildFromCode {
new Date ()

17 These examples were taken from a presentation of Paul King available in
https://www.slideshare.net/SpringCentral/groovy-asttransforms-paulkingsep2014b.
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}

This same result can be obtained from methods called macro that can be used
in a method if it is annotated with @Macro. There is also a class MacroClass
for creating new classes.

The AST builders and macro methods of Groovy make it easy to create AST
objects. But they have many limitations. For example, some language constructs are
not supported and it is difficult to make a reference to an existent AST object. These
limitations are not discussed here.

Groovy supports also what is called global transformations. They are defined by
AST transformation classes that inherit from a class

ASTTransformation
Global transformations are not associated with annotations. Method visit of a global
AST transformation class is called for every source file of the compilation. The compiler
knows about these classes through a specification file.

3.3.7 Nemerle

Nemerle (NEMERLE, 2018) (SKALSKI, 2005) is a C♯ based language with support
for two kinds of compile-time metaprogramming. The first one is an advanced form of
Lisp-like macros, functions that are called at compile-time to produce code that replaces
the macro call. Related features have already been discussed in subsection 3.1.4.

The second kind is related to annotations of Xtend, Groovy, and Cyan, although
it is also called macros. An annotation-like macro Serializable is attached to a class S
with the following syntax.18

[ Serializable ]
class S {

// constructor

public this (v : int , m : S) { a = v; my = m; }
// fields

my : S;
a : int;

}

At compile-time, the macro function Serializable of Listing 3.8 is called to transform
its attached declaration (class S in the example). A macro method may be called in three
compilation stages, described below.
18 This and the following examples were taken from https://github.com/rsdn/nemerle/wiki/Macros-

tutorial.
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Listing 3.8 – Nemerle macro Serializable
1 [ Nemerle . MacroUsage ( Nemerle . MacroPhase . WithTypedMembers ,
2 Nemerle . MacroTargets .Class ,
3 Inherited = true )]
4 macro Serializable (t : TypeBuilder )
5 {
6 /// here we list its fields and choose only those , which
7 /// are not derived or static
8 def fields = t. GetFields ( BindingFlags . Instance |
9 BindingFlags .Public |

10 BindingFlags . NonPublic |
11 BindingFlags . DeclaredOnly );
12
13 mutable serializers = [];
14
15 /// code elided
16
17 serializers = <[
18 printf (" <%s>", $(x.Name : string ));
19 System. Console .Write ($(nm : name ));
20 printf (" </%s>\n", $(x.Name : string ));
21 ]>
22 :: serializers /// :: is "add to the array"
23 /// code elided
24
25 }

a) BeforeInheritance, which just after parsing. There is no type information, the
compiler has not yet related classes and interfaces regarding inheritance and
implementation. A macro called in this stage can change the inheritance of the
annotated type and the implemented interfaces. It can also create new classes
and interfaces and add fields and methods to an annotated type. However, all
of this should be made with few type information.

b) BeforeTypedMembers, a stage after the compiler calculates the inheritance and
implementation hierarchies of all classes and interfaces. Although inheritance
information is available, the types of parameters, return value of methods, and
fields are not accessible. In this stage, a macro may add fields and methods to
classes and interfaces.

c) WithTypedMembers, the stage after the compiler has associated types to fields,
method parameters, and method return value. Inheritance and implementation
should not be changed but the macro may add fields and methods.

Listing 3.8 shows a sketch of macro Serializable with many missing lines. This
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macro is active in phase WithTypedMembers (line 1) and it should annotate a class (line 2).
Macros can annotate types (classes, interfaces, and the like), methods, fields, parameters,
and other elements that are specific to Nemerle. Option Inherited is turned on in line
3 because the macro should be applied to subclasses too. The parameter to the macro
function is TypeBuilder, the AST object of the annotated class (line 4). If the macro
should be attached to a field, for example, the parameters will be a TypeBuilder, the
class in which the field is, and a ClassMemberField, the AST class of a field.

A macro function handles the AST in order to do checks and insert members. For
example, using parameter t of Serializable we could insert a field count by calling
method Define:

t.Define( <[
decl: mutable count : int;

]> )

mutable is the Nemerle keyword for non-read-only fields and <[ and ]> delimits a quoted
code. Code may be spliced with $( ... ) inside quoted code. It is even possible to use
pattern matching with quoted code and handle the AST objects in a high-level way. For
example, the following code adds statements printf before and after a method body.

m.Body = <[ printf("before\n");
$(m.Body)
printf("after\n"); ]>;

Using AST objects, the macro may get information on the annotated element, as
is made in lines 8-11 of Listing 3.8. To fields is assigned a list of fields with the given
properties.
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4 Comparison and Future Works

This chapter compares Cyan with other languages and presents future works. The
features of the Cyan MOP are compared with features of other metaprogramming systems
in section 4.1. Cyan has some strong points when compared with other programming
systems with relation to usability and simplicity. However, these benefits are, for the most
part, a side-effect of the main goal of the design of the Cyan MOP, which was to address
the list of problems with metaprogramming presented in ??. The comparison of Cyan
with other languages in relation to these problems is presented in section 4.2. Metaobject
concept of Cyan is important enough to have its own comparative section 4.3. Cyan
supports user-defined literals of numbers and strings, pluggable types, language-oriented
programming, and Codegs. These features and metaobject kinds are compared to similar
mechanisms of other languages and environments in section 4.4. Future works are described
in section 4.5.

The Cyan Metaobject Protocol may be improved in a number of ways, employed
in several Computer Science areas, and give rise to new research. All of this is presented
in section 4.5.

4.1 Comparison of Metaprogramming features

This thesis is about the compile-time metaobject protocol of Cyan. But section 3.2
on runtime metaprogramming was included because many metaprogramming features can
be implemented either way. And because some benefits can only be achieved with runtime
metaprogramming, cited below.

a) Add fields and methods to a class or object at runtime. It may be impossible to
foresee beforehand which fields and methods will be necessary at runtime. And
only some objects may need to be changed, not all objects of a class. As seen in
section A.4, this can be simulated in Cyan.

b) Replace methods at runtime. Method print of an object out used for printing
in the standard output may be replaced by another that sends the data to a
printer, for example.

c) Intercept message passings at runtime, as done with metaobjects of 3-KRS
described in subsection 3.2.3. Method doesNotUnderstand: of Smalltalk is able
to intercept a message passing for which no method is found (subsection 3.2.2).
In Cyan, a method doesNotUnderstand: can be defined with the same purpose
as that of Smalltalk. But message passings cannot be intercepted at runtime as
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in 3-KRS.

d) Call a method whose name is only known at runtime, as is made with method
perform: of Smalltalk. Operator ` of Cyan does exactly that.

e) Discover the fields and methods supported by an object at runtime. That is
useful, for example, for a method that produces XML code from its parameter
object. The method would ask the object for a list of its field names and values
and produce the file based on them. Cyan does support this through methods
of prototype Any, the top-level prototype.

f) Load classes at runtime. This feature is used in the Cyan compiler to load
metaobject classes from the imported packages of a source code (file). These
classes were not known, in the general case, when the compiler was itself
compiled. Cyan can use the Java libraries to load prototypes at runtime.

g) Create and evaluate code at runtime. A simple example is to read an expression
from the keyboard and plot the graph of it in a Graphical User Interface.
Or create and execute a SQL command. A more sophisticated example is to
create a whole class based on database data. Cyan may support the evalua-
tion of statements and expressions created at runtime. This could be made
by interpreting the statements and expressions, as is made in metaobject
action_afterResTypes_semAn of section 2.3. Code may be created and com-
piled at runtime in any language. It is just a matter of producing text (the
source code) and calling the compiler. The question is how easy is to do that
and if the code produced can interact with the current program.

Runtime metaprogramming is a useful tool but it does have some weaknesses.
It brings a performance penalty, although that can be alleviated with an optimized
compiler as is made with languages Self (CHAMBERS; UNGAR, 1991) and CLOS
(KICZALES; RIVIèRES; BOBROW, 1991). Programs that change themselves at runtime
can be extremely difficult to understand, debug, and maintain. Whenever there is an
option, this mechanism should not be used. Code produced at runtime may have syntactic
and semantic errors, adding one more error source to the program.

Some tasks cannot be made with runtime metaprogramming:

a) introduce new syntax in the language, as do Lisp macros and annotations with
DSL code of Cyan;

b) check the code at compile-time. A library, for example, cannot check, at compile-
time, if its classes and methods are being used correctly.

Some procedures can be made both at compile and at runtime if the language
is powerful enough. For example, message passing, object creation, and field access
interception, inheritance change, method and field addition to classes, and all introspective
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reflection features. In CLOS and 3-KRS, most of this can be made at runtime. In Cyan,
they are all made at compile-time except inheritance change.

In the next subsections, we compare features of Cyan with those of languages that
offer compile-time metaprogramming. Before that, it is important to note that there is
a clear division between the languages compared. On one side, that we call group MOP,
there are languages with a full Metaobject Protocol: CLOS (KICZALES; RIVIèRES;
BOBROW, 1991), OpenC++ (CHIBA, 1995), and OpenJava (TATSUBORI et al., 2000).
On the other side, group MetaProg, there are languages with support for compile-time
metaprogramming but without a proper MOP. These include BSJ (PALMER; SMITH,
2011), Xtend (XTEND, 2020), Groovy (GROOVY, 2018), and Nemerle (NEMERLE,
2018). The third group is composed of languages that use generics and patterns for code
generation — they have not been described before. The forth group is composed only of
AspectJ (THE. . . , 2020).

4.1.1 Languages with a Metaobject Protocol

Group MOP contains languages with a full Metaobject Protocol. Articles on them
were published before the year 2005. Classes of languages of this group are associated
with metaclasses that control their semantics and code generation. The same is true for
some other declarations in CLOS and OpenC++. There is a default metaclass with the
standard algorithms defined by the language.

Each class, method, generic method, etc of CLOS has a default metaclass that
specifies the default semantics. A single alternative metaclass may be specified and it
may change the default behavior. Two metaclasses cannot be associated with the same
declaration (class, method, etc). To achieve the equivalent result, a new metaclass that
composes the behavior of the two has to be designed.

In Cyan, the default behavior is given by the compiler itself, not by a metaobject.
And more than one annotation may be attached to a declaration, making it easy to
change different aspects of a declaration, which is more difficult in CLOS. A metaclass in
CLOS may replace the default language semantics. In Cyan, metaobjects may add code to
prototypes but they cannot change the way the compiler generates code. And metaobjects
can do additional checks, they are not able to prevent the compiler from doing the checks
the language demands.

In Cyan, the AST is available to metaobjects, although it cannot be changed. To our
knowledge, the AST is not available for handling, introspection or intercession, in CLOS.
Cyan metaobjects may introspect any AST objects they can grab. The current prototype
and current method are always available. Their AST objects may be introspected, although
subject to security limitations as explained in section 1.4 (MessWithOthers).
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In Cyan, metaobjects ask the compiler to add code, rename a method, and replace a
statement (using method replaceStatementByCode of class ICompiler_semAn or methods
of interface IActionMessageSend_semAn).1 These are the three forms of changing code in
Cyan. Code to be added is always returned by methods of metaobjects that override some
interface method. This is unlike CLOS, in which code may be added to a program using
the metaprogramming facilities of Lisp. A class or method in this language can be created
like any other object. Thus, a conflict may occur and there are no clues on how to solve it.

Cyan adds code as strings that may not be valid Cyan code. That is discovered
only afterward when the source code is compiled again. In CLOS, errors are caught only at
runtime. Annotations in Cyan can have parameters and an attached DSL code that has the
purpose of configuring the metaobject. Metaclasses in CLOS cannot be configured — no
parameters and no DSL code. And they cannot help to build DSLs whose code is checked at
compile-time (the language is dynamically-typed and, besides that, all metaprogramming
is made at runtime).

Feigl (FEIGL, 2011) describes a Scheme-based MOP that was built to be more
efficient than that of CLOS. However, the main structure of the protocol is the same, and
therefore the comparison of Cyan with CLOS applies, for the most part, to this MOP.

A Cyan metaobject class/prototype may implement several Java/Cyan interfaces
that are activated in several compiler phases and may change and check prototypes, fields,
and methods. In CLOS, the same result is obtained by using several metaclasses, breaking
modularity. To achieve the same goal, not only several metaclasses have to be built but
they also have to be associated with several declarations.

The CLOS MOP covers every aspect of the language, everything can be changed,
including some features not supported by Cyan such as method combination and mul-
tiple inheritance. Cyan is more restricted by choice. Radical changes, as to replace the
superprototype or change the type of a parameter, were ruled out since the beginning.
However, Cyan metaobjects have some powers that CLOS metaclasses do not have. They
can be activated when a prototype is inherited and when a method is overridden in a
subprototype. There is a protocol for metaobject communication in Cyan.

The MOP of OpenC++ and OpenJava allow the interception of method calls, field
access, object creation, and so on using metaclasses. A metaobject is an instance of a
metaclass that is created at compile-time. A metaobject may change the code and do checks
in one compiler phase only. In Cyan, there are four main occasions in which metaobjects
may act: phases parsing, afterResTypes, semAn, and afterSemAn. Metaobjects may add
fields and methods only in phases parsing2 and afterResTypes. That means metaobjects
active in later phases know for sure that fields and methods of the current prototype will

1 Note: expressions, like message passings, are considered statements in Cyan.
2 This will soon be deprecated. Phase parsing will be for checking and parsing of the attached DSL code
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not change.

OpenC++ and OpenJava have just one compiler phase, which makes the MOP
simpler than that of Cyan. However, in this last language the division of the compilation in
phases helps to clarify the design of metaobjects and prevent some errors such as different
views of the code. Most of the comparison between Cyan and CLOS also applies to a
comparison between Cyan and OpenC++/OpenJava. In particular, these two languages
have a default metaclass for each declaration, only a single metaclass may be associated
with a declaration, and metaclasses cannot have parameters.

In OpenC++, methods of metaclasses should return AST objects but there is a
function that takes strings and produces these objects. Metaclass methods return code
that replaces method calls, field access, and so on. Thus, the AST is not changed directly,
a very positive aspect.

Metaclasses of OpenJava may change several aspects of any AST object accessible
to them. Methods and fields may be added to classes, inheritance may be changed, method
bodies may be replaced, parameter types may be changed, and so on. That is all made
by calling methods of the AST classes. That means metaprogramming is more error-
prone than in Cyan, in which code is returned by methods and the AST is not changed
directly. That also means that non-local changes are possible, a non-modular characteristic.
Therefore, a metaobject associated with a class A may replace the method body of a class
that is parameter to one of the methods of A.

Python 3 (RAMALHO, 2015) features a MOP and other programming constructs
that support metaprogramming. There is a metaclass associated to each class that can
modify it. For example, the metaclass can add fields and methods to the class. Metapro-
gramming in Python 3 and Cyan have very different characteristics.

a) There can be just one metaclass per class in Python, which limits the complexity
of metaprogramming. However it also limits its usefulness. The equivalent
restriction in Cyan would be to prohibit more than one annotation per prototype.
In this case, some of the problems described in ?? would not exist (OrderMatters,
InfiniteMetaLoop, and CircularDependency). The conflict and interrelationships
among metacode is the source of several of the problems.

b) An annotation can be an expression in Cyan, as @lineNumber. In Python, there
is no such feature.

c) Cyan metaobjects have access to the current prototype AST. In Python, the
AST of a class is not readily available to metaclasses. The obtain the AST, the
metaclass has to access the class bytecodes or source code and, using it, build
the AST.

d) In Cyan, metaobject methods are called in inheritance or method overridden.
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Python does not have a similar functionality.

e) Metaprogramming in Python is done at runtime and, in Cyan, at compile-time.
Therefore, Python offers more flexibility since metaclasses can use information
that is only available at runtime. The downside is that errors in the generated
code are not discovered at compile-time.

Classes and objects of Iguana/J (REDMOND; CAHILL, 2002) can be dynamically
adapted through the use of protocols. The operations that can be intercepted are method
call, method execution, field access, object creation and deletion, and method dispatch.
The Java extension Reflex (TANTER et al., 2003) allows the modification of classes at
loading time, thus supporting behavioral reflection. Languages Iguana/J and Reflex3 do
not support structural changes like the addition of methods and classes. They are runtime
metaprogramming systems.

4.1.2 Languages with Metaprogramming Features

Languages Xtend and, mainly, Groovy, are responsible for the recent development
in metaprogramming. These languages, BSJ and Nemerle (group MetaProg), do not
support a MOP, they do not use metaclasses. The default behavior is given by the
compiler itself, it cannot be replaced. Any changes have to be made by modifying the
AST. The metaprogramming mechanism is similar in all of them but BSJ: methods of
classes associated with annotations are called in some specific compilation phases stated in
the declarations of the annotations. These methods can change the AST of the annotated
element or other AST objects that are accessible. Therefore non-local changes are possible

— any class or method can be changed by a class associated with an annotation. And
almost all modifications are allowed because the AST is handled directly. BSJ stands
out for allowing only local changes and for assigning exactly one meaning to the whole
metaprogram.

The metaprogramming support, in group MetaProg, is low-level when compared
with Cyan and languages of group MOP, requiring AST handling for any code insertion
and checks. In Cyan, unless method replaceStatementByCode (see item 1.2.4) is used,
the code to be added must be returned by a metaobject method that overrides a Java
interface method of the MOP. All code handling is made with strings, in contrast with the
languages of group MetaProg that use either AST objects or some mechanisms to build
AST objects from text (including quotations).

The MOPs of languages of group MOP are carefully described in academic articles,
dissertations, and books. The metaprogramming features of languages of group MetaProg
are loosely specified with the exception of Nemerle (SKALSKI, 2005) (SKALSKI; MOSKAL;
3 Reflex was cited in this section although it is an open architecture, it does not impose a specific

metaobject protocol.
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OLSZTA, 2005) and BSJ. More information on these languages would be necessary for a
detailed comparison between them and Cyan. We compared with Cyan only the specification
of the metaprogramming constructs given in sites, books, and articles. The use of test
cases with the compiler would eliminate some of our doubts on the languages. But the
semantics given by the compilers could change in future versions while still matching the
specification of the languages.

Message passing, object creation, field read and write, inheritance, and method
overridden are operations that cannot be intercepted in languages of group MetaProg.
That is only possible by using global AST transformations of Groovy. With them, the
whole AST of a program is available to one class and therefore everything is possible.
However, this can hardly be considered a good practice: it slows down the compiler and
allows changes in the whole program.

In languages of group MetaProg, there is also no standard way of objects of the
metaprogram4 to communicate with each other. In Cyan, there is a well-defined protocol
for communication that prevents non-determinism: metaobjects of a prototype supply
information that is put in a pool that is shared in a later step. Metaprogramming in
language BSJ is done in just one compilation step, unlike other group languages. BSJ relies
on a dependency graph to prevent conflicts that are either not solved in other languages
or are solved by using different compiler phases.

In Cyan, annotations can be considered statements or expressions. Annotations of
languages of group MetaProg cannot be statements or expressions. In Cyan, an annotation
that is a statement may do checks and produce code after it, as is made by metaobject
action_afterResTypes_semAn of section 2.3. Annotations of many metaobject classes of
package cyan.lang are expressions: lineNumber, compilationInfo, all literal numbers
and literal string annotations. Cyan is more expressive by allowing the possibility of
annotations to be expressions.

In languages of groups MOP and MetaProg, there is no direct support for DSLs
attached to annotations or metaclasses. However, DSL code may be inside a literal string
passed as a parameter to an annotation. Some of the languages of groups MOP and
MetaProg are statically-typed: Xtend, Nemerle, OpenJava, BSJ, and Xtend. In none of
them, it is possible to parse and interpret code of the own language at compile-time as in
Cyan. Hence, an annotation like action_afterResTypes_semAn, section 2.3, is at least
difficult to implement in these languages.5

The Cyan MOP offers the compiler to metaobjects that need to parse or do lexical

4 That is, objects of classes associated with code transformations like AST transformation classes of
Groovy. They are in fact metaobjects but they are not called by this name.

5 It could be achieved with great pain. The compiler could call itself to compile the code. But, in this
case, the code could not use objects available to the compiler. An interpreter for the AST could be
made. To our knowledge, this has not been done.
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analysis in DSL code. The AST built by the compiler for a metaobject may undergo
semantic analysis if the metaobject chooses this option. Language Converge (TRATT,
2008) provides the Converge Parser Kit for parsing code based on a grammar. Cyan only
supports Cyan-like code.

4.1.3 Languages that Use Generics and Patterns

Generic classes of the C♯ extension language Genoupe (DRAHEIM; LUTTEROTH;
WEBER, 2005b) (DRAHEIM; LUTTEROTH; WEBER, 2005a) can use a language for
code generation. This language supports statements foreach and if used to generate code.
In the following example, adapted from (DRAHEIM; LUTTEROTH; WEBER, 2005b),
foreach is used for scanning the fields of S, the type parameter to the generic class C. For
each S field, a new field with the same name and type is added to C.

1 class C(Type S) {
2 @foreach (F in S. GetFields ()) {
3 @F. FieldType@ @F. FieldName@ ;
4 }
5 }

Genoupe cannot add code to existing classes. The language offers a high degree of
type safety at compile-time. However, it does not guarantee the generated code is correct.

SafeGen (HUANG; ZOOK; SMARAGDAKIS, 2005) is a metalanguage for Java
that supports Generators for generating well-formed Java code. The language employs a
theorem prover that is fed with first-order logical sentences, each one represents a property
of the generated code. Either the prover assures that the generated code is well-formed
or an error is issued. SafeGen supports statements #foreach and #when that play a role
similar to foreach and if of Genoupe.

The metaprogramming system CTR (FäHNDRICH; CARBIN; LARUS, 2006) is an
C♯ extension with a mechanism, called transformers, that combine patterns and generation
templates. The generation template is applied whenever the associated pattern matches a
code (like a class). A transformer can, for example, create new classes or add methods to
a class. The generated code is checked first by CTR and, later, by the compiler.

MorphJ (HUANG; SMARAGDAKIS, 2011) uses a technique called morphing for
building classes based on the fields and methods of their type parameters (which are
generic classes). An example, taken from (HUANG; SMARAGDAKIS, 2011), creates a
class AddGetter<X> with get methods for each field of class X.

class AddGetter<class X> extends X {
<F>[f] for ( F f : X.fields )
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F get#f () { return super.f; }
}

In line 2, there is a pattern that matches the public fields of X. <F> means that F is a type
variable and [f] means that f is a name variable. The for statement iteracts over all
public fields of X.

As can be seen in this example, classes instantiated from the same generic class may
have different structures. The MorphJ compiler detects not well-formed code in generic
classes before instantiations. Patterns can be positive, as in the previous example, or
negative. Since MorphJ creates code by instantiating generic classes, it cannot add code
to existing classes.

Model MTJ (REPPY; TURON, 2007) offers trait functions composed of requires
and provides clauses. Trait PropT below, taken from (REPPY; TURON, 2007), has only
the provides clause.

trait PropT ($f, $g, $s, T)
provides {

private T $f;
public void $s (T x) { $f = x; }
public T $g () { return $f; }

}

This trait is used twice in class Point2, with different arguments.

class Point2 {
use PropT (x, getX, setX, int);
use PropT (y, getY, setY, int);
Point2 () { x = 0; y = 0; }

}

The result is that fields x and y of type int and get and set methods for them are added to
class Point2. Everything declared in the provides clause is added to the class. This trait
can be implemented in Cyan as a metaobject. The use clause would be just annotations:

object Point2 {
@propT(x, getX, setX, int)
@propT(y, getY, setY, int)
Point2 () { x = 0; y = 0; }

}
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Restrictions on real arguments are declared in clause requires. PTFJ (MIAO;
SIEK, 2012) is a MTJ extension employing patterns borrowed from MorphJ. Both MTJ
and PTFJ cannot add statements to methods — they are able to add only whole methods.
This restriction is lifted in an extension of PTFJ (MIAO; SIEK, 2014). In this language
extension, pattern matching is also used for generating statements. For example, if a class
has a given method, a statement is generated inside a class method.

The Java extension cJ (HUANG; ZOOK; SMARAGDAKIS, 2007) supports predi-
cates on the type parameters of generic classes. As an example, if a generic class parameter
X is subclass of class Y, then a method is added to the generic class. Therefore, the predicate
works as the expression of a static if that only generates code if the expression is true. It
resembles language D’s static if (ALEXANDRESCU, 2010), although, in this language,
regular functions can be called at compile-time. A D interpreter is used to evaluate them.
Returning to cJ, the type-checking of a generic class is made before any instantiations.

Cyan can generate code with lexical, syntactical, and semantic errors. This is unlike
Genoupe, SafeGen, CTR, MorphJ, MTJ, and cJ. In Cyan, metaobjects can add code in
instantiations of generic prototypes, thus emulating the creation of classes in the above
languages. The easier way of doing that is using metaobject insertCode.

object MyList<T>
@insertCode{*

/*
the code below, elided, tests if T declares a binary + method
that returns a T value. If yes, method ’sumAll’ is added
to MyList<T>. This method is

func sumAll -> T { ... }
*/
... // elided

*}
...

end

The statements of insertCode, which are interpreted at compile-time, have access to
information about T such as its superprototype and its declared methods. The statements
test if T declares a binary + method that returns a T value. If yes, method sumAll is added
to MyList<T>. This method is

func sumAll -> T { ... }
This mechanism is largely used in the Cyan libraries. There are specific metaobjects for
generating code for prototype Tuple and Array, among others, for example. There is an in-
teresting metaobject addCodeFromMetaobject that asks for the first generic type parameter
which code it should add to the generic prototype. An annotation of this metaobject is at-
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tached to the generic prototype Array<T>. The code to be added to the generic prototype is
given as the attached DSL code of an annotation addCodeToGenericPrototype attached to
a type R. In an instantiation Array<R>, addCodeFromMetaobject and addCodeToGenericPrototype
talk to each other and the first metaobject adds to the generic prototype the code supplied
by the latter.

For example, prototype Int is declared as

@addCodeToGenericPrototype(Array, "func sum -> Int"){*

func sum -> Int {
var Int s = 0;
for elem in self {

s = s + elem
}
return s

}
*}
...
object Int

...
end

The first parameter to the annotation is the generic prototype instantiation to which the
code should be added. The second parameter is the signature of the method given in the
attached DSL code. Therefore, prototype Array<Int> has a sum method that is not added
to any other Array<T> prototype. The generic prototype Array<T> does not know, by
itself, of method sum.

There is another way of configuring a generic prototype in Cyan. Identifiers starting
with a lowercase letter are not considered types when passed as a parameter to a generic
prototype. Therefore they can be used to give information to metaobjects. For example,
a metaobject whose annotation is attached to prototype MyList<T> could create a list
optimized for space when instantiated with identifier space as in

MyList<Int, space>
Hence, different instantiations of MyList could have different source code and even different
fields and methods.

In language MetaFJig⋆ (SERVETTO; ZUCCA, 2013), classes are combined by
a set of composition operator for supporting active libraries. A class can be created by
composing other classes and calling methods returning classes. A customized version of
a library is created when the newly created class has nested classes. Metacode that has
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already been compiled never causes errors in MetaFJig⋆. The Cyan features that are
comparable to class creation in MetaFJig⋆ are generic prototypes (with metaobjects that
generate code) and metaobjects that create new prototypes. In both cases, metaobjects
are used for customizing the new prototype. However, in Cyan, there is no guarantee that
the generate code or the generic prototype, before instantiated, is free of errors. Neither
there is a DSL that helps to generate the code, although one could be created and code of
it could appear in the attached DSL code of an annotation.

4.1.4 AspectJ

AspectJ is taken as a representative of the aspect languages. In AspectJ, it is
possible to specify a set of method calls (and object creation) that should be intercepted,
using *. In Cyan, an annotation attached to a method or prototype can only intercept
message passings related to that prototype.6 There is an offset between locality and
flexibility among the two languages. The behavior is more foreseeable in Cyan because of
the locality of the reach of the annotation. But AspectJ offers more power.

One of the design goals of the Cyan MOP is to restrict metaobjects to change only
the compilation unit in which their annotations are, with exceptions described in the next
paragraphs. Even metaobject of annotations of the project file (subsection 1.3.1) follow
this rule, let us see why. There are two kinds of metaobject classes whose annotations are
used in the project file: those who implement interface IAction_dpp and those who do
not. The former ones act only in the packages or the program. The later ones are applied
to every prototype of the package (or the program). They are individually applied to
every prototype, there is no communication between the prototypes using the metaobjects.
Therefore, to use such kind of annotation is just a shortcut of attaching them to every
prototype of a package (or the program). Therefore every annotation only does changes in
its prototype.

If the metaobject class implements interfaces
IActionMessageSend_semAn
IActionMethodMissing_semAn

then code is changed outside the annotation. But the change is expected if the type of the
message receiver expression has attached annotations either to itself, to its superprototypes,
or to its methods. That is, the non-local changes are described in the documentation of
the prototype or the method. They are made to fulfil it.

Inter-type member declarations of AspectJ may introduce fields and methods to
classes. The declarations are in an aspect file and the classes are in separate files without
being explicitly related to the aspect file. By looking to a class, there is no way of saying
6 An annotation attached to a method can intercept message passings to other methods of the same

prototype.
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who will change it. That is different in Cyan: fields and methods can only be added by
annotations in the prototype or in the project file. We know, by looking at the source
file, who can change it. A message passing in a prototype can be replaced by metaobjects
of other prototypes. But this replacement is local and it only fulfils the semantics of the
message passings.

AspectJ has an aspect language for defining aspects, pointcuts, advices, and inter-
type declarations. There is no such language in Cyan, metaprogramming is made either in
Java or in interpreted Cyan.

4.2 Metaprogramming Systems and their Problems

This subsection discusses how the other languages described in this thesis deal
with the problems presented in ??. For Cyan, this discussion has already been made in
section 1.4. Some languages have fewer problems because of their lack of power:

a) if a language uses class patters or generics for code generation, it cannot have
any of the problems. Usually, the language does have some problems because it
uses patterns or generics and some other mechanisms for code generation;

b) languages that support a single metaclass for each class cannot have the following
problems: WhoDidWhat, OrderMatters, InfiniteMetaLoop, and CircularDepen-
dency. These problems only exist if there are conflicts among metacode that
act on the same base code;

c) some of the problems are associated with compilation (WhoDependsOnWho,
Compiler-Interactions, and CircularDependency). Therefore, languages support-
ing runtime metaprogramming cannot have them;

d) some languages do not allow the addition of code although they permit the
interception of operations like object creation and message passing. Some
problems, such as MessWithOthers and OrderMatters, cannot occur in these
languages.

The problem’s description and a discussion on how they affect Cyan and other
languages follow. boldface is employed for the problem name and italics for a short
problem description.

MessWithOthers A metacode in a file changes another source file.

A non-local change to a file is an AST modification made by a metacode associated
with a different file. Non-local changes made by AST handling are allowed in languages
OJ, Groovy, Nermerle, and Xtend. Metaclasses of CLOS and OpenC++ can only change
the class they are associated with. BSJ supports a security mechanism that does not
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allow non-local changes. In Cyan, a metaobject can change an external file just to replace
a message passing with an expression. Therefore, the change is expected and problem
MessWithOthers does not happens.

In AspectJ, aspect language source files can change other files. They keep the
cross-cutting concerns of the program and, therefore, these changes are not only expected
as they are clearly specified using a static DSL language. This is not the case with regular
metaprogramming. The changes a metacode in one file can do in other file are decided at
metacode runtime. These changes are not clearly specified in the annotation that links the
source code to the metacode. Therefore, the developer cannot guess, by looking at the
source code, that an annotation will cause changes in another source file.

WhoDependsOnWho Metacode are not taken into account when the compiler builds the
dependency graph among source files.

Metacode associated with an OpenC++ class does not know other classes. In
all other languages supporting metaprogramming features, the compiler does not know
the dependencies caused by metacode. In Cyan, the compiler builds a table with entries
describing the dependency. For each file, there is a list of files it depends on. Each time a
metaobject associated with file X asks information on another file Y, the dependency of X
from Y is added to the table.

KnowsFriendsSecrets Metacode in one source file know private information of another
file.

Languages with limited metaprogramming powers do not allow a metacode asso-
ciated to a file to know private details of other files. With the exception of Cyan, more
powerfull languages, those that supply the complete AST to metacode, do not limit the
visibility of AST objects

Compiler-Interactions Metacode interact with compiler low-level structures.

Metaprogramming made with low-level mechanism, such as compiler plugins and
AST handling, strongly depend on internal compiler details. Therefore, all compiler-
interactions problems occur with languages with such characteristics. The MOP of language
OJ permits changes in the AST. However, the language supplies a simplified AST to the
metacode that prevents the Compiler-Interactions problem from occurring. Cyan addresses
this problem because metaobjects have access to restricted and read-only compiler data-
structures (including the AST).

WhoDidWhat The compiler does not link an inserted code to the metacode that made
the insertion.
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Only Cyan and Converge link the metacode and the changes they made in the base
program. Converge goes beyond Cyan because even bytecodes7 know their origin. Thus,
even runtime error messages can specify exactly the metacode that may have caused the
error. In Converge, two or more locations can be associated with an AST node, a feature
that is not supported by Cyan.

OrderMatters The order metacode is called inside a source file changes metacode behavior.

In languages that allow direct handling of the AST, a metacode views the modifi-
cations made by other metacode that run before it. Thus, changes in the calling order of
metacode change the view of each metacode. Some reasons that cause problem OrderMat-
ters in group MetaProg follow.

a) the textual order of annotations in a source file may matter. Changes in this
order may introduce compilation errors or changes in the semantics. The example
of field thrashFood of the previous subsection applies here. Another example
is exemplified using language Xtend. Active annotations of this language are
processed in the order they appear in the source code (a file). Thus, if the first
annotation of a file is @aaa, all annotations of this kind in the source file are
processed before any others.8 This can introduce errors:

@bbb class First { }
@aaa class Second { String log; }
@bbb @aaa class Third { }

Active annotation @aaa assumes that the annotated class has a field log.
Annotation @bbb introduces log to class Third and therefore there is no error
in this code because @bbb appears in line 1. Now suppose we add an annotation
@aaa to a class Zero.

1 @aaa class Zero { public String log; }
2 @bbb class First { }
3 @aaa class Second { public String log; }
4 @bbb @aaa class Third { }

This introduces an error in class Third because @aaa is activated before @bbb.
It will not find a field log;

b) in most languages of groups MetaProg and MOP, an annotation or metaclass in
one file may change a class in another file. Therefore, the order of the compilation
defines the semantic of the metaprogram, a very undesirable feature;

7 Intructions of the Converge Virtual Machine.
8 This information is in a discussion group, https://groups.google.com/forum/#!topic/xtend-lang/_-

RTAYBSTLMU, not in the Xtend manual.
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c) usually the AST can always be altered, it cannot be transformed into a read-only
AST in the last compilation phases. Therefore, checks made by a metacode can
be invalidated by changes made by other metacode later on.

There is a keyword, in AspectJ, for specifying the execution order of metacode.
Dependencies among metacode, fixing the calling order, may be declared in BSJ. A meta-
code with a #target label clause is executed before a metacode with a #depends label
clause. The metacode that runs later on can view the changes made by the previous
metacode.

Cyan addresses partially this problem. There are two cases in which the annotation
order do matter:

a) when metaobjects add code at the start of base methods. The order of the
annotations is the order of code insertion;

b) in phase semAn, metaobjects associated to annotations inside a method body
have different views of the method statements. If a metaobject associated to
annotation aaa comes before annotation bbb, the metaobject associated with the
latter knows all the types of expressions that come before itself. The metaobject
associated with annotation aaa does not know the types of expressions between
itself and bbb.

InfiniteMetaLoop Metacode can generate metacode that, in its turn, generate metacode,
and so on.

This problem happens when metacode generates code (with annotations) that is
processed in the same compilation phase. This occurs in CLOS,9 OpenC++, and every
sufficiently powerful metaprogramming. In Cyan, annotations inside code generated by
metaobjects are only active in the next compilation phase. Therefore, Cyan addresses this
problem.

Nontermination Metacode may not finish its computation.

The termination of code generation is ensured by languages SafeGen, MorphJ, and
Meta-traits (SERVETTO; ZUCCA, 2013). No language, but Cyan, that allow unrestriced
metacode guarantees the termination of metacode execution. This is not the case of
languages that generate code using patterns and a few kinds of statements. Cyan addresses
this problem by using threads and time limits. If a metaobject method takes longer than
a fixed time limit, the compiler is finished.

Nondeterminism Metacode is nondeterministic.
9 Although metaclasses act at runtime, the generated code is also processed at runtime and, therefore,

an infinite loop may occur.
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Nondeterminism occurs in all metaprogramming systems that allow any contact
with the external world (files, system information such as time, Internet, etc). This problem
does not occurs in some systems that use patterns for code generation, as C++ templates.

In language Genoupe (DRAHEIM; LUTTEROTH; WEBER, 2005b), two identical
expressions in a metacode always return the same value because the language uses
memoization to evaluate the expressions. However, nondeterminism may occurs in Genoupe
because metacode can access the external word. Thus, the same metacode may generate
two different base code in two different compilations.

NoGeneratedCodeGuarantees Metacode may generate defective code.

Languages Genoupe, SafeGen, CTR, and MorphJ offer, at compile-time, a high
degree of safety in the generated code. They are all pattern-based. The Java extension
DynJava (OIWA; MASUHARA; YONEZAWA, 2001) supports special quasi-quotes and
rules that assure that runtime generated code is type-safe. Quasi-quoted code in this
language keep information on the context in which they should be used. The context
includes the local variables, fields and methods, the base class name, and so on. Therefore,
when a code X is spliced into a quasi-quoted code Y, the compiler is able to discover if the
context expected by X is supplied by Y. The Cyan language does not offer any guarantees
in relation to the generated code. If the code is not correct according to the language,
the compiler will issue an error. If the code is correct but it is not what was intended, a
metaobject can check it in phase afterSemAn.

NoContracts The contract between the metacode and the base code is explicitly stated.

In SafeGen, predicates are used for restricting the arguments to metacode. As an
example, a metacode may accept, as the first argument, only a non-abstract class. The
pattern in a CTR transformer works as a contract between meta and base code because
it limits the classes the transformer can match. The best solution to the NoContracts
problem is that of Model MTJ. In it, a trait function has requires and provides clauses.
The former imposes constraints on real arguments and the latter supplies the code added
to a class. Cyan does not addresses this problem, although any metaobject can demand a
context from its annotation environment and check its generated code. There is even a
metaobject with these goals: concept of section 2.2.

CircularDependency Metacode may depend on information produce or changed by other
metacode. This dependency relation may be circular.

This problem occurs in languages that support metaprogramming features and
compiler plugins. BSJ solves partially the problem because the metacode execution order
may be specified. There are cases, like that of example with metaobject addFieldInfo in
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Listing 4.1 – Factorial function using C++ templates
1 # include <iostream >
2 # include <cstdlib >
3
4 template < unsigned n>
5 struct factorial {
6 static const unsigned value = n*factorial <n -1 >:: value;
7 };
8
9 template <>

10 struct factorial <0> {
11 static const unsigned value = 1;
12 };
13
14 int main () {
15 std :: cout << factorial <5 >:: value;
16 }

subsection 1.2.3, in which there is no correct execution order. In Cyan, this metaobject
can be correctly implemented because of algorithm FixMeta of Listing 1.5. However, there
are still some cases in which there is no solution at all and cases in which the solution
would be demand the extension of FixMeta to handle several prototypes at once.

4.3 Comparison of Concept Features for Generic Programming

A concept is a predicate on a generic parameter, which includes restrictions on its
syntax and semantics. If the parameter is a type, the common case, a concept represents a
family of types. For example, a concept may represent all types that have a method < that
compares two objects. The syntax restriction of this concept would be the need of the <
method in the type. The semantic restriction would be that this method is transitive: if
a < b and b < c, then a < c. Usually, semantic restrictions can only be enforced through
tests. A type that obeys a concept is said to models the concept.

Concepts arose in the C++ Standard Template Library (STL) (PLAUGER et al.,
2000), an old and largely-used library of generic algoritms and classes. Since C++ does
not support concepts, these are described using comments, test files, and some compile-
time language features. C++ templates can be used for compile-time programming
(VELDHUIZEN, 2003), a non-planned characteristic that was discovered after the design
of templates. As an example, a factorial function is implemented in Listing 4.1 using a
struct template. The expression n-1 and the multiplication of line 6 are calculated at
compile-time. A literal, 0, is parameter to the template in line 10. The calculated values
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Listing 4.2 – Use of concepts in C++
1 # include <iostream >
2 # include <cstdlib >
3 # include <type_traits >
4
5 template < typename T>
6 void printFirst (T elem) {
7 static_assert ( std ::rank <T >:: value == 1,
8 " Parameter must be an array of rank 1" );
9 std :: cout << elem [0] << "\n";

10 }
11
12
13 int main ()
14 {
15 int array1 [] = { 1, 2, 3 };
16 int array2 [][3] = { { 4, 5, 6 }, { 7, 8, 9 } };
17 printFirst <int []>( array1 );
18 // error if uncommented
19 //printFirst <int [][3] >( array2 );
20 }

are always as struct or class fields, as value in this case.

Using compile-time programming, some basic functions and values on types are
available. Listing 4.2 is a C++ source code that uses header type_traits.10 In lines
7-8, static_assert checks, at compile-time, if its first argument is true, outputting the
second argument, a string, if not. In this example, this function is used to implement
concepts. It restricts the parameter of printFirst to be arrays of rank 1, which is tested
by the first argument to static_assert. We sketch how this works without giving all the
details — they are many.

value is a field of struct rank of Listing 4.3, inherited from struct integral_constant
(not shown). integral_constant is a struct with a type parameter and a literal value
that can be retrieved from field value. The following expression is true.

std::integral_constant<int, 2>::value == 2
In lines 8 and 14, there is a sum of struct field value with one. This is made at compile-time.
The three definitions of rank work like the recursive definitions of a function in a functional
language:

f(0) = 0
f(1) = 1

10 https://en.cppreference.com/w/cpp/header/type_traits
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Listing 4.3 – rank “function” in C++
1 template <class T>
2 struct rank : public
3 std :: integral_constant <std :: size_t , 0> {};
4
5 template <class T>
6 struct rank <T[]> : public
7 std :: integral_constant <std :: size_t ,
8 rank <T >:: value + 1> {
9 };

10
11 template <class T, std :: size_t N>
12 struct rank <T[N]> : public
13 std :: integral_constant <std :: size_t ,
14 rank <T >:: value + 1> {
15 };

f(n+1) = f(n) + 1

In an instantiation std::rank<int [][10]>, the C++ compiler finds a match of the type
int [][10] with the third definition, making rank inherit from integral_constant with
parameters size_t and rank<int[]> + 1. Type rank<int[]> matches with the second
rank definition and so on. At the end, std::rank<int [][10]>::value has value 2.

Concepts as a language feature for C++ were proposed by Stroustrup (STROUS-
TRUP, 2003). However, they have not been adopted yet, although they may be in C++
20 (SMITH, 2018). To explain C++ concepts, we use the definitions and examples from
Gregor et al. (GREGOR et al., 2006). Function min that follows demands that its type
parameter supports operation < through a where declaration that refers to a concept
declaration.

concept LessThanComparable < typename T> {
bool operator <(T x, T y);

}

template < typename T>
where LessThanComparable <T>
const T& min(const T& x, const T& y) {

return x < y? x : y;
}

Only types that model the concept can be used with function min. Concepts, as a language
feature, demand a concept language defining what is valid in a concept declaration and
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after a where keyword.

A type that does not have a < method may be adapted to use min using a concept
map. In the following example, a function < is defined in a concept map for adapting class
complex to the concept LessThanComparable.

concept_map LessThanComparable <complex > {
bool operator < ( complex a, complex b) {

return abs(a) < abs(b);
};

}

int f( complex a, dcomplex b) {
complex & x = min(a, b);
// ...

}

Languages Java (GOSLING et al., 2014), C♯ (C#. . . , 2020), Rust (Rust. . . ,
2018), Swift (SWIFT, 2022), and Kotlin (JETBRAINS, 2022) support constrains in
types of generic classes based on other types, the called “constraints-are-types” approach
(BELYAKOVA, 2016). As an example, class TestVisitor in Java restricts its parameter
T to be a subtype of ast.ASTNode.

class TestVisitor<T extends ast.ASTNode > {
...

}

This approach does not offer all functionalities of a concept language. The only valid
predicates on types are those that can be expressed as subtype relationships. The keyword
extends in the example means “subtype”. If ast.ASTNode is an interface, the real parameter
T may be an interface that inherits from ast.ASTNode or a class that implements this
interface.

Concepts are implemented as language mechanisms in some versions of C++
(SMITH, 2018) (VOUFO; ZALEWSKI; LUMSDAINE, 2011), Genus (ZHANG et al.,
2015), G (SIEK; LUMSDAINE, 2011), Magnolia (BAGGE, 2009), and JavaGI (WEHR;
LäMMEL; THIEMANN, 2007). Genus and JavaGI are Java extensions, G and Magnolia
are based on C++.

Sutton and Stroustrup (SUTTON; STROUSTRUP, 2011) consider concepts as
restrictions plus axioms, which are semantic specifications of types. An example follows in
which concept Ordered demands that its parameter T obeys many axioms, among them
Greater.
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concept Ordered < Regular T> {
requires constraint Less <T>;
requires axiom Strict_total_order <less <T>, T>;
requires axiom Greater <T>;
requires axiom Less_equal <T>;
requires axiom Greater_equal <T>;

}

template < typename T>
axiom Greater (T x, T y) {

(x>y) == (y<x);
}
// other axioms and constraints elided

Axioms are difficult or impossible to check statically.11 But the compiler can generate test
cases based on them, as demonstrated by Bagge, David, and Haveraaen (BAGGE; DAVID;
HAVERAAEN, 2009).

Language support for generic programming may be offered by many features such as
concepts, axioms, interface-based restrictions (as in Java), and other language mechanisms
(as in C++ without concepts). The support may be minimal, as in Java and C♯, to almost
complete, as in the languages G (SIEK; LUMSDAINE, 2011) and Magnolia (BAGGE,
2009). Belyakova (BELYAKOVA, 2016) compares the support of some desired properties
by twelve languages. Among these properties, we can cite:

a) may a type retroactively obey the restrictions of a concept? That demands
adaptation of the type to the concept without its source code;

b) can two or more types be used in the same concept? For example, may a concept
demand that two types have the same supertype?

c) can concepts be refined? That is, is there some way of concept inheritance?

d) restrictions on associated types. For example, can we restrict the return value
of a method of a type parameter?

e) are concept maps supported? A type models a concept if it obeys its restrictions.
How it obeys the restrictions is called a model.12 A simple example is a concept
that demands that its type has the comparison operator <. Type String may

11 In the general case, they are impossible to check because of the Rice theorem (ODIFREDDI, 1992).
This theorem asserts that, apart from trivial properties, runtime properties are uncomputable.

12 The word “model” is used in two meanings in the literature. A type models a concept if it obeys
its restrictions. And a model is the way a type obeys the restrictions. Some languages have language
features that allow the adaptation of a type to a concept.
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model this concept in two ways: < may be the regular string comparison operator
or it may compare the sizes of the two strings.

To these properties, we add modular type checking. A language supports modular type
checking of a generic element (class, interface, function or other abstraction) if it can be
type checked before any instantiation. That is, if the generic element can be type checked
only with the information of the concept restrictions. Languages that do not duplicate
the code of the generic element, like Java, Scala, and G (SIEK; LUMSDAINE, 2011) have
this property, which is difficult to implement in languages that duplicate the code of the
generic element, like C++ and Cyan.

Metaobject concept in Cyan supports many of properties of concepts of other
languages:

a) any number of types can be compared in a single declaration.

T subprototype R,
T is typeof(R get)

b) some types associated with a generic parameter can be restricted:

typeof(T at: Int) subprototype Person

The compile-time function typeof return the type of an expression. It can be
used in any statement of metaobject concept. However, it is not possible yet
to retrieve the type of a method parameter. We cannot demand, for example,
that the parameter of method at: is Int;

c) axioms may be specified. From them tests are automatically generated;

d) restrictions and axioms can be put in a file and reused. This is the Cyan way
of concept refinement. In the following example, file arithmetic.concept of
package cyan.lang is being imported and used with type T.

@concept (test ){*
cyan.lang. arithmetic (T),
cyan.lang. comparison (T)

*}
object MyMatrix <T> ... end

Language Cyan supports concepts using metaobjects, which is a radically different
approach from all other languages we know. Therefore, Cyan concepts are not a language
feature, which has many benefits. Anyone can copy, paste, and change the metaobject class
of concept. A new restriction may be implemented in hours or even minutes. Different
concept metaobjects may coexist, they are imported like any other library resource. Such
flexibility is impossible with language-supported concepts.
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For each restriction, a specific error message may be given after it:

@concept (test ){*
cyan.lang. arithmetic (T),

"T should have the arithmetic methods "
cyan.lang. comparison (T)

*}
object MyMatrix <T> ... end

When compared with concepts of equivalent power, as those of G (SIEK; LUMS-
DAINE, 2011) and Magnolia (BAGGE, 2009), metaobject concept is simpler. The metaob-
ject class and the helper classes were implemented in only 2000 lines of code.

A future work will be to eliminate the concept language of metaobject concept.
In its place, Cyan itself will be used, which will be interpreted by the same interpreter
used in metaobject action_afterResTypes_semAn (section 2.3). The self object would
belong to a Java class with methods corresponding to the statements of the concept
language. Hence, there would be a method has: because there is a statement has in the
current concept language. In the example that follows, besides has:, we use a method
call:1 errorMessage:1 to run statements from a file.

@concept (test ){*
// this is a message send to self

call: "cyan.lang. arithmetic (T)"
errorMessage : "T should have the arithmetic method";

// this also is a message send to self
has: T methods : [

"func unit -> T",
"func * T -> T",
"func inverse -> T" ];

// this is regular Cyan code
for elem in [ "red", "green", "blue" ] {

has: R methods : [
"func " ++ elem ++ " -> Int" ]

}
*}
object MyMatrix <T> ... end

Another future work is to design a DSL for code and project management. Metaob-
jects whose annotations use this DSL could do the checks cited in the final of section 2.3,
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page 92. Any checks can be made with Myan or interpreted Cyan, but a DSL just for that
could make the job easier.

4.4 Comparison of Other Metaobject Kinds

In this section, we compare the metaobject kinds described in section 1.3 with
other languages and systems.

4.4.1 User-defined Number and String Literals

A literal number ending with an identifier, like 101bin, and a literal string prefixed
by an identifier, as r"a*b", are considered annotations in Cyan. Their metaobjects have
most of the power of regular metaobjects with a few restrictions. They cannot do checkings
after phase semAn for example. The new version of C++ (STROUSTRUP, 2013) supports
user-defined literals of four kinds: integer, floating-point, string, and character literals. A
suffix i may appear after a double number if a literal operator is defined:

// imaginary literal

constexpr complex <double > operator "" i(long double d)
{
return {0,d}; // complex is a literal type

}

Then 3.1415i is replaced by an object of complex<double>. That would be made at
runtime but in this case the function is marked as constexpr, which enables evaluation
at compile-time. User-defined string and character literals take a suffix: "a*b"regex and
’f’_runic. Cyan does not support user-defined character literals.

Non-standard string literals in language Julia (JULIA, 2018) are processed by a
macro definition. The literal r"a*b" is passed as parameter, without the r, to the macro
that follows. The macro name is the prefix name followed by _str.

macro r_str(p)
Regex(p)

end

The return value of the macro is Regex(p). Then, r"a*b" is replaced by Regex("a*b").

Both C++ and Julia user-defined literal strings work well in practice. Usually one
does not need metaobject power to process them, which is offered by Cyan.
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4.4.2 Pluggable Types

Annotations attached to types in Cyan (Char@letter) were based on the Checker
Framework for Java (THE. . . , 2018) (PAPI et al., 2008). The original idea was called
pluggable types and it was proposed by Bracha (BRACHA, 2004). Many of the annotations
of the Checker Framework, described in (THE. . . , 2018), are available in the Cyan libraries.
Some are not needed, as @NonNull, for types whose variables cannot hold the null value.
The Checker Framework makes use of flow information for checkings and it may introduce,
automatically, annotations in the code. In the next example, it issues a warning in the
second line because the type of s is considered as annotated with @NonNull and, therefore,
the test is redundant.

String s = "I am something ";
if ( s != null ) { k = 1; }

In Cyan, annotations are never automatically introduced by metaobjects like in this
example.

Class WrEnv is the type of several parameters of methods of Java interfaces of the
MOP library. If not passed as paramter, an object of it can be retrieved by a method
getEnv of several of the compiler interfaces (like ICompiler_afterResTypes). Class WrEnv
defines a method

WrLocalVarInfo getLocalVariableInfo(
WrStatementLocalVariableDec varDec)

that returns an object with information on a local variable at a given program point. If
the variable is initialized only with literals, all of them can be retrieved.

var Int k;
if a < b {

k = 0
}
else {

k = 1
}
@checkVar

Metaobject checkVar knows, through method getLocalVariableInfo, that k may hold
values 0 and 1. It is also possible to discover if an expression was used to initialize the
variable. Other kinds of flow information are not available yet.

JavaCOP (MARKSTRUM et al., 2010) (ANDREAE et al., 2006) is a framework
for pluggable type system in Java. It features a declarative language for constraints and
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Listing 4.4 – Rule checkNonNull in JavaCOP
1 rule checkNonNull (Assign a) {
2 where ( requiresNonNull (a.lhs) ) {
3 require ( definitelyNotNull (a.rhs )):
4 error (a," Possible null assignment "
5 + " to @NonNull ");
6 }
7 }

an API for user-defined flow analyses. The declarative code (ANDREAE et al., 2006) of a
rule checkNonNull is in Listing 4.4.

This rule is checked against all AST nodes of a program whose type is Assign, which
represents assignments. It uses two predicates: requiresNonNull and definitelyNotNull.
The first is true if its argument has a type with annotation @NonNull. In the example, the
argument is the left-hand side (lhs) of the assignment. For short, rule checkNonNull is
only applied to assignments (Assign is the parameter type) whose left-hand side has a
type annotated with @NonNull. The second predicate is true if the argument can never be
null. Its real argument in the example is the right-hand side of the assignment (rhs). If
the boolean expression of require is false, an error is issued.

Pluggable types in Cyan are made by subclassing a Java class of the MOP library
and overriding some methods. No other help is offered to the metaprogrammer than Java
itself. JavaCOP, on the other side, offers a sophisticated declarative language with pattern
matching and some high-level statements. Users may define their own dataflow analysis
algorithms to be used in JavaCOP (an interface should be implemented).

The Cyan support for pluggable types has two advantages over the Checker Frame-
work and JavaCOP. First, a DSL may be attached to the annotation:

var Int@restrictTo{* self >= 100 && self prime *} n;
// runtime error now
// a compile-time error in a near future

n = 11;

Second, the annotations are associated with metaobjects with all the power they offer.
They can create auxiliary methods and fields, create new prototypes, add checks, etc.
However, in Cyan there is no declarative language and no advanced dataflow information.

Language Python is dynamically typed but there is a static type checker for it
that acts in the whole program, called Mypy13. Annotations are not necessary. This is
unlile the Cyan pluggable types, which have a local effect. Only variables, parameters,
13 http://mypy-lang.org/
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and expressions of the annotatype type are checked by the metaobject associated with the
annotation. An interesting companion tool to Mypy is PyAnnotate14 that inserts types in
Python code based on the runtime type of parameters and method return values.

4.4.3 Language-Oriented Programming

Language-oriented programming (LOP) (DMITRIEV, 2004) is a programming
paradigm first proposed by Ward (WARD, 1995). In this paradigm, a program is divided
into domains and each one is programmed in its own language, many of which may be
Domain Specific Languages (DSLs). In our opinion, the language with better support for
LOP is Racket (FELLEISEN et al., 2018) (FELLEISEN et al., 2015). At the start of a
source file, one may write

#lang racket
to specify that the language used is Racket. One can use another identifier after #lang to
specify another language, defined by the language syntax extension system. A language
may be created by adding or removing features from an existing language (defined in
Racket, of course). The meaning of some constructs, such as function application, may be
redefined too. This is tantamount to intercept method calls in Cyan or function calls in
CLOS.

Compared with Cyan, Racket offers much more tools for LOP. However, it should
be noted that:

a) the language specification in Racket, with #lang, is equivalent of using a file in
directory DSL, described in subsection 1.3.2. This directory should contain files
whose extensions are metaobject names. The metaobject class is responsible
for compiling the file and generating from it one or more Cyan prototypes, as
described in subsection 1.3.2. The Cyan compiler may be used to implement
a restricted version of Cyan or even an extension of it. Unlike Racket, the
implementation of non-trivial Cyan dialects would be very difficult;

b) external tools can be used for implementing DSLs.

Language Converge (TRATT, 2008) permits the embedding of DSL blocks with
the following syntax.

$<<compilerFunc >>
dslCode

dslCode is the code of a DSL that is implemented by function compilerFunc. Since
Converge is a Python-based language, dslCode should be indented in relation to $<<.
Function compilerFunc is called at compile-time with the dslCode as parameter, a string,
14 https://github.com/dropbox/pyannotate
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and returns an AST object that replaces the DSL block. A Converge Parser Kit (CPK) is
supplied for building parsers from grammars. An AST object is also built during parsing.
Function compilerFunc may use the CPK for compiling the DSL code and quotations
for building the AST object that is returned. The grammar given to the CPK can use a
rule representing a Converge expression, which makes it easy to integrate the DSL with
regular Converge code.

The equivalent of Converge DSL block in Cyan is user-defined string literals and
attached DSL code in “@” annotations. In the first case, there is no help from the MOP
for generating Cyan code from the DSL code (the string). In the second case, the Cyan
compiler can be used for compiling the DSL code. The compiler has methods for compiling
Cyan expressions, statements, types, and literals. The Converge Parser Kit can compile
only Converge expressions. In Cyan, the AST produced from the DSL code may undergo
semantic analysis as a regular Cyan code — this is the default behavior that may be
turned off. Cyan does not offer any other tool for DSL parsing than the Cyan compiler.
Of course, an external tool can always be used.

An important difference between Cyan and Converge is that DSLs are implemented
in Cyan by metaobject annotations. Therefore, a metaobject is associated with each DSL
code and it has all the power of it. Hence, the metaobject may create new prototypes
and add code to the program. It has access to all information that the compiler makes
available.

According to Erdweg et al. (ERDWEG et al., 2015), Language Workbenches (LW)
are environments for simplifying the creation and use of computer languages (which
include DSLs). An LW allows the definition of a language and supporting tools such as
IDEs, compilers, and debuggers. One example of Language Workbench is Spoofax (KATS;
VISSER, 2010) (VOELTER et al., 2013) which uses SDF (HEERING et al., 1989) for
defining the syntax of the language using context-free grammars. Spoofax makes use
of Stratego (VISSER, 2001) for transforming the AST, which includes generating code.
Spoofax is able to build not only a whole compiler from specifications but also the language
IDE.

SugarJ (ERDWEG et al., 2011) is a Java-based language that allows syntax
extensions and, therefore, DSL embedding. It also uses SDF and Stratego for grammar
specifications and transformations. New syntax can be added to a source file by importing
a library. The language allows non-trivial syntax to be added such as tuples delimited
by parentheses.15 SugarJ does not support a MOP as Cyan. Its syntax extension feature
is so complete that SugarJ is even considered a Language Workbench by Erdweg et al.
(ERDWEG et al., 2015).

15 It is non-trivial because there is no keyword in the start of the construction as a Cyan macro.
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Cyan offers only the basic support for implementing DSLs, very far away from the
features offered by Language Workbenches. The two can only be lightly compared because
their goals are very different. The only positive side of Cyan is that DSLs are integrated
with the language, supported by metaobjects.

Polyglot (NYSTROM; CLARKSON; MYERS, 2003) and ExtendJ16 (formerly
JastAddJ) (EKMAN; HEDIN, 2007) are examples of extensible compilers for Java. Both
can be used to extend the Java syntax, including the support for DSLs. There is no such
thing in Cyan, Saci is not extensible, grammar rules cannot be added to the language.
Metaobjects in Cyan can add new checks in addition to those made by the compiler, they
cannot prevent the compiler from doing checks or generating code.

4.4.4 Codegs

Codegs are metaobjects that, at editing time, may activate a Graphical User
Interface (GUI), as described in subsection 1.3.7. They are not directly related to any
language construct that we know of but there are some related works.

Codea (CODEA, 2018) is an IOs App for developing games in Lua (IERUSAL-
IMSCHY, 2013) that have at least one feature that works like Codeg color, described
in subsection 1.3.7. According to the Codea site, images and sounds can also be chosen
visually. The documentation on Codea does not claim that these features can be user-made
as Cyan Codegs. And they are not part of the Lua language, they are an editor feature.

Language injection (IDEA, 2018) of the IntelliJ IDEA IDE of Jetbrains brings
code assistance for languages inside string literals. The following Java example declares a
variable whose type is annotated with @Language. During editing time, the IDE supplies
syntax and error highlighting and code completion. A code may be injected using IDE
menus too.

@Language ("HTML")
String meg = "<dog > Meg </dog >";

The IDE assumes that the literal string is in HTML because of the annotation parameter.
The literal can be also edited in a separate fragment editor.

Method parameters may be annotated with @Language. When typing, in the editor,
a method call with a literal string as argument, the IDE offers help to type in the string.
Instead of using an annotation, the IDE menus can be used to associate a literal or a
parameter with a language. IntelliJ IDEA supports the injection of several languages
through plugins. One of them is a regular expression language named “RegExp”. In a

16 https://extendj.org/



4.4. Comparison of Other Metaobject Kinds 163

Figure 13 – Graphical interface of Codeg re for regular expressions

fragment editor, the regular expression may be typed and matched against a sample string.
An annotation can also work as a pluggable type:17

@Pattern ("[a-zA -Z]+")
public String getID () {

return "no match because of spaces";
}

The editor would sign an error because the return string does not match the pattern.

Cyan Codegs link annotations in the Cyan code with GUI for gathering user data.
Language injections of IntelliJ IDEA link annotations to IDE help for typing in data. And
some injections, as for regular expressions, can test the data. Codeg re (ROCHA, 2017) is
very similar to the language “RegExp” of IntelliJ IDEA. Figure 13 shows the window of
this Codeg. The regular expression is tested against five strings and the user can test if it
matches the ones it should and does not match the ones it should not.

Language injections of IntelliJ IDEA are activated by IDE plugins and they cannot
generate code or do checks in the program, their help is in editing time only. Codegs are
made available at editing time by importing a library and they can generate code and
do checks in the program. Codegs have the full power of metaobjects. On the other side,
Codegs do not offer, by themselves, any editor support like language injections.

Codegs are also related to other IDE tools that gather data visually, as tools for
generating GUI themselves (WINDOWBUILDER, 2018). A Codeg, yet to be made, could
generate code that builds a GUI. Some of the Codegs made by Cassulino (SOUZA, 2017)
could be supplied as IDE plugins: batch (execute DOS commands and show the result),
17 This example was taken from https://blog.jetbrains.com/idea/2007/01/custom-languages-and-regular-

expressions-in-intellij-idea/
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cmd (a command prompt), foundFile (select a disk file), and sound (record and play
sound messages). However, Codegs have an advantage over plugins: there may be many
different occurrences of Codeg annotations in the same or in different source file, each one
keeping different data.

Codegs are a not-to-distant relative of visual programming languages (ZHANG,
2007) (BURNETT, 1999), which allow programming using visual means. Codegs are more
limited because they just gather data. But Codegs could be built for a visual language.
The generated code would be Cyan.

4.5 Future Works

Future works on the Cyan Metaobject Protocol can be grouped into two categories:
improvements and increments in the MOP itself and use of metaobjects in other research
areas.

several categories, each one composed by one or more Subsections. The first category
contains works that demand changes in the compilation process, either to make it faster
or to allow separate compilation. Category two contains works whose goals are to make
metaprogramming easier and to allow more powerful metaobjects. The third category
contains future works on new metaobjects and algorithms.

4.5.1 Reduce the Number of Compilations

Currently, the Cyan compiler does ten compilation phases: parsing (1), resTypes (1),
afterResTypes (1), parsing (2), afterResTypes (2), semAn (1), parsing (3), afterResTypes
(3), semAn (2), code generation. Metaobjects act only in phases labelled (1). The repetition
of phases is caused by the addition of code either by metaobjects or by the compiler.
Whenever code is added, compiler has to start from parsing again. Since the compiler
always adds code in phase afterResTypes and semAn18 the code has always to be parsed
again after phases afterSemAn and semAn.

A future goal is to make one parsing and one semantic analysis (phases resTypes
and semAn). Code, as strings, produced by metaobjects are currently added to the source
code in memory, which should be parsed again. Our goal is to parse the code to be inserted
producing AST objects. Then, these objects would be inserted in the existing AST.

18 At least, the compiler adds method prototype for every prototype and an inner object for each
anonymous function. Inner objects are prototypes declared inside another prototype. They are not
allowed in Cyan but are legal after phase semAn if added by the compiler.
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4.5.2 Add the Option of Changing the Original Code

Metaobjects may add code as texts to prototypes and create new prototypes but
all the changes are made in memory only. Programmers should have the option of making
the changes permanent. Therefore, metaobject insertCode (section 2.3), for example,
could produce code that is incorporated in the source file. The choice for temporary or
permanent changes could be made either using options in annotations or a special syntax,
like preceding the annotation name by @@ instead of @.

Refactorings (OPDYKE, 1992) are code transformations that do not change its
semantics. For example, the renaming of a variable, method, or field.19 The goal is to
improve legibility and maintainability of software.

Refactorings are usually implemented by tools such as IDEs but they could also be
specified by a metaobject refactor in Cyan. The text attached to the annotations of this
metaobject would be code of a yet-to-be-made refactoring language, a DSL. This DSL can
be Cyan itself with some refactoring methods in object self. The example exemplifies the
idea. Note that it demands changes in the MOP because currently it does not allow to
change prototype names.

@refactor{*
// rename ’length’ to ’size’

rename: MyArray, "func length -> Int",
"func size -> Int";

// move ’size’ from MyArray to MyCollection
moveFrom: MyArray

to: MyCollection
what: "func size -> Int";

*}

4.5.3 Research Works using the Cyan MOP

The Cyan Metaobject Protocol can originate new research or be employed in works
of related research areas. This subsection describes some of the possibilities. There are a
myriad of them since metaprogramming can be applied in every Computer Science field.

4.5.3.1 Support Ownership

Language Rust (KLABNIK; NICHOLS, 2022) is based on the idea of ownership,
whose rules are:

a) each value is owned by a variable;
19 The semantics may change if reflection is used to call the method, access the field, or in a dynamically-

typed language. We ignore these cases.
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b) each value has only one owner;

c) the value can be disposed of by the runtime system when the owner goes out of
scope.

Ownership applies to everything in Rust: memory management (no traditional garbage
collector), files (closed when the owner goes out of scope), sockets, etc.

Ownership may be supported in Cyan either by the creation of a new Java in-
terface for the Cyan MOP or by the addition of new methods to the Java interface
IActionAttachedType_semAn. This interface supports annotations attached to types as
Char@letter. In the example that follows, file f would be automatically closed, at runtime,
at the end of the execution of the anonymous function.

var fileText = "";
{

var f = InTextFile("readThis.txt");
cast s = f readFile {

fileText = s
}

} eval;

An annotation @owner(close) would be attached to prototype InTextFile. An alternative
would be annotate variable f. A kind of ownership, that of anonymous function, is already
described in the Cyan manual as future work. This feature allows efficient implementation
of functions but it was dropped because the Java Virtual Machine cannot support it.

The implementation of Rust ownership in Cyan is a promising topic of research
because of its wide-scale impact on software construction. It makes programming easy
because the finalization of resources is automatic. A much bolder project would be add to
Cyan the concurrency features of Pony (Pony. . . , 2019) (CLEBSCH et al., 2017). This
language uses the actor model and it is of a much higher-level than Rust.

4.5.3.2 Adapt Features of the Cyan MOP to Runtime Metaprogramming

The Cyan MOP addresses total or partially many problems that also occur with
runtime metaprogramming: MessWithOthers, WhoDependsOnWhol, KnowsFriendsSecrets,
WhoDidWhat, OrderMatters, InfiniteMetaLoop, Nontermination, and CircularDependency.
The Cyan solutions could be adapted for runtime metaprogramming. The idea is to
concentrate all metaprogramming activities in execution points, called MetaPoints, in
which only metaprogramming is allowed. In each point, there could be a phase for creating
new prototypes and phases afterResType, semAn, and afterSemAn. The compiler would
be invoked, for each MetaPoints, to assure that the code produced and added to the base
program is free of compilation errors. There should be an entry point, a new main method
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that is called after each MetaPoint execution. This new main method would be responsible
for calling the newly added code. The system would resemble the Cyan MOP, although
executed at runtime. Therefore, it would support the same features as the Cyan MOP.

4.5.3.3 Software Restrictions

In page 92 of section 2.3, there is a list of checks that metaobjects can do. Metaob-
jects can enforce restrictions that usually are only in documentation. In a Software Project,
restrictions on methods, types (classes, prototypes, and interfaces), inheritance, and other
entities that compose a program are documented but not checked. Some restrictions and
requirements follow.

a) Whenever method equals of Java (or an equivalent method of other language)
is overridden, method hashCode should be overridden too. This is already
demanded by a metaobject in prototype Any of the Cyan package cyan.lang.

b) An inherited method annotated with @shouldBeExtended should be extended
in the subprototype. That is, the overridden subprototype method should call
the superprototype method.20

c) Metaobjects could limit which packages the prototypes of a package could import.
That is, package visibility could be limited by metaobjects. For example, access
to the file system could be limited to a single package of the program.

A future work would be to design a rule language based on the concept language (section 4.3)
for expressing restrictions and requirements of prototypes and packages.

4.5.3.4 Software Testing

Software testing benefits from tools for automatically producing code that calls other
code and checks the results. Code generation for testing can be made using metaobjects.
There are several possibilities for that, described next.

Metaobject callUnaryMethods take a regular expression as parameter and produces
code that calls all unary methods of the current prototype that matches the expression.
It is used for calling the unary methods of a prototype built for testing. Metaobject
insertCode produces code and it is ideal for generating large amounts of similar test
code. Metaobjects can be used for replacing some non-deterministic method calls by
deterministic ones. For example, calls to a method that returns the current time can be
replaced by an expression that is fixed. In this way, the expected test result becomes
deterministic and can be checked. Metaobjects can generate mock classes and methods,
entities that mimic the real ones, just for testing. Metaobject concept (section 2.2) is able

20 This has been implemented in Cyan.
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to generate test cases, called axioms, each time the prototype is compiled. This metaobject
can be used with any prototype, generic or not.

4.5.3.5 Pluggable Type Systems

New type systems, local to one declaration, are introduced in Cyan by using
annotations attached to types (subsection 1.3.6). This is a large area of research and a
booming one. Metaobjects can check new restrictions and even replace some language
features. One example is an annotation that, when attached to a method, allow that
method to be used only in the package of the prototype. Another example is to support a
limited form of structural typing. In a language that employs structural typing, a type is
a supertype of any other type that has at least the same methods it has, even when the
subtype does not inherits from the supertype. This could be supported, in a limited way,
by an annotation st attached to type Dyn, as shown in the example.

var Dyn@st{* func + Int -> Int } elem;
elem = 0; // ok, 0 has a + method

To elem can be assigned objects of any type that has a + method as described in the text
attached to annotation st. Hence, 0 can be assigned to elem because Int as a method
as described. The MOP should be improved to allow metaobject st to check whether
messages sent to elem match the methods of the annotation text.

4.5.3.6 Live Programming

Codeg cyan, subsection 1.3.7, offers a partial support for live programming (TANI-
MOTO, 2013) when mode “live” is on. The support is partial because interpreted Cyan
is used, not Cyan. Metaobject runPastCode is able to store objects of the last program
execution in files and use them during the current compilation. This is a planned feature
for Codeg cyan. Therefore, the programmer will be able to test methods of the current
prototype at editing time.

4.5.3.7 Programming Education

Every AST object has a visit method that implements the Visitor Design Pattern
(GAMMA et al., 1995). The AST objects of a program, package, prototype, and so on can
be visited given a top-level AST object. A metaobject for teaching programming may limit
the kinds of statements a program can have and demand some program characteristics.
A DSL would specify what is expected from the program (the maximum number of
prototypes, no import of certain packages, etc) and the restricions of the student code.
For example, it cannot use while or repeat-until. The metaobject annotation would be
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attached to the program, in the project file. The student project file would be replaced by
the teacher project file when correcting the assignments.

4.5.3.8 Distributed Programming

Ugliara, Vieira e Guimarães (UGLIARA; VIEIRA; GUIMARÃES, 2017) (UGLIARA;
VIEIRA; GUIMARãES, 2020) used Cyan metaobjects for software replication, automa-
tizing some repetitive tasks. Several copies of a root object are run in several computers.
The chalenge is to keep their state equal. For that, methods of the objects are annotated.
The associated metaobjects take care of replication by adding code to communicate to the
other objects, in different computers, that the state has changed and how it was changed.
This work has not finished. Non-determinism detection needs to be improved, for example.
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5 Conclusion

The main contributions of this thesis are the Cyan MOP and its features, a list of
problems with metaprogramming, and the explanation on how Cyan addresses most of
these problems. Some minor contributions are interesting metaobjects for some areas of
research, as concept and grammarMethod. The Metaobject Protocol of Cyan is composed
of Java classes and interfaces or Cyan prototypes and interfaces, the association of them
with the compilation phases, and the semantics of the interactions between the compiled
code (the program with annotations) and the metaprogram (the metaobject classes). Cyan
combines ideas of full MOPs like that of CLOS with more recent work on metaprogramming,
like that of Groovy. And it has some unique characteristics that make the building of
metaobjects easier and safer. Java or Cyan interfaces are associated with compilation
phases. Each phase plays a well-defined role in the protocol, as adding fields and methods
in phase afterResTypes or adding statements and expressions, in phase semAn. What is
known in each phase is clear to the programmer: no types and no structures are known
during parsing, information and types of everything outside method bodies are known
in phases afterResTypes and semAn, and the complete picture in phases semAn and
afterSemAn. The metaprogrammer knows for sure that some changes, as adding a field,
are not possible after some phases. This not only prevents non-determinism but also
simplifies the building of metaobject classes. In phase afterSemAn, metaobjects can do
checks without fearing any changes will be made by other metaobjects.

The metaprogram uses the Abstract Syntax Tree (AST) for reading only. Metaob-
jects change the program by return value of methods, which is required when a method of
an interface of the MOP library is overridden in a metaobject class or prototype. Other
forms of metaprogramming use AST handling for adding code, which is a decision made
by running code. In Cyan, the metaprogrammer decides in the design of a metaobject
class which code to add and where it is added. It is a static decision, before compile-time.
Other mechanisms employ a runtime decision with an explicit handling of the AST. In
Cyan, code is produced and combined using strings, which is much easier to do and
understand than changing the AST. Instead of modifying an AST object, the metaobject
may transform part of it in a string and use string concatenation to produce new code. A
method asString of every AST statement or expression returns it as a string. The text
of the source file of the current prototype is available too. Code produced by metaobject
methods is returned and therefore metaobjects are passive when changing the program, the
greater responsibility is on the compiler, a much better tested software than metaobjects.
There may be errors in the code generated by metaobjects. They are pointed out during
the next compilation. The errors are shown with the context, the prototype in which
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the code was inserted, and with a clear message. The compiler displays the name and
information on the annotation that produced the code with errors. This is possible because
the compiler tracks the changes made by metaobjects since it is the compiler itself that
does the changes. Other languages allow direct AST handling, which leaves no traces. In
our experience, code as strings and the context of errors make it easy to discover and
correct errors.

There is a security mechanism in the AST that prevents one prototype code from
changing another prototype code or even visiting non-visible methods. The view that a
metaobject of a prototype P has of external prototypes is exatly the same as the view of
P code. If a method of another prototype is not visible in P code, its AST object is not
visible to metaobjects in P either. That means the compilation order or prototypes, in a
future compiler, will not be dependent on the metaprogram.

Metaobjects act in multiple compilation phases by implementing multiple interfaces.
The job of each interface is clearly defined and so is the role of methods declared in
them. This is unlike metaprogramming in other languages in which a method of the
metaprogram can do everything. As a result, in Cyan, code of metaobject classes are
naturally modularized, each method plays a single role that is deduced from its name and
the interface declaring it. That makes the metaprogram easier to understand compared
with solutions in which a method does it all. A metaobject class may implement multiple
interfaces with few restrictions. Consequently, the metaobject may generate code and do
checks in several compilation phases, each task assigned to a different metaobject method.

Annotation parameters and attached DSL code permit parametrization of metaob-
jects. All kinds of Cyan literals are allowed as parameters to annotations. Thus, a metaobject
may play different roles according to the annotation parameters and DSL code. Metaobject
fields keep data on previous compilation phases since parsing, a largely-used feature. Hence,
past information, as the AST of the attached DSL code, flows into the current phase.
Metaobjects may generate annotations that will be activated later, which is also a form of
communication with future phases.

Metaobjects in the same prototype can communicate with each other, an ideal
feature for preventing conflicts. Information needed in metaobject methods may come
from their parameters or from the AST. The great majority of metaobjects built so far
only use the information given by parameters, which is fortunate because the parameters
are more stable than the AST. The AST used by the Cyan MOP was built based on the
language, not based on internal details of the compiler. Therefore the AST of the MOP
only changes with the language, which means it is very stable.

Metaobjects in Cyan can never bypass compiler checks. Metaobjects may produce
code and do additional checks, they can never prevent the compiler from doing its regular
work. Therefore, it is not possible for a metaobject to introduce any errors, including
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generating bad code, that will not be caught by the compiler. The AST of the MOP is
also read-only, which means it cannot be damaged by the metaprogram.

The Cyan Metaobject Protocol was not designed for radical changes in the program.
Metaobjects can only act locally, in the prototype in which they are. As a consequence, the
user or the programmer of a prototype is sure that its semantics is what the documentation
says, there is no surprise. The documentation is made by the prototype programmer and
incorporates any changes brought by its own metaobjects. It should not take into account
changes and checkings caused by external metaobjects (they cannot act in the prototype).
The emphasis of the Cyan MOP is on adding code and checks, not replace them. Therefore,
modifications that go against programmer choices are not allowed. For example, to change
the superprototype of a prototype, change the type of a variable or parameter, and remove
fields and methods. There is a fixed order in which metaobject methods are called in
each compilation phase: the textual order of their annotations in the code. Therefore,
the call order is deterministic and the programmer is responsible for choosing the order
to minimize conflicts. It should be noted that the design choice of local and predictable
changes contrasts with the main languages for metaprogramming cited in this thesis.

Annotations may take an attached text and therefore the language supports
embedded DSL code. If the DSL is close enough to language Cyan, its code can be parsed
by the Cyan compiler itself instead of a tailor-made parser. The parser produces AST
objects from the Cyan MOP, which are subject to semantic analysis made by the Cyan
compiler during phase semAn. This feature makes it easy to integrate DSLs and Cyan.
Metaobject concept, for example, uses types of the Cyan program which are checked by
the Cyan compiler.

Packages and the program have several special directories whose files are accessed,
in a standard way, using parameters passed to metaobject methods. These directories keep
Domain Specific Language code, tests, information on previous compilations, temporary
files, and code that is transformed into Cyan prototypes. Hence, metaobjects have a
standard way of sharing DSL code with other metaobjects and of producing program tests.

Annotations are allowed in the project file of a Cyan program. They can set global
compilation variables (accessible from metaobjects). These annotations can also be applied
to all prototypes of a package or the program. As a result, the metaobjects associated to
them can check the whole program, change prototypes, enforce code style and requirements,
and so on.

Metaobjects are used for testing the Cyan compiler itself. Annotations in test files
tell the compiler that it should issues some errors. If it does not, the compiler accuses
itself.

The Cyan Metaobject Protocol combines the powers of CLOS-like MOPs and
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metaprogramming features of new languages. Hence, operations like message passing
and field access are intercepted as in CLOS. Code can be inserted in several places and
the AST nodes can be visited (new metaprogramming languages). Many different kinds
of metaobjects, seven altogether, are united into a single concept. Although there are
restrictions, most kinds of metaobjects share the same power. That includes even macros
and literal numbers and strings, which are considered metaobjects. Editing time activities
and Graphical User Interfaces are integrated with metaprogramming through Codegs.
Tasks that are easier to do visually can be made at editing time and use the full power of
metaobjects at compile-time.

The greatest majority of characteristics of the Cyan MOP described in the previous
paragraphs are not found in metaprogramming systems of other languages. The combination
of them makes it easy to design and use metaobjects. In our personal experience, it is easy
to code a new metaobject class or prototype. Unless the annotation uses a sophisticated
DSL for the attached code, a metaobject class can be made and tested in a few hours,
most of them in less than one hour. This is because the Metaobject Protocol supplies
almost everything that is needed for metaprogramming and metaobject classes are small.
They usually have just one responsibility.

The addition of one more Java/Cyan interface to the MOP library, like those of
section 1.2, is easy too. That can be made in around one hour. Besides the creation of the
interface, the compiler has to be changed to recognize the interface and use the return
value of its methods. Since the infrastructure for that is already made, supporting a new
MOP library interface is mostly copy-and-paste programming. More interfaces were not
added to the MOP in order to keep it simple. In fact, the Metaobject Protocol underwent
several big changes until it stabilized in the current format. Most of the changes had the
goal of increasing the available information to metaobjects and of reducing the complexity
of the protocol.

The MOP of Cyan is fully functional, available for download at www.cyan-lang.org.
Around one hundred metaobject classes were built in a large variety of areas: supply
metadata, testing, code style, documentation, generate boilerplate code, support embed-
ded DSL code, code optimization, implement Design Patterns, and checking. Although
the metaobjects just touch the surface of each area, their existence evidences that the
Metaobject Protocol is easy to use and fits several domains. The major challenges for the
protocol were the constructions of the grammarMethod and concept metaobjects, the most
complex ones. The addition of similar functionalities, like concepts, to other languages
demands heavy changes in the compiler.

The Cyan compiler has around 61,000 of non-blank and non-commented lines of
code (SLOC-P). The library of metaobjects, mostly of package cyan.lang, has around
12,000 SLOC-P. The Cyan libraries have 5,700 SLOC-P and the compiler has been tested



175

with 13.000 SLOC-P. All code just cited was made by the thesis author. There are some
more Codegs implemented by students. The work on Cyan has not finished yet. There are
many missing features in the language and others have to be improved.

Programming languages are used in every area of Computer Science and therefore
language features matter in each of them. Metaprogramming brings the possibility of
adapting a language to an area and using DSLs for that domain. In particular, Cyan has
good metaprogramming features that interrelate with many research areas. They can be
used to adapt Cyan to new domains thus generating new research works.
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APPENDIX A – The Cyan Language

This chapter is an introduction to language Cyan, which is the language employed
in this thesis. The text discloses just enough for the understanding of the thesis. Fur-
ther information can be found in the language manual (GUIMARÃES, 2020) and at
www.cyan-lang.org. It is assumed that the reader knows at least one object-oriented
language. The knowledge of Java (GOSLING et al., 2014), C♯ (C#. . . , 2020), Smalltalk
(GOLDBERG; ROBSON, 1983), or a language with related characteristics makes this
chapter easier to understand.

A.1 Prototypes

Cyan is a statically typed object-oriented language based on prototypes. A prototype
is a literal object that plays a role similar to that of a class in languages based on classes
like C++ (STROUSTRUP, 2013), Java (GOSLING et al., 2014), or C♯ (C#. . . , 2020).
The following code declares a prototype Point between lines 3 and 16. In line 1 is the
mandatory declaration of which package the prototype belongs, similar to other languages
like Java. All prototypes of the main package must be in files of a “main” directory. Each
file must have a single prototype and the file name must be the name of the prototype
plus the “.cyan” extension.

1 package main
2

3 object Point
4 func init: Int x, Int y {
5 self.x = x;
6 self.y = y
7 }
8 func getX -> Int = x;
9 func getY -> Int { return y }

10 func x: Int x
11 y: Int y {
12 self.x = x;
13 self.y = y
14 }
15 var Int x, y
16 end
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Returning to the example, line 15 declares two fields or instance variables x and
y of type Int. These fields are called by various names in the literature, such as “data
members” and “attributes”. The keyword var before the declaration indicates that fields
can change their values through assignments. If var is not used or “let” is used, then the
field is read-only (more on this will be explained in a moment). The type Int is one of
the basic types. The others are Boolean, Char, Short, Long, Float, Double, and String.
With the exception of String, the basic types are the basic Java types with the first
letter capitalized. These types are prototypes in Cyan and are in the package “cyan.lang”
which is automatically imported by every source file in Cyan. A package can have a name
composed of identifiers separated by “.”. The package directory must be the package name
with “.” replaced by the operating system directory separator. So the package “cyan.lang”
is in the “cyan\lang” directory in Windows.

A source file or compilation unit is a file containing code, which is composed of a
package name, import statements, and a single prototype.

A constructor is declared between lines 4 and 7 with “func”. A constructor is
responsible for initializing the fields of a prototype. This constructor has two parameters,
x and y. self in lines 5 and 6 is a reference to the object being created. It is the equivalent
of this of Java, C♯ and C++. Smalltalk uses the same word for the same concept. Cyan
requires that every field is initialized in the declaration or in each of the constructors —
there are no default values for initializing variables like null for fields whose types are
classes. The example below shows how x and y could be initialized in their declarations.

package main

object Point
...
var Int x = 0;
var Int y = 0;

end

A field declared with let or without var is read-only. It can receive an expression
in its declaration and be initialized into a constructor. But it cannot be used on the
left side of an assignment in a regular method. A prototype may have more than one
constructor (see the rules for this in the language manual). In particular, a prototype may
declare two constructors with different number of parameters.

Lines 8 and 9 show the declaration of the methods getX and getY, which start
with the func keyword. The return type must be given after “->”. getX returns the
expression after “=”. getY uses the “return” command to return an expression. Both
forms are equivalent. A constructor is declared as any method although it must have
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the name init (if it has no parameters) or init: (with parameters). The Cyan compiler
removes the constructor from the generated code and adds a new method new (for init)
or new: (for init:). In the latter case, the method has exactly the same parameters as
the corresponding init: method. The new or new: method creates a prototype object
and executes the same instructions as the corresponding init or init: method. There
are numerous rules regarding constructors that will not be given here. The rules guarantee
that an object created with a constructor always has all fields initialized and that a field is
never used before it receives a value, as can happens with almost all other object-oriented
languages as Java (QI; MYERS, 2009).

The Point prototype declares a method between lines 10 and 14. This syntax is
based on that of Smalltalk. “x:” and “y:” are called “keywords” or “method keywords”,
which occasionally results in confusion with the usual meaning of this term, which is a
keyword of language (such as object and var). Each keyword in a method can have
zero or more parameters in Cyan (Smalltalk requires them to have exactly one). The
return type of this x:y: method was not specified. As a result, it is considered to be Nil.
Whenever the return type is Nil it is not necessary to have a return command. Methods
without parameters and without “:” after the identifier, such as getX, are called “unary
methods”. A method with a single keyword and without parameters, as getX:, is illegal.
The name of a method is composed of keyword names and number of parameters of each
keyword. Therefore, the name of the method between lines 10 and 14 is “x:1 y:1”.

A Point object can be created as in line 6 of the following example.

1 package main
2

3 object Program
4 func run {
5 var Point p;
6 p = Point new: 5, 7;
7 var n = p getX;
8 n println;
9 }

10 end

“Point new: 5, 7” is the sending of message “new: 5, 7” to the object Point.
This is also called message passing or message send. The numbers are the arguments of
the message and the selector of the message is “new:”. Note that Point plays the role of
type when declaring a variable or parameter (line 5 of this example) and object inside an
expression (line 6). This is the fundamental difference between Cyan and a class-based
language: a prototype is an object that already exists early in program execution. Therefore,
it can be used in expressions and be the target of messages. Cyan is statically typed,
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so the compiler checks whether Point has a new: method that accepts two integers as
parameters.

At line 7, message getX is sent to p. The result is assigned to n. Purposely, object-
oriented nomenclature confuses compilation and execution time in order to decrease the
number of names for the description of facts. For example, “message passing” or “message
send” is something that occurs only at runtime. But we say that, at line 7 of the example,
a static text, there is a message passing. In fact, there is none, but there will be one when
the code corresponding to this line is executed at runtime. We say that getX was sent to p.
But p is a variable that refers to a dynamically created (at runtime) object. Accordingly,
the correct phrase would be “the message getX will be sent, at runtime, to the object
referenced by variable p”. The name of a prototype such as Point is a reference to an
object created prior to the execution of the program. It is easy to explain this by examining
the translation of Cyan to Java, which is the target language of the Cyan compiler. A
prototype Point causes the generation of a _Point class which has a static variable of
_Point type:

...
class _Point {

public static _Point prototype = new _Point();
public _Point() { }
...

}

Any references to Point in an expression are translated, in the generated code, to
_Point.prototype

That means that fields x and y of Point can be accessed before they are initialized, a flaw
that will be corrected in due time.

Any variable refers to an object, even when its type is a basic prototype such as
Int or Char. In C++ language terminology, all variables are pointers. And a prototype
like Int is an object like any other of the language, it can be used in expressions. Int has
a value that is 0. Therefore, you can write

var Int iAmNothing = Int*Int + Int - Int;

The first Int is a type and the following are 0. The other prototypes or basic types have
the expected values (e.g. verb|""| for String). The operators *, +, <, =<, etc. are all
method names. So in this last example we have three message passings.

You can use Point(5, 7) instead of Point: 5, 7 and A() instead of A new,
assuming there is a prototype A with an init method. All prototypes have a method
clone that returns a shallow copy (shallow clone) of the object. That is, only the fields of
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the old object are copied to the new object created by clone, the objects referenced by
the fields are not copied.

Cyan uses language-C like comments: // for a comment to the end of the line and
everything that is between /* and */ is a comment. In the latter case, nested comments
are allowed.

By default, methods are public, it is not necessary to put “public” before func.
In addition to public, a method can be qualified with the kewords private, protected,
or package. A private method can only be called from within the prototype where it
is declared. A protected method can be called in its prototype and subprototypes of
the prototype where it was declared. The concept of subprototype will be seen shortly. A
package method is visible in the package of its prototype. Currently, fields can only be
private, although this should change.

A field is shared by all objects of a prototype if it is declared with keyword shared:

object Planeta
shared var Int counter = 0;
...

end

A shared field must be initialized in its declaration or in a special method called
initShared. There are draconian limitations to these initializations for preventing the
use of a field that has not yet been initialized. There are no shared methods, although
some methods can only be called by sending messages to prototypes. These methods are
preceded by

@prototypeCallOnly

The Cyan compiler, Saci, is made in Java and generates Java code. This facilitates
interoperability between the two languages. A Cyan compilation unit can import Java
packages and use Java classes as types of fields, parameters, method return value types,
and local variables. Java values of the basic and wrapper types are automatically converted
to values of the corresponding types of Cyan. And vice versa. There are some limitations
in the interoperability between the languages: a Cyan prototype cannot inherit from a
Java class or implement a Java interface, there is no conversion from a Cyan function
to a Java lambda, and the for statement can only be used with Cyan collections. The
following example shows some interactions between Java classes and Cyan code.

package main

import java.lang
import java.util
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object Test
func javaTest {

// cast Java Integer to Cyan Int
var Int k = Integer(5);
var Integer ki = k; // and vice versa

// prototype Int of Cyan used as
// parameter to generic classes Set and
// HashSet of Java

var java.util.Set<Int> iset = java.util.HashSet<Int>();

iset add: 0;
iset add: 1;
iset add: 2;
var Boolean b;
b = iset contains: 0;
assert b;

// ’iset contains: 1’ returns Java ’boolean’
// that is cast to Cyan ’Boolean’

b = iset contains: 1;
// macros do not cast Java to Cyan values
// ’assert’ is a macro

assert b;

b = iset contains: 2;
assert b;
b = iset contains: -1;
assert !b;
b = iset contains: 4;
assert ! b;
var java.lang.Boolean javaBooleanVar = true;
if javaBooleanVar {

"This will be printed" println;
}

var java.lang.Integer integer = Integer(5);
// in this expression, argument to ’==’ of Cyan
// is a Java value of type Integer
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assert 5 == integer;

}
end

Saci takes Cyan code as input and produces Java code that can then be imported
by Java code. A prototype Proto generates a class _Proto in Java. A Cyan method with
keyword with: with two parameters and keyword do: with three parameters generates a
Java method at2do3____.

A.2 Repetition, Decision, and Literals

Cyan supports an usual if command. The parentheses are not needed for the
expression.

// reads from the standard input
var age = In readInt;
if age < 0 {

"illegal age" println;
System exit: 1; // ends the program

}

if age < 3 {
"baby" println

}
else if age >= 3 && age < 13 {

"child" println
}
else if age >= 13 && age < 19 {

Out println: "teenager"
}
else {

Out println: "adult"
}

The ; is optional before } and after all the commands that start with a keyword (if,
while, etc.), except variable declaration (which is considered a command). The operators
&& and || are not methods. The second expression of && is evaluated only if the first one is
true and the second expression of || is only evaluated if the first one is false. The curly
brackets are required in statement while but not in repeat-until, exemplified below.
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var n = 10;
while n > 0 {

n print;
" " print;
--n

}
var sum = 0;

// there is a repeat-until command
repeat

sum = sum + n;
++n;

until n >= 10;
sum println;

Surprisingly, the language requires that } be on the same line as { or in the same column
as the initial keyword of the command, be it if, while, or any other that begins with a
keyword and uses curly brackets.

Tuple is the generic prototype for tuples of elements. A tuple is a set of ordered
elements that can be of different types (very similar to C’s struct). Literal tuples are given
between [. and .] as in the example.

let Tuple<String, Int> person = [. "Newton", 1642 .];
pessoa f1 println; // prints "Newton"
pessoa f2: 1643; // oops, new calendar

Method fi is used to retrieve the ith value stored in the tuple. Method fi: initialize the
ith tuple field with a new value. The tuple fields can have names other than f1, f2, etc.

let Tuple<name, String, birthyear, Int> person =
[. "Newton", 1642 .];

person name println; // prints "Newton"
person birthyear: 1643; // oops, new calendar

Array is a generic prototype for vectors declared in package cyan.lang. The
prototype IMap<Key, Value> is an interface to maps (also called dictionaries). Interfaces
in Cyan are seen in a later section. At this point, it is sufficient to know that they are
similar to interfaces of Java and C♯. Both Array and IMap can be used with the for
command, which allows the iteration of a data structure:

// sum all array elements
func sumArray: Array<Int> array -> Int {

var sum = 0;
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for elem in array {
sum = sum + elem

}
return sum

}

Cyan supports arrays and literal maps. The elements are given between [ and ].
In the maps, symbol -> separates the key from the value.

/* in a ’for’ statement, the type of the
element may be given or not

*/
for Int elem in [ 2, 3, 5, 7 ] {

elem println
}
let IMap<String, Int> map = [ "I" -> 1, "V" -> 5,

"X" -> 10, "L" -> 50, "C" -> 100, "D" -> 500, "M" -> 1000 ];
// method asArray casts every pair (key, value)
// in a tuple

for elem in map asArray {
Out println: elem key ++ " worth " ++ elem value;

}

The ++ method converts the message receiver, left side, and also the argument, right
side, into strings using the asString method that every object has. Hence, it returns the
concatenation of the two strings.

Interval objects are returned by methods .. of prototypes Char, Byte, Int, Short
and Long.

var sum = 0;
for elem in 1..10 {

sum = sum + elem
}
assert sum == 55;

The assert macro issues a message if its expression is false at runtime. It does not exit
the program.

Of course, tuples, arrays, and maps can be nested:

var t = [.
portuguese = [ [ 0 -> "zero", 1 -> "um" ], [ 10 -> "dez" ] ],
english = [ [ 0 -> "zero", 1 -> "one" ], [ 10 -> "ten" ] ]
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.];

Strings can use escape characters from the Java language: \n, \r, \t, etc. A literal
string that does not consider these characters must be prefixed by n or N as in

let iHaveSize4 = n"\n\t";

There is a simplified way of expressing strings that use only letters, numbers, _
(underscore), . (Dot) and : (colon). The sequence of characters should be preceded by #
as in the example below.

let sym = #cyan.lang;
let method = #at:put:;
#0zero println;

The type of this kind of literal is String although they are called symbols.

Strings can be multi-line:

var quadrilha = """
João loved Teresa that loved Raimundo
that loved Maria that loved Joaquim
that loved Lili that loved no one.
...
""";

In this kind of string, escape characters are not considered. Therefore, \n are two characters,
\ and n.

A.3 Inheritance, Nil, and Interfaces
Inheritance in Cyan is specified through keyword extends.

open object Shape
func getColor -> Int = color;
func setColor: Int color { self.color = color }
var Int color = 0;

end

object Square extends Shape
func init: Int side { self.side = side }
func getSide -> Int = side;
func setSide: Int side { self.side = side }
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var Int side = 0;
end

In this example, two prototypes were presented together for didactic reasons. In a
program, they should be in separate files and preceded by the package declaration. Square,
called a subprototype, inherits all methods and fields from Shape, called a superprototype.
If a method of the superprototype is redefined in the subprototype, it must be preceded by
the keyword override. The word open, which is not a keyword, precedes the declaration
of Shape to indicate that this prototype can be inherited. Without this word the prototype
would be final, it could not be inherited.

The language supports only single inheritance, each prototype has at most a sole
superprototype. All prototypes in Cyan, except Nil and including the basic types Int,
Char, etc., inherit directly or indirectly from Any.

Usually object-oriented languages use a value null, NULL or nil that is polymorphic,
it has infinite types. The type of this value is a subtype of all other types or at least
subtype of class types. In Java, for example, null can be assigned to a variable whose
declared type is a class:

String s;
s = null; // ok

In Ceylon (KING, 2022), the value null is the only object of class Null and cannot
be assigned to a variable whose type is a class. This value can only be assigned to a
variable whose type is a union:

// ’variable ’ is a keyword in Ceylon

variable Null|String s;
s = null; // ok

s = "ok"; // ok

The Cyan prototype Nil was partially based on the Ceylon class Null. Nil is not
anyone’s subprototype or superprototype. It is a singleton object, it is not possible to
create objects from this prototype and it cannot be inherited. As a consequence, a variable
of type Nil can only receive, at runtime, the value Nil (the prototype) in an assignment.
Therefore, it does not make sense to declare a variable of this type.

Nil can be used with union types, declared using | as in

var String|Nil s;
s = "I am a string";
s println;
s = Nil;

// s does not hold a string anymore
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The type of s is an option between Nil and String and this variable can receive
values of both types in an assignment. However, messages cannot be sent to expressions
(including variables) whose types are unions, unless the messages are == and !=.

There are two ways to handle unions containing Nil: using the type or cast
commands. The first is similar to a switch of the C language, but with types.

1 var String|Nil s;
2 s = Nil;
3 s = "I am a string";
4

5 type s
6 case String str {
7 (str substring: 1) println;
8 }
9 case Nil nil {

10 nil println
11 }
12

13 cast str = s {
14 (str substring: 1) println;
15 }

Line 7 is executed because s refers to a String object. The value of s is assigned to the
variable str. If s referred to Nil, s would be assigned to the variable nil of type Nil and
line 10 would be executed.

The cast command on line 13 checks whether s is Nil or not — currently this
command can be used only with unions of type Nil|T or T|Nil in which T is a prototype.
Since s refers to a String object, line 14 is executed. The compiler deduces that the type
of str is String because of the type of s.

Nil is the return type of all methods that do not explicitly declare the return type,
playing a role similar to void of C-based languages (KERNIGHAN, 1988). This is very
convenient because all methods always return something. If the return type is Nil, they
always return the prototype Nil. In this case, the command return is optional.

A union type can be used as the type of a variable, parameter, or method return
value. It cannot be used as a superprototype name, after keyword extends.

1 var Int|String|Char sic;
2 sic = 0;
3 sic = "I am a string";
4 sic = ’A’;
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5

6 type sic
7 case Int n {
8 (2*n + 1) println;
9 }

10 case String s {
11 "I am the string $s" println
12 }
13 case Char ch {
14 "ch = $ch" println;
15 }

In lines 11 and 14, $ before a variable name inserts, in the literal string, the result
of the transformation of the variable into a string. For that reason, the tests below do not
issue warnings.

var ch = ’a’;
assert "ch = $ch" == "ch = " ++ ch;
assert "ch = $ch" == "ch = " ++ (ch asString);

Method == compares two basic values, as integers and characters, by values, not addresses.

There is a generic Union prototype that works as a union of types but each one
has a tag:

Union<tag1, T1, tag2, T2, ..., tagn, Tn>

tagi is any lowercase identifier and Ti is a prototype different from Nil. The same type
may appear twice because the tags differentiate them. Method tagi: Ti initializes an
union object, that should be created with new before used.

var Union<f1, Int, f2, String> unity =
Union<f1, Int, f2, String> new;

unity f1: 0;
unity f2: "now a string";

Union elements can only be accessed using statement type-case. For each pair tag-type
of the union there should be a case clause whose variable name should be the tag name.
The case clause order should be the same as the tags in the union.

var Union<f1, Int, f2, String> unity =
Union<f1, Int, f2, String> new;

unity f1: 0;
type unity
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case Int f1 {
assert true;

}
case String f2 {

assert false;
}

unity f2: "now a string";
type unity

case Int f1 {
assert false;

}
case String f2 {

assert true;
}

An abstract prototype is declared with the abstract keyword before object and
may have abstract methods, methods declared with abstract preceding func. Abstract
methods should not have a body, they should only have the declaration of the keywords
with the return type:

abstract object Animal
abstract func eat: Food good
abstract func walk: Int numMeters

end

When a non-abstract prototype inherits from an abstract prototype, it must define all
inherited abstract methods, as usual.

A prototype can be declared with the interface keyword instead of object. In
this case, the body of methods should not be given. A prototype that is not an interface
can implement any number of superinterfaces:

interface Drawable
func draw: Int backgroundColor

end
object Square extends Shape implements Drawable

func init: Int side { self.side = side }
func getSide -> Int = side;
func setSide: Int side { self.side = side }
func draw: Int backgroundColor {

// code for ’draw’
}
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var Int side = 0;
end

The prototype that implements the interface must define its methods. Or it should be
declared with the abstract keyword. An interface can inherit from one or more interfaces
using the word extends, but it cannot implement, with implements, any interface. A
constructor cannot be defined in an interface and its clone method throws an exception,
so no new objects can be created from one.

Throughout this text, the word “prototype” is used for both interfaces and non-
interface prototypes. The reason is that an interface is a regular prototype for which some
special rules apply. But an interface is an object that defines its methods, although they
throw an exception at runtime. In the code below, message size is sent to an object that
refers to an interface. That does not cause a compile-time error. At runtime, method size
of the interface is called and it throws an exception.

var anInterface = IMap<String, Int>;
anInterface size println;

A.4 Dynamic Typing

Cyan is statically typed with optional dynamic typing. Therefore, the language
has gradual typing. When using static typing, the compiler checks whether the type of
an expression that receives a message has a method that matches the message: the name
is the same, the method can accept the real message arguments. This check is not made
if the receiver expression has the type Dyn. It instructs the compiler not to make type
checking. The compiler does not check if messages sent to a variable of type Dyn has a
method that matches the message passing.

var Dyn troublemaker = 0;
troublemaker setManagerName: "Bill Jobs";

This code compiles correctly but there will be a runtime error because Int does not have
a setManagerName: method. There is another way to tell the compiler not to do type
checking in a message passing: just prefix the keywords with “?” as in

var Int troublemaker = 0;
troublemaker ?setManagerName: "Bill Jobs";

Without the ?, there would be a compilation error.
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A local variable that is initialized in its declaration with an expression has the
type of that expression. If neither the type nor the expression is given, the variable has
the type Dyn.

// variable has type Dyn
var troublemaker;
troublemaker = 0;
troublemaker setManagerName: "Bill Jobs";

// age has type Int
var age = 8;

A parameter declared without the type has type Dyn as well. So programs in Cyan can be
done as if the language were dynamically typed. Just do not put the type of parameters
and variables that are not initialized in their declaration and use type Dyn in the following
situations:

a) in local variables initialized in their declarations;

b) as the type of prototype fields.

A good programming technique is to make an initial version of a program with dynamic
typing and then convert it to static typing.

The compiler makes the necessary checks when an object of type Dyn is assigned
to a variable of another type. If the object type is not a subtype of the variable type, a
runtime error occurs. Similarly, Dyn type expressions can be used in if, while, for, and
repeat-until commands.

var Dyn s = "runtime error";
var Int n;
n = s; // runtime error!

A method whose name will only be known at runtime can be called using operator
` . A unary method whose name is in the String variable s is called using the syntax

obj `s
A method whose keywords are in String variables s1, ... sn is called using

obj `s1: p1 ... `sn: pn
The following code shows a real example.

var sz = "size";
var atStr = "at";
var putStr = "put";
var strArray = [ "red", "green", "blue" ];

// call method ’size’ of Array<String>
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assert strArray `sz == 3;
// call method ’at:’ of Array<String>

assert strArray `atStr: 0 == "red";
// call method ’at: put:’ of Array<String>

strArray `atStr: 0 `putStr: "vermelho";
// call method ’at:’ of Array<String>

assert strArray `atStr: 0 == "vermelho";

let map = [ "+" -> 16, "-" -> 8, "/" -> 3, "*" -> 48 ];
for op in [ "+", "-", "/", "*" ] {

// check the result of the dynamic call
// with the one stored in ’map’

cast result = map[op] {
assert result == 12 ‘op: 4;

}
}

For the curious reader, in the package cyan.lang there is a prototype DTuple that
simulates the runtime creation of prototype fields.

var Dyn t = DTuple new;
t name: "Newton";
t age: 85;
Out println: t name; // "Newton"
Out println: t age; // 85

A.5 Generic Prototypes
A generic prototype in Cyan is the equivalent of a template class in C++ (GREGOR

et al., 2006) (STROUSTRUP, 2013) and a generic class in Java, Scala (ODERSKY et al.,
2004), and C♯ (C#. . . , 2020). The following example shows a generic prototype Box<T> of
a file called “Box(1).cyan”. The number of prototype parameters is within parentheses.

package main

object Box<T>
func init: T elem { self.elem = elem }
func get -> T = elem;
func set: T elem { self.elem = elem }
var T elem

end
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This prototype is instantiated when a type is supplied as parameter, as in lines 6 and 8of
the example.

1 package test
2 import main
3

4 object Test
5 func test {
6 var Box<Int> box = Box<Int> new: 5;
7 box get println;
8 Box<Int> prototypeName println;
9 }

10 end

During semantic analysis, the Cyan compiler checks the type of variable box, Box<Int>.
Since there is no prototype with this name, Saci creates a new prototype replacing T with
Int in the generic prototype. This is the scheme used by C++ and C♯, unlike Java and
Scala, which use the same code for all instantiations of a parameterized class.

A generic prototype parameter T can be used in the body of a generic prototype in
several ways:

a) as type of variables, parameters, or method return, after keyword extends or
implements, or as a parameter to another generic prototype instantiation;

b) after # to compose a symbol: #T. If there are other characters, as in #Tx, the
symbol is considered to be not related to the parameter T;

c) as a parameter to a metaobject annotation (yet to be seen);

d) as a method keyword.

In all of these uses, the compiler changes the formal parameter T by the actual argument
used in the instantiation of the prototype. That is exemplified below.

package main

object EveryUse<T, R>
// R used as method keyword
// T used as a symbol

func R: Int n -> String = #T;
// T as a return type and a
// prototype in an expression

func newObject -> T = T new;
func tPlusr -> String {

// T and R as annotation parameters
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return @symbolToString(T) ++ @symbolToString(R);
}

end

There is one case that was not covered by the above explanation: the use of the parameter
inside the DSL code attached to an annotation. This case is explained in section 2.2.

There are numerous variations of generic prototypes that have not been described
in this section:

a) there may be more than one set of < and >;

b) there is support for a variable number of arguments;

c) a non-generic prototype can use the same syntax as a generic prototype, but
with real arguments in place of the generic parameters. Language C++ also
supports this feature;

d) several generic prototypes that take different number of parameters can have
the same name. For example, there may be Box<T> and Box<T, R>.

A.6 Anonymous Functions
An anonymous function is a unnamed literal function. It is called blocks in Smalltalk

(GOLDBERG; ROBSON, 1983) and lambdas in C++ (STROUSTRUP, 2013), Java
(GOSLING et al., 2014) and Kotlin (JETBRAINS, 2022). In Cyan, an anonymous function
or simply “function” is declared with the following syntax. [ and ] is used for optional
symbols, anything between { and } can be repeated zero or more times.

‘‘{’’ [ ‘‘(:’’ { ParameterDec } [ ‘‘->’’ ReturnType ] ‘‘:)’’ ]
statementList ‘‘}’’

The function is given between { and }. If there are parameters, they appear between (:
and :) After the last parameter, the return value type may be given using -> ReturnType.
However, the return type can always be deduced from the values returned by the function
and “-> ReturnType” is optional. The function body, a sequence of statements, is given
after :) or after { if there is no pair (: :). The function returns an expression expr using
“^expr”. The return statement for method return cannot appear inside an anonymous
function.

{ (: Int n -> Int :) ^n*n }

The first line of the next example assigns a function to variable sqr.

var sqr = { (: Int n :) ^n*n };
assert sqr eval: 5 == 25;
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The function is called by sending message eval: to sqr. Note that the operator precedence
of == is smaller than that of message passing. Therefore, the expression of macro assert
is equivalent to

(sqr eval: 5) == 25

An anonymous function without parameters is called with the eval method as in

let f = { "print this" println };
f eval;
{ /* do nothing */ } eval;

Anonymous functions are literal objects. For each literal function, the compiler
creates a new prototype. This prototype inherits from an instantiation of the generic
Function prototype. The parameters used with Function depend on the parameter types
and return type of the function. As an example, the function

{ (: Int n -> Int :) ^n*n }

is defined as

object Fun_1__(Test self__) extends Function<Int, Int>
override
func eval: Int n -> Int { return n*n; }

end

The declaration “Test self__”, after the prototype name Fun_1__, is a field that will
refer to self at the moment the function is created.

A parameterless function that returns nothing or Nil has the type

Function<Nil>

Note that, although function { } is the sole object of a prototype that inherits from
Function<Nil>, its type is Function<Nil>.

A function that takes parameters whose types are T1, T2, ... Tn and whose return
type is R has type Function<T1, T2 , ..., Tn, R>. This prototype inherits from Any,
the top of the hierarchy. Hence, functions are first-class entities that can be assigned to
variables, passed as parameters, and stored in prototype fields.

An anonymous function can use visible local variables. This does not cause problems
since any local variable used within some function is allocated dynamically. self is visible
inside anonymous functions. So a function can use the fields of the prototype where it
is and send messages to self. The examples below show some additional features of
functions.
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package main

object Test
func funcTest {

var sum = 0;
[ 2, 3, 5, 7 ] foreach: { (: Int n :)

sum = sum + n;
++count
};

assert sum == 2 + 3 + 5 + 7;
// if with anonymous functions,
// as in Smalltalk

(sum < 10) ifTrue: {
self incCount;
"sum < 10" println
}
ifFalse: {

incCount;
"sum >= 10" println

};
// while with anonymous functions

{ ^sum > 0 } whileTrue: {
++count;
--sum
};

Out println: "count = $count";
}
func incCount { ++count }

// count the number of times
// functions were called

var Int count = 0;
end

A.7 The Exception Handling System
The Cyan exception handling system was based on the exception system of language

Green (GUIMARÃES, 2013). It supports only unchecked exceptions. That is, the compiler
never points out that an exception may be thrown and not caught as in language Java,
the only major language that supports this kind of exceptions.
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The Cyan exception handling system is made exclusively using message passing.
Exceptions are objects whose prototypes inherit direct or indirectly from prototype
CyException.

package main

object IllegalTriangle(Double _sideA, Double _sideB, Double _sideC)
extends CyException

func sideA -> Double = _sideA;
func sideB -> Double = _sideB;
func sideC -> Double = _sideC;

end

Prototype IllegalTriangle declares three fields just after its name and inherits from
CyException. An object of it can be thrown using method throw: inherited from Any
by every prototype but Nil. Hence, exception IllegalTriangle can be thrown as in the
code

self throw: IllegalTriangle(13.0, 4.0, 2.0);

self is optional since a message passing without a receiver has self as receiver.

Exception treatment in Cyan is made through methods of prototype Function<Nil>
of package “cyan.lang”. This prototype is not an instantiation of prototype Function<T>,
it is a non-generic prototype that uses the generic prototype syntax. Method “catch: Any”
of Function<Nil> takes an object of Any and its subprototypes as parameter. A metaobject
annotation (yet to be seen) assures that either the parameter type is Dyn or it has an eval:
method that accepts an object of CyException as parameter. Let us see an example of
exception handling.

1 package main
2

3 import cyan.math
4

5 object Test
6

7 func throwTest {
8 {
9 "Type in the sides of the triangle" println;

10 var aa = In readDouble;
11 var bb = In readDouble;
12 var cc = In readDouble;
13 if aa < bb + cc || bb < aa + cc || cc < aa + bb {
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14 throw: IllegalTriangle(aa, bb, cc)
15 }
16 Out println: "The area of the triangle is " ++ (area: aa, bb,

cc);
17 } catch: { (: IllegalTriangle e :)
18 let a = e sideA;
19 let b = e sideB;
20 let c = e sideC;
21 Out println:
22 "The triangle is illegal because it has one side " ++
23 "bigger than the sum of the other two: $a, $b e $c";
24 };
25

26 }
27

28 func area: Double a, Double b, Double c -> Double {
29 let p = (a + b + c)/2.0;
30 return Math sqrt: p*(p - a)*(p - b)*(p - c);
31 }
32 end

Between line 8 and the } of line 17, there is an anonymous function that does not take
parameters and does not return anything. As a result, it has type

Function<Nil>
Keyword catch: of line 17 is a message send that takes another function as parameter.
This one takes an IllegalTriangle as parameter and ends in line 24. A ; is demanded
in line 24 because lines 8 to 24 is a single message passing.

In line 14, exception IllegalTriangle is thrown by method “throw:”. At runtime
this triggers a search for a catch: method that takes a parameter that:

a) has an eval: method;

b) this method accepts an object of type IllegalTriangle.

The function passed as parameter to catch: obeys these restrictions and is called. The
type of this object is Function<IllegalTriangle, Nil> and it has a method

func eval: IllegalTriangle e {
let a = e sideA;
let b = e sideB;
let c = e sideC;
Out println:
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"The triangle is illegal because it has one side " ++
"bigger than the sum of the other two: $a, $b e $c";

}

Therefore, in this example, the message passing of line 14 transfer the flow of control
to method eval: of the function passed as parameter to catch:. This method has the
content of the anonymous function that is between lines 17 and 24. The search for a catch:
method in Cyan is exactly equal to the search for a catch clause in Java, C++, and so on.
In particular, there may be more than one catch: keyword in the message passing and
they are searched for in the order they appear:

{
// some more complex code

}
catch: { (: IllegalTriangle e :) ... }
catch: { (: ZeroSideTriangle e :) ... }
catch: { (: NegSideTriangle e :) ... }

Returning to the prototype Test, the parameter to catch: may be any object that
has an eval: method that accepts an object of type CyException or its subprototypes as
parameter. Prototype CatchIllegalTriangle obeys these restrictions.

package main

object CatchIllegalTriangle
func eval: IllegalTriangle e {

let a = e sideA;
let b = e sideB;
let c = e sideC;
Out println:

"The triangle is illegal because it has one side " ++
"bigger than the sum of the other two: $a, $b e $c";

}
end

Therefore, we can write:

1 // prototype Test
2 {
3 ...
4 throw: IllegalTriangle(aa, bb, cc)
5 ...
6 } catch: CatchIllegalTriangle;
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Prototypes used to catch exceptions are called catch prototypes.

Prototype CatchIllegalTriangle can be extended to cope with several exceptions
at the same time:

package main

object CatchIllegalTriangle
func eval: IllegalTriangle e { ... }
func eval: ZeroSideTriangle e { ... }
func eval: NegSideTriangle e { ... }

end

The search for an adequate eval: method is made in the order of declaration in the
prototype. And the search is made from subprototypes to superprototypes.

Using the Cyan exception handling system one can build a hierarchy of exception
treatments. Hence, a library of prototypes can be supplied with catch prototypes to treat
exceptions thrown by methods of the library. There may be options on what to do on
error. For example, package cyan.io supplies two catch prototypes that treat IO related
errors:

CatchExceptionIOMessage
CatchExitExceptionIOMessage

The second inherits from the first one. CatchExceptionIOMessage treats exceptions
ExceptionFileNotFound and ExceptionIO. It just issues an error message in the standard
output. CatchExitExceptionIOMessage issues the message and ends the program.

Prototype Function<Nil> has other keywords and methods for exception treatment:
finally:, retry:, and hideException. Keyword finally: may appear after the last
catch: and works like keyword finally of Java and other languages. retry: calls the
eval: method of the function whenever there is an exception. That is, the function is
called again if there is an exception.

{
var n = In readInt;
if n == 0 {

throw: ExceptionStr("zero is not allowed")
}
Out println: 5/n

}
catch: CatchAll // catch every exception
retry: {
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"Type in a number different from zero" println
};

hideException simply hides any exception thrown in the function.

A.8 The Cyan Interpreter
Statements in Cyan can be generated and interpreted at runtime using prototype

CyanInterpreter of package cyan.reflect. The language is not exactly Cyan because
most type checks are not made when the code is “compiled”. The interpretation consists
only of two phases: parsing and execution. The parsing phase does not make any semantic
check. The Cyan statements cast and type are the only ones that cannot be used in
interpreted Cyan. Currently, only prototypes of cyan.lang and classes of java.lang can
be used.

Listing A.1 shows an example Cyan code that is interpreted at runtime. Method
eval: is called in line 8 with a multi-string with code. The result, 55, is returned and
extracted in lines 15-21. Method eval:1 self: 1 evaluates a string assuming that self
is the second parameter:

CyanInterpreter
eval: "return self*2"
self: 5

This message send returns 10. The value to keyword self: can be anyone, including
objects of basic values and Java objects.

The code interpreted in lines 25-28 of Listing A.1 is
5.0*pi*r*r

The method of CyanInterpreter called here is eval:1 self:1 varList:1, which takes
a self object and an array of tuples consisting of a variable name and a value. The value
must have type Dyn, this is the reason we declared variable dynRadius only to convert
radius to Dyn. Since the parameter to keyword self: is self, methods of the current
prototype, as pi, can be called in the call to eval:1 self:1 varList:1. The value of
radius was passed to the interpreter with the name “r”. It is read-only, there is no way of
changing the value of radius inside the eval:1 self:1 varList:1 method.

A.9 The Project File
A Cyan program is described by a project file with extension “pyan”. The content

of the file is itself a source code of a language called Pyan and it lists the packages that
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Listing A.1 – Testing the Cyan interpreter
1 package main
2 import cyan. reflect
3
4 object InterpreterTest
5
6 func run {
7 var Any|Nil anyNil;
8 anyNil = CyanInterpreter eval: """
9 var sum = 0;

10 for n in 1..10 {
11 sum = sum + n;
12 }
13 return sum
14 """;
15
16 type anyNil
17 case Int value {
18 assert value == 55;
19 "1 + 2 + ... 10 = $value" println
20 }
21 let radius = 5.0;
22 var String code = "pi*r";
23 var Dyn dynRadius = radius;
24 anyNil = CyanInterpreter
25 eval: "return " ++ code ++ "*r"
26 self: self
27 varList : [ [. "r", dynRadius .] ];
28 type anyNil
29 case Double area {
30 "Area = $area" println ;
31 // equal to a precision
32 assert area equal: 78.5398163397 , 0.1;
33 }
34 }
35 func pi -> Double = 3.14159265359;
36 end
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compose the program. An example of a Pyan program follows.

1 program at "C:\Dropbox\Cyan\cyanTests\tese"
2 main main.Program // the main prototype
3 package main at "C:\Dropbox\Cyan\cyanTests\tese\main"
4 package cap.dynamic at "C:\Dropbox\Cyan\cyanTests\tese\cap\dynamic"

The Cyan compiler is called passing the address of the Pyan file as argument. After at of
line 1 there should be the address of the directory of the program to be compiled. In line
2, Pyan keyword main gives the main prototype. The program execution starts at method
“run” or “run: Array<String>” of this prototype. Lines 3 and 4 lists the two packages
of the program, main and “cap.dynamic”. After at there should appear the directory of
each package as a literal string in which escape characters are not taken into account. If
a package does not specify its directory with “at”, it should be in a subdirectory of the
program.

The declaration of the main prototype may be omitted if the main prototype is
Program of package main. Therefore, line 2 can be removed. If all subdirectories of the
program directory contains a package of the program, statement package may be omitted.
Assuming directory

C:\Dropbox\Cyan\cyanTests\tese
has only directories main and cap\dynamic with Cyan source code, lines 3 and 4 of the
example can be removed. The project file could be just

program at "C:\Dropbox\Cyan\cyanTests\tese"

If this is in a “.pyan” file of directory
C:\Dropbox\Cyan\cyanTests\tese

the project file could be just “program”. In this case, the compiler can be called passing
as argument this directory. It creates a project file “project.pyan” with one package for
each subdirectory containing Cyan source files.
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APPENDIX B – Metaobject property2
Implemented in Java

package meta. cyanLang ;

import java.util.List;
import meta. AnnotationArgumentsKind ;
import meta. AttachedDeclarationKind ;
import meta. CyanMetaobjectAtAnnot ;
import meta. IAction_afterResTypes ;
import meta. ICompiler_afterResTypes ;
import meta. ISlotSignature ;
import meta.Tuple2;
import meta. WrAnnotation ;
import meta. WrAnnotationAt ;
import meta. WrFieldDec ;

public class CyanMetaobjectProperty2 extends CyanMetaobjectAtAnnot
implements IAction_afterResTypes {

public CyanMetaobjectProperty2 () {
super(" property2 ", AnnotationArgumentsKind . ZeroParameters ,

new AttachedDeclarationKind [] { AttachedDeclarationKind . FIELD_DEC } );
}

@Override public
Tuple2 <StringBuffer , String > afterResTypes_codeToAdd (

ICompiler_afterResTypes compiler , List <Tuple2 <WrAnnotation , List < ISlotSignature >>> infoList ) {

final StringBuffer s = new StringBuffer ();
final WrAnnotationAt atAnnot = this. getAnnotation ();
final WrFieldDec iv = ( WrFieldDec ) atAnnot . getDeclaration ();
final String name = iv. getName ();

String methodGet ;



218 APPENDIX B. Metaobject property2 Implemented in Java

String methodSet ;
final String nameUpper = Character . toUpperCase (name.charAt (0)) + name. substring (1, name.length ());
String ivTypeName = iv. getType (). getFullName ();
methodGet = "func get" + nameUpper + " -> " + ivTypeName ;
methodSet = "func set" + nameUpper + ": " + ivTypeName + " other";
String code = methodGet + " = " + name + ";\n" +

methodSet + "\n { " + "self." + name + " = other }\n";
return new Tuple2 <StringBuffer , String >(

new StringBuffer (code),
methodGet + ";\n" + methodSet + ";\n"
);

}
}
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APPENDIX C – Example of a Metaobject
Coded in Cyan

The Cyan code that follows is the prototype of metaobject createMissingField.

Annotations of metaobject createMissingField should be attached to prototypes.
They take an even number of parameters, at least two, consisting of pairs of “constant
name” and “constant value”. The constants are accessed using self.

@createMissingField ("zero", 0, "pi", 3.14 , country , Brasil)
object Program

func run {
assert self.zero == 0;
let radius = 5;
Out println : "The area of a circle of radius $radius is " ++

radius*radius*self.pi;
("I live in " ++ self. country ) println ;

}
end

Method semAn_replaceGetMissingField of the metaobject is called whenever a field that
does not exist is accessed. Therefore, this method is called when zero, pi, and country
are accessed. The method replace the field access by the corresponding constant. Note that
the constant name may be given, in the annotation, between quotes or not. The metaobject
prototype follows. Method semAn_replaceSetMissingField should be specified because it
is declared in interface IActionFieldMissing_semAn. In Java, the corresponding method
in the interface has a default implementation. That means that a Java class does not need
to implement it. In Cyan, there is no default method implementation in interfaces yet.
Method

semAn_replaceSetMissingField
returns an empty string. The compiler will not consider this value as code because it is an
empty string.

package cyan. reflect

import meta
import java.lang
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open
object CyanMetaobjectCreateMissingField extends CyanMetaobjectAtAnnot

implements IActionFieldMissing_semAn

func init {
super init: " createMissingField ", " OneOrMoreParameters ",

[ " prototype " ];
}

override
func semAn_replaceGetMissingField :

WrExprSelfPeriodIdent fieldToGet ,
WrEnv env

-> Tuple <String , String , String > {

let String fieldName = fieldToGet asString substring : 5;
var annot = self getAnnotation ;
let Int size = annot getJavaParameterList size;
if size odd {

addError : "This annotation should be used with a even number of parameters ";
return [. "", "", "" .]

}
var i = 0;
while i < size {

let java.lang.String javaParam = (( annot getJavaParameterList ) get: i) toString ;
var String strparam =

CyanMetaobject removeQuotes : javaParam ;

if strparam == fieldName {
var value = (annot getRealParameterList ) get: i + 1;
var java.lang.String js = value asString ;
var String s = js;
js = value getJavaType ;
var String javaType = js;
var Nil|String cyanTypeNil = [

"String" -> "String",
" boolean " -> " Boolean ",
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" Boolean " -> " Boolean ",
" Character " -> "Char",
"char" -> "Char",
"Byte" -> "Byte",
"byte" -> "Byte",
" Integer " -> "Int",
"int" -> "Int",
"Short" -> "Short",
"short" -> "Short",
"Long" -> "Long",
"long" -> "Long",
"Double" -> "Double",
"double" -> "Double",
"Float" -> "Float",
"float" -> "Float"

] get: javaType ;
type cyanTypeNil

case String typeName {
if typeName == "String" {

s = "\"" ++ ( CyanMetaobject removeQuotes : s) ++ "\"";
}
return [. "cyan.lang", typeName , s .]

}
case Nil nil {

addError : " Unknown type: " ++ javaType ;
return [. "", "", "" .]

}

}
i = i + 2

}
return [. "", "", "" .]

}

override
func semAn_replaceSetMissingField :

WrExprSelfPeriodIdent fieldToSet ,
WrExpr rightHandSideAssignment ,
WrEnv env
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-> String

return ""
}

end
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APPENDIX D – Definitions

This chapter gives some definitions of terms used in the article.

Source code is any text with code in any programming language. It may refer to
the whole program in text format, a set of text files with code. The common meaning will
be “any text with code”.

A Compilation unit or source file is a single file with source code. In Cyan, a
compilation unit is composed by a package declaration, import statements, and a single
prototype.

In a message passing, like x.m(0), the runtime system has to look for a method to
be called. The algorithm used for finding an adequate method is called method dispatch.

The attached text of an annotation or the attached DSL code is the text that is
attached to an annotation. In the example that follows, it is the text between {* and *}.

@insertCode{*
insertCode: "a = 0;";

*}

The name of a Cyan method is composed by each keyword method followed by the
number of parameters of each keyword. Hence, the name of

func with: Int n, String s put: Float f
is

with:2 put:1

An Abstract Syntax Tree (AST) is a data structure for storing data on language
declarations and statements. For example, the AST class for a local variable follows.

class LocalVariable {
String name;
Type type;
// methods elided

}

Each local variable in the program is represented by an object of LocalVariable.

An embedded DSL is a Domain Specific Language whose code is inside the code of
a host language, a general purpose language. A prime example are Groovy (KöNIG, 2007)
builders for creating and initializing objects:

UndergradCourseBuilder builder = new UndergradCourseBuilder ()



224 APPENDIX D. Definitions

UndergradCourse dcomp = builder .create {
course(’Compiler Construction ’) {

student (’Wirth ’),
student (’John ’)

}
course(’Programming Languages ’) {

student (’Newton ’),
student (’Einstein ’)

}
}
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All the sections of this chapter, but the last one, contains the complete code of some
classes and interfaces to make it easy to understand the text. The last section explains the
convertion of a message passing to a grammar method to regular Cyan code.

E.1 Class CyanMetaobjectLineNumber

package meta. cyanLang ;

import ast. AnnotationArgumentsKind ;
import ast. AnnotationAt ;
import meta. CyanMetaobjectLiteralObject ;
import meta. CyanMetaobjectAtAnnot ;
import meta. IAction_parsing ;
import meta. ICompilerAction_parsing ;

public class CyanMetaobjectLineNumber
extends CyanMetaobjectAtAnnot
implements IAction_parsing {

public CyanMetaobjectLineNumber () {
super(" lineNumber ",

AnnotationArgumentsKind . ZeroParameter );
}

@Override
public StringBuffer
parsing_codeToAdd ( ICompilerAction_parsing compiler ) {

AnnotationAt annot =
this. getAnnotation ();

return new StringBuffer (""
+ annot. getSymbolMetaobjectAnnotation ()

. getLineNumber () );
}
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@Override
public String getPackageOfType () { return "cyan.lang"; }

@Override
public String getPrototypeOfType () {

return "Int";
}

@Override
public boolean isExpression () {

return true;
}

}

E.2 Interface IAbstractCyanCompiler

package meta;

import java.util.List;
import java.util.Set;
import ast. Annotation ;
import ast. CyanPackage ;
import error. FileError ;
import lexer.Lexer;
import saci. CompilerManager ;
import saci. DirectoryKindPPP ;
import saci. NameServer ;
import saci.Tuple2;
import saci.Tuple3;
import saci.Tuple4;
import saci.Tuple5;

public interface IAbstractCyanCompiler {

default String escapeString (String s) {
return Lexer. escapeJavaString (s);

}
default String unescapeString (String s) {
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return Lexer. unescapeJavaString (s);
}
Object getProgramVariable (String variableName );
Set <String > getProgramVariableSet (String variableName );
Tuple2 <FileError , byte []>
readBinaryDataFileFromPackage (String fileName ,

String packageName );

FileError writeTestFileTo ( StringBuffer data ,
String fileName , String dirName );

FileError writeTestFileTo ( StringBuffer data ,
String fileName , String dirName , String packageName );

Tuple5 <FileError , char [], String , String , CyanPackage >
readTextFileFromPackage (

String fileName ,
String extension ,
String packageName ,
DirectoryKindPPP hiddenDirectory ,
int numParameters ,
List <String > realParamList );

default Tuple5 <FileError , char [], String ,
String , CyanPackage >

readTextFileFromPackage (
String fileName ,
String packageName ,
DirectoryKindPPP hiddenDirectory ,
int numParameters ,
List <String > realParamList ) { ...

}

Tuple4 <FileError , char [], String , String >
readTextFileFromProgram (

String fileName ,
String extension ,
DirectoryKindPPP hiddenDirectory ,
int numParameters ,
List <String > realParamList );
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Tuple3 <String , String , CyanPackage >
getAbsolutePathHiddenDirectoryFile (

String fileName , String packageName ,
DirectoryKindPPP hiddenDirectory );

String getPackageNameTest ();

FileError writeTextFile (
char [] charArray ,
String fileName ,
String prototypeFileName ,
String packageName ,
DirectoryKindPPP hiddenDirectory );

FileError writeTextFile (
String str ,
String fileName ,
String prototypeFileName ,
String packageName ,
DirectoryKindPPP hiddenDirectory );

String getPathFileHiddenDirectory (
String prototypeFileName , String packageName ,
DirectoryKindPPP hiddenDirectory );

boolean deleteDirOfTestDir (String dirName );

default String
nextLocalIdentifier () {

return NameServer . nextLocalVariableName ();
}

}

E.3 Interface ICompilerAction_parsing

package meta;

import java.util.List;
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import ast. CompilationUnit ;
import ast. ExprAnyLiteral ;
import ast. MethodDec ;
import ast. ProgramUnit ;
import lexer.Symbol;
import saci. CompilationStep ;
import saci.Tuple2;

public interface ICompilerAction_parsing
extends IAbstractCyanCompiler {

List <List <String >>
getGenericPrototypeArgListList ();

String getCurrentPrototypeName ();
String getCurrentPrototypeId ();
MethodDec getCurrentMethod ();

List <Tuple2 <String , ExprAnyLiteral >>
getFeatureList ();

CompilationUnit getCompilationUnit ();

char [] getText (int offsetLeftCharSeq ,
int offsetRightCharSeq );

ProgramUnit searchPackagePrototype (
String packageNameInstantiation ,
String prototypeNameInstantiation );

void errorAtGenericPrototypeInstantiation (
String errorMessage );

String getPackageNameInstantiation ();

void setPackageNameInstantiation (
String packageNameInstantiation );

String getPrototypeNameInstantiation ();
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void setPrototypeNameInstantiation (
String prototypeNameInstantiation );

int getLineNumberInstantiation ();
void setLineNumberInstantiation (

int lineNumberInstantiation );
int getColumnNumberInstantiation ();
void setColumnNumberInstantiation (

int columnNumberInstantiation );
void error(int lineNumber , String message );
void error(Symbol sym , String message );
void error(int lineNumber , int columnNumber ,

String message );
}

E.4 Metaobject Class CyanMetaobjectShout

package meta. cyanLang ;

import meta. AnnotationArgumentsKind ;
import meta. AttachedDeclarationKind ;
import meta. CyanMetaobjectAtAnnot ;
import meta. IAction_semAn ;
import meta. ICompiler_semAn ;
import meta. WrASTVisitor ;
import meta. WrAnnotationAt ;
import meta.WrEnv;
import meta. WrExprLiteralString ;
import meta. WrMethodDec ;

public class CyanMetaobjectShout extends CyanMetaobjectAtAnnot implements IAction_semAn /*, ICheckDeclaration_afterSemAn */ {

public CyanMetaobjectShout () {
super("shout", AnnotationArgumentsKind . ZeroParameters ,

new AttachedDeclarationKind [] {
AttachedDeclarationKind . METHOD_DEC });

}
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@Override
public StringBuffer semAn_codeToAdd ( ICompiler_semAn compiler_semAn ) {

final WrAnnotationAt annot = this. getAnnotation ();
final WrMethodDec dec = ( WrMethodDec ) annot. getDeclaration ();

dec.accept( new WrASTVisitor () {
@Override
public void visit( WrExprLiteralString node , WrEnv env) {

final StringBuffer strUpper = new StringBuffer ();
final StringBuffer str = node. getStringJavaValue ();
for (int i = 0; i < str.length (); ++i) {

strUpper .append( Character . toUpperCase (str.charAt(i)));
}
replaceStatementByCode (node ,

strUpper , node. getType (), env );
}

}, compiler_semAn .getEnv ());

return null;
}

}

E.5 The Class of Macro assert

package meta. cyanLang ;

import ast. AnnotationMacroCall ;
import ast.Expr;
import ast. ExprIdentStar ;
import ast. ExprMessageSendWithKeywordsToExpr ;
import ast. MessageBinaryOperator ;
import ast.Type;
import error. ErrorKind ;
import lexer.Lexer;
import lexer.Token;
import meta. CyanMetaobjectMacro ;
import meta. ICompilerMacro_parsing ;
import meta. ICompiler_semAn ;
import saci.Env;
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/**

* This class represents macro ’assert ’ which is used as<br>

* <code > assert boolExpr;<code ><br>

* At runtime , if <code >boolExpr </code > is false , an error

message is issued. The program is NOT terminated.

*

@author José

*/

public class CyanMetaobjectMacroAssert
extends CyanMetaobjectMacro {

s
public CyanMetaobjectMacroAssert () {

/*

* there is only one macro keyword

*/

super( new String [] { "assert" },
new String [] { "assert" });

}

/**

* parse the macro call

*/

@Override
public void
parsing_parseMacro ( ICompilerMacro_parsing compiler_parsing ) {

/*

* compiler_parsing.getSymbol () is the lexical

symbol for ’assert ’ from this symbol we

get its line number and column

*/

lineNumberStartMacro = compiler_parsing . getSymbol ()
. getLineNumber ();

offsetStartLine = compiler_parsing . getSymbol ()
. getColumnNumber ();

// get past symbol ’assert ’

compiler_parsing .next ();
/*
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calls the compiler to parse the expression

that should come after ’assert ’. The

expression is kept in field ’assertExpr ’

*/

assertExpr = compiler_parsing .expr ();
/*

if there was any errors when parsing the

expression , returns. Any errors will be

reported back to the Cyan compiler

*/

if ( compiler_parsing . getThereWasErrors () )
return ;

// does the macro ends with ’;’ ?

if ( compiler_parsing . getSymbol (). token !=
Token. SEMICOLON ) {

compiler_parsing .error( compiler_parsing . getSymbol (),
" ’;’ expected ", null ,
ErrorKind . metaobject_error );

return ;
}
else // eats the ’;’

compiler_parsing .next ();
return ;

}

/**

generate code for the macro. The string returned

will replace the macro call

*/

@Override
public StringBuffer
semAn_codeToAdd ( ICompiler_semAn compiler_semAn ) {

// the annotation is the macro call , an object

// of AnnotationMacroCall

AnnotationMacroCall annotation =
( AnnotationMacroCall )
this. getAnnotation ();

// env keeps all the environment of the call:
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// the current method , prototype , etc

Env env = compiler_semAn .getEnv ();
// if there was any errors before the

// macro call , return

if ( env. isThereWasError () )
return null;

// the type of the assert expression should

// be Boolean or Dyn

if ( assertExpr . getType (env) != Type. Boolean &&
assertExpr . getType (env) != Type.Dyn ) {

compiler_semAn .error(
assertExpr . getFirstSymbol (),
" Expression of type Boolean or Dyn expected ");

return null;
}

// the if statement below is not really necessary.

// It just adds a gentle message send if the

// expression is false

Expr firstExpr = null;
if ( assertExpr instanceof

ExprMessageSendWithKeywordsToExpr ) {
if ( (( ExprMessageSendWithKeywordsToExpr )

assertExpr ). getMessage () instanceof
MessageBinaryOperator ) {

MessageBinaryOperator mso =
( MessageBinaryOperator )
(( ExprMessageSendWithKeywordsToExpr )

assertExpr )
. getMessage ();

if ( mso. getkeywordparameterList (). get (0)
. getkeyword (). token == Token.EQ ) {

/*

* something as

* assert s == "a";

*/

firstExpr =
(( ExprMessageSendWithKeywordsToExpr )

assertExpr ). getReceiverExpr ();
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if ( !( firstExpr instanceof
ExprIdentStar ) ) {

firstExpr = null;
}

}
}

}
// the generated code is put in string ’s’.

// the line number of the assert statement

// is recovered from field ’lineNumberStartMacro ’

// Note that method ’asString ’ of ’assertExpr ’

// is used for getting the expression code.

StringBuffer s = new StringBuffer ();
if ( offsetStartLine > CyanMetaobjectMacro

. sizeWhiteSpace )
offsetStartLine = CyanMetaobjectMacro

. sizeWhiteSpace ;
String identSpace = CyanMetaobjectMacro . whiteSpace

. substring (0, offsetStartLine );
s.append("\n");
s.append( identSpace + "if !(");
s.append( assertExpr . asString () + ") {\n");
s.append( identSpace + identSpace +

"\" Assert failed in line " +
lineNumberStartMacro +
" of prototype ’" + annotation

. getPackageOfAnnotation () +
"." + annotation . getPrototypeOfAnnotation () +
" ’\" println ;\n");

String str = Lexer. escapeJavaString ( assertExpr
. asString ());

s.append( identSpace + identSpace +
"\" Assert expression : ’" + str +
" ’\" println ;\n");

if ( firstExpr != null ) {
s.append( identSpace + identSpace + "\"’" +
firstExpr . asString () + "’ = \" print ;\n");
s.append( identSpace + identSpace +

firstExpr . asString () + " println ;\n");
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}
s.append( identSpace + identSpace + "};\n");
return s;

}

private Expr assertExpr ;
private int offsetStartLine ;
private int lineNumberStartMacro ;

}

E.6 Objects Passed as Argument to Grammar Methods
Using the Player prototype of Subsection 2.1.3, a DSL code to play video and

music can be given as a message passing, as shown below.

Player()
playVideo: "Color demo" duration: 30
playVideo: "Reef fish" duration: 120
pause: 10
playMusic: "Bach BC Allegro"
stop:;

The grammarMethod metaobject groups all the arguments of this message into the single
object that follows and passes it to method action:.

[ (
Union<f1,

Tuple<String,
Union<some, Int, none, Any>>,

f2, String,
f3, Int,
f4, Any>() f1: [. "Color demo",

// the duration is a union with tag ’some:’
( Union<some, Int, none, Any>() some: 30 )
.] ),

( Union<f1,
Tuple<String,

Union<some, Int, none, Any>>,
f2, String,
f3, Int,
f4, Any>() f1: [. "Reef fish",
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( Union<some, Int, none, Any>() none: Any )
.] ) ,

( Union<f1,
Tuple<String,

Union<some, Int, none, Any>>,
f2, String,
f3, Int,
f4, Any>() f3: 10 ) ,

( Union<f1,
Tuple<String,

Union<some, Int, none, Any>>,
f2, String,
f3, Int,
f4, Any>() f2: "Bach BC Allegro" ) ,

( Union<f1,
Tuple<String,

Union<some, Int, none, Any>>,
f2, String,
f3, Int,
f4, Any>() f4: Any )

]

Method fi:, i a number, is used for creating union objects. The message passing
Union<f1, Int, f2, String> f1: 0

creates a union object of prototype
Union<f1, Int, f2, String>

whose contents if an Int, 0, associated with tag f1. In the above example, tuples and
arrays are given literally, with the syntax [ ... ] for arrays and [. ... .] for tuples.
In some cases, as in the last but one line, prototype Any is passed as parameter.
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