
The Cyan Object-Oriented Language

José de Oliveira Guimarãesa

aUFSCar, Rod. João L. dos Santos, Km 110, Sorocaba, Brazil

Abstract

Cyan is a statically-typed prototype-based language that supports non-nullable types, partially safe object

initialization, gradual typing, method overloading, anonymous functions, an object-oriented exception han-

dling system, generic types with concepts, and metaprogramming at compile-time through a Metaobject

Protocol. The language offers innovative features that support each of these constructs. The goal is to

increase developer’s productivity without sacrificing security.

Keywords: object-oriented language, metaprogramming, prototype-based language, generic programming,

gradual typing, exception handling system

1. Introduction

Interest in programming language design has increased in recent decades. The new languages incorpo-

rate some features that help produce better and safer code. This includes support for metaprogramming,

gradual typing, constructs that allow more expressive code (less boilerplate code), support for functional

programming and embedded Domain-Specific Languages. The availability of good IDEs and tools (such5

as LLVM [1] and virtual machines) makes it easier to build compilers. Although there are lots of good

languages nowadays, there is still room for improvement on several ubiquitous constructs.

In this article, we present the Cyan object-oriented language that supports innovations in some common

constructs. Cyan programs consist of declarations of prototypes, which are literal objects that play the role

of classes. A prototype defines the structure of its objects as a class, and it is also an object when used10

inside an expression. A prototype has the same structure as its objects. For these reasons, we consider that

Cyan is a prototype-based object-oriented language, although it does not have two characteristics commonly

associated with this type of language: dynamic typing (which is optional in Cyan) and structural reflection at

runtime. The latter allows changes in the structure of objects at runtime. For example, structural reflection

allows adding fields and methods to regular objects and prototypes. Cyan was initially based on the language15

Omega [2], a statically typed prototype-based language that does not support runtime metaprogramming.

Email address: josedeoliveiraguimaraes@gmail.com, jose@ufscar.br (José de Oliveira Guimarães)

Preprint submitted to Journal of LATEX Templates November 7, 2023

Cyan is statically typed with support for gradual typing, compile-time metaprogramming, non-nullable

types, safe object initialization, and generic prototypes. The language considers almost everything as an

object, supports a limited form of pluggable type system [3], and has an innovative object-oriented exception

handling system. Many of these features are implemented using compile-time metaprogramming. Since20

2016, there has been a stable compiler that produces Java source code. That implies that the two languages

interoperate well. The compiler and all the language documentation are available at www.cyan-lang.org.

The remainder of this paper is organized as follows. The next Section shows the basic Cyan syntax

required to understand the rest of the text. Section 3 describes everything related to types in the language:

message passing, inheritance, method overloading, gradual typing, and so forth. The initialization of objects25

and its rules are described in Section 4. Section 5 explains why not all prototypes can be considered as

objects. Generic prototypes are discussed in Section 6. Section 7 presents the object-oriented exception

handling system.

2. Basic Syntax of Cyan

This Section presents the basic syntax of Cyan that is necessary to understand the rest of the paper.30

A class in languages such as Smalltalk [4], Java [5], C♯ [6], and C++ [7] declares the fields and methods

that its instances will have. Hence, a class is a template for the creation of its objects. A class, even when

considered an object, does not have the fields and methods it describes. In Cyan, a prototype is a type and

also a template for the creation of its instances. In addition, when a prototype is used inside an expression,

it is considered an object that has the structure it declares. For example, when used inside an expression,35

prototype Int is an object of type Int which is the same as 0.

assert Int*Int + 1 + Int == 1;

assert String == "";

// call String method ’size ’

assert String size == 0;40

Inside an expression, prototype String has type String and value "". Methods * and + are declared in

prototype Int, and method size is declared in String. The following paragraphs present the basic syntax

and semantics of Cyan, which are fundamental for understanding the rest of the article.

Listing 1 shows a prototype Person in Cyan with one constructor, “init:”. It can also have a parame-

terless init method. Method declaration starts with func, followed either by a single identifier (for unary45

methods, without parameters) or a sequence of

ident: parameters

ident is called a method keyword or just a keyword. There may be more than one method keyword followed

by parameter declarations, as in this example.

2

www.cyan-lang.org

1 package main

2 object Person

3 func init: String name , Int age {

4 self.name = name;

5 self.age = age

6 }

7 func name: String name age: Int age {

8 self.name = name;

9 self.age = age

10 }

11 func getName -> String = name;

12 func setName: String name { self.name = name }

13 func getAge -> Int = age;

14 func setAge: Int age { self.age = age }

15 var String name

16 var Int age

17 end

Listing 1: Person prototype in Cyan

func at: Int line , Int column50

put: String text { ... }

This method is called as in

panel at: 20, 75 put: "A";

This is called a message passing or, more specifically, a keyword message passing. A call without parameters,

such as person getName, is called a unary message passing. The Cyan syntax for method declaration and55

message passing is similar to Smalltalk [4], although with one important difference: in Cyan, after a method

keyword, there may appear zero or more than one formal parameter declaration or, in case of a message

passing, zero or more than one argument. In Smalltalk, every keyword is linked to exactly one parameter.

The return type of a method is given after ->. If not provided, Nil is assumed. Methods are public by

default.60

Prototype Person declares get and set methods for the private fields name and age. Fields are sometimes

referred to as instance variables, data members, or attributes. Fields declared with the Cyan keyword let

3

instead of var are read-only fields; they can only be assigned to in their declarations or in constructors.

Fields declared without var or let are read-only. The fields and methods shared by all objects of the same

prototype are preceded by the keyword shared. A shared method can only access shared fields. self is a65

pseudo-variable that refers to the object that received the message. It is the same as this in Java [5], C♯

[6] and C++ [7] or self in Smalltalk and Swift [8].1

The Java language supports single-class and multiple-interface inheritance. The constraints in Cyan are

the same as those in Java, even though the concept names are different. Let us explain that. In Cyan,

keyword interface is used instead of object to specify a prototype that declares only method signatures70

(methods without bodies). The compiler adds bodies that throw exceptions when called (they should not

be called). Interfaces function primarily as types.

To make the explanation of inheritance precise, in this paragraph non-interface prototypes will be called

ni-prototypes (those declared with “object”). A ni-prototype can inherit from just one other ni-prototype

using the keyword extends (like in Java, where a class can only inherit from a single superclass). However,75

it can inherit from multiple interfaces through keyword implements (as in Java). An interface cannot

implement any other interface, but it can inherit from several other interfaces (as in Java). A ni-prototype

should define all methods declared in its superinterfaces unless it is an abstract prototype (declared with the

keyword abstract before object). Therefore, Cyan supports only single inheritance (in the common use of

these words) because there may be just one superprototype that is not an interface. However, it supports80

multiple inheritance in relation to interfaces. Hereafter, superprototypes that are not interfaces are called

superprototypes.

There is a top-level prototype called Any that is inherited (directly or indirectly) by all prototypes,

except Nil (this prototype will be detailed later). The basic prototypes of Cyan are Byte, Short, Int, Long,

Char, Boolean, Float, Double, and String. They all inherit from Any and, therefore, are reference types.85

Conceptually, a variable of type Int does not hold an integer. Instead, it refers to a dynamically allocated

Int object. Similar to Scala [9] and unlike boxed objects in Java, methods == and != compare the values of

the basic type objects (not their pointers).

For every init and init: constructor of a prototype T, the compiler adds methods

func new -> T { ... }90

func new: paramDeclaration -> T { ... }

to T, which are responsible for allocating memory to the object and initializing it. Hence, object creation

in Cyan is achieved using methods. This is unlike most class-based object-oriented languages because they

use operator new or special constructs. As a result, a new or new method can be called using runtime

metaprogramming as any other method.95

1The language from Apple, not the original Swift language (http://www.swift-lang.org).

4

The name of a unary method is its sole identifier, such as getName. The name of a keyword method is

the concatenation of all its keyword names, each followed by the number of parameters and a white space.

func at: Int n, String s

with: Person p { ... }

The name of this method is "at:2 with:1". The selector of a unary method is its identifier. The selector100

of a keyword method is the concatenation of its keywords. In the last example, the selector is “at:with:”.

A subprototype can override an inherited method with the same name by using the keyword override,

which is required. The parameter types in the subprototype method should be equal to the corresponding

types in the superprototype method, unless keyword overload is used (explained later). The return type

of the subprototype method can be a subtype of the return type of the superprototype method (covariant105

rule [10]). Because the name of a method uses only its keywords and the number of parameters associated

with each keyword, the compiler can differentiate between two methods without examining any type.

Cyan supports compile-time objects called metaobjects that can change the compilation process by

temporarily adding code (the source files are not altered) and doing additional checks beyond those made by

the compiler. The Cyan Metaobject Protocol (MOP) [11] describes the interactions between metaobjects,110

the compiler, and the source code. Although the Cyan MOP is not the main subject of this article, some

basic knowledge about metaobjects should be explained because many Cyan features benefit from and

interact with them. In the source code, a metaobject is linked to an annotation attached to a declaration

(prototype, method, field), statement, or other syntactic elements. In the following example, immutable,

init, and restrictTo are annotations.115

@immutable object Earth ... end

@init(name , age) object Person ... end

// inside a method

var Int@restrictTo {* self >= 0 *} age;

An annotation can have arguments such as name and age in init and an attached DSL between a pair of120

sequences of symbols, usually {* and *}, as in restrictTo. In this example, immutable checks whether the

prototype is immutable, init generates a constructor for Person, and restrictTo inserts checks to ensure

that no negative value is assigned to age. It is important to stress that, for each annotation, there is an

associated metaobject, and vice versa.

3. Type Checking and Gradual Typing125

The main Cyan types are shown in Figure Figure 1. A dashed line indicates that the bottom type is a

subtype of the top type, although no inheritance relationship exists between them. A type is a subprototype

5

Dyn

NilAny

PersonInt

Figure 1: Type and prototype hierarchies in Cyan

of a type that is above it if there is a regular line between them. Subprototypes are always subtypes.

Type Dyn is the supertype of all prototypes and even of all Java classes when mixing Cyan and Java code.

Dyn is not a prototype, and there is no source code associated with it. For these reasons, it is called a virtual130

type. Dyn cannot be used inside expressions and it disables type checking (more on that later). Prototype

Nil cannot be inherited, and it does not inherit from any other. A prototype that does not explicitly inherit

from any prototype inherits from Any. Therefore, Any is the top-level prototype. Figure 1 exemplifies that

every basic type, such as Int, and every developer-defined prototype (without an explicit superprototype),

such as Person, inherits from Any. The decisions associated with the choice of this hierarchy design will be135

presented later.

Union and Intersection Types. A union type is defined as two or more types separated by |, as shown

in this example:

var String|Int|Any|Nil every;

var Int|Dyn id;140

In a union T1|T2|...|Tn, supertypes should appear later in the list (Ti cannot be supertype of Tj if i < j).

Therefore, union Any|Int is illegal. This restriction is intended to make unions easier to read.

An intersection type is composed of interface names separated by &, as in

var Closeable & Printable ca;

The compiler guarantees that at runtime, in an assignment ca = expr, the expr type implements both145

interfaces. Unions and intersections are considered virtual types because there are no source code associated

with them.

Subtyping Rules. A Cyan type is either a prototype (including Nil), a union type, an intersection type,

or Dyn. A type S is a subtype of T if an object of S can be used whenever an object of T is expected. The

Cyan subtyping rules are given next in which S <: T means that S is subtype of T.150

6

(a) T <: T for every type T.

(b) If prototype S inherits from prototype T, then S <: T.

(c) If a prototype S implements interface I, then S <: I.

(d) if S <: T and T <: U, then S <: U.

(e) If, for each Uj , 1 ⩽ j ⩽ m, there is a Ti, 1 ⩽ i ⩽ n, such that Uj <: Ti, then U1|U2|...|Um <:155

T1|T2| ... |Tn. There are two special cases of this rule: (i) if Ui <: T for every 1 ⩽ i ⩽ m, then

U1|U2|...|Um <: T and (ii) if there is an i, 1 ⩽ i ⩽ n, for which U <: Ti, then U <: T1|T2|...|Tn.

(f) If, for each Ti, 1 ⩽ i ⩽ n, there is a Uj , 1 ⩽ j ⩽ m, such that Uj <: Ti, then U1&U2&...&Um <: T1&T2&

... &Tn. There are two special cases of this rule: (i) if, for each i, 1 ⩽ i ⩽ n, U <: Ti, then U <:

T1&T2&...&Tn and (ii) if, for some j, 1 ⩽ j ⩽ m, Uj <: T, then U1&U2&...&Um <: T.160

(g) T <: Dyn for every type T.

(h) Nil <: Dyn and, if T <: Nil, then T is Nil (Nil has no subtypes but itself).

When a method has no explicit return type, it returns Nil. As this prototype does not have subtypes,

the return value is always the same. Hence, the compiler knows the value returned at the call site.

Safe Downcasts. Downcasting is the conversion of an expression whose type is T to a subtype S of T.165

There are two statements for safe downcast in Cyan: type-case and cast. The syntax of type-case is:

type expr case T v { ... }

where the case clause can be repeated several times. At runtime, if expr can be cast to T, its value is

assigned to v, and the statements inside ... are executed. The cast test is done in the textual order

of the case clauses. The cast statement is a short form of type-case. Statements type-case and cast170

are the only ways of casting a reference to a union type value to a more specific type (such as casting

String|Nil to String).

In Cyan, Nil is not a subtype of any prototype. Therefore, this object can only be assigned to a variable

if its type is Dyn, Nil, or a union in which one of the types is Nil, such as in Int|Nil. To retrieve the

possible non-Nil value referenced by the variable, we use type-case or cast statements. Hence, Cyan is a175

Nil-safe language; runtime errors never happen because of Nil and prototypes.

Method Overloading. A language supports method overloading if two or more methods declared in the

same class or prototype have the same name. This is usually a source of confusion for the developer [12]

[13] because it is not always clear which methods are associated with a message passing. Some, but not all,

reasons for this follow.180

(a) For a message passing, two methods declared in the inheritance hierarchy can be called for a given

argument. A more specific method in a superclass and a closer one in a subclass. An example is shown

7

1 // Y inherits from X

2 // X defines void m(A obj) and

3 // Y defines void m(Object obj)

4 X x = new Y();

5 x.m(new A());

6 Y y = new Y();

7 y.m(new A());

8 y.m((Object) new A());

Listing 2: This code uses Java syntax. Its semantics vary from language to language.

in Listing 2 using the Java syntax. In it, a class X defines a method void m(A obj), and its subclass Y

defines a method void m(Object obj). Which method should be called in the message passing of line

7? The nearest one, in Y, or the more adequate method, in superclass X? In the general case, there may185

be several suitable methods for a message passing, considering subtype relationships between the real

arguments of the message and the formal parameters of the method.

(b) Two message passings that use the same objects at runtime may call different methods because at

compile time the objects have different types. In Listing 2, lines 7 and 8 may call different methods

(they do in Java).190

(c) For a message passing, there may not be a method with the same formal parameter types as the real

arguments of the message. But there may be various adequate methods if automatic casting between

basic types is allowed. For example, x.p(0, 1) could call a method p(double, byte) or p(byte,

double) (among many other possibilities).

(d) Default values for parameters and overloading may create ambiguity and confusion.195

void m(Int a, Int b = 1) { ... }

void m(Int a) { ... }

Which method should be called for m(0)?

(e) Interfaces (like those of Java and Kotlin) and multiple inheritance makes the confusion even worse.

Cyan restricts the declaration of overloaded methods in several ways to avoid some problems with this200

construction. When a method is declared with keyword overload, the prototype may declare several

methods with the same name but different parameter types. The return type of all methods with the same

name in a prototype should be equal. The overloaded methods should appear after the first method with

keyword overload. Hence, this is legal:

8

overload205

func at: Int n put: Student s { ... }

func at: Any n put: Person p { ... }

An overloaded method can be overridden in a subprototype. The parameter types of the overridden methods

may differ from those of the superprototype. However, the return types of all overridden subprototype

methods should be equal.210

At runtime, a message passing triggers a search for an adequate method in the prototype of the receiver

object. This search is trivial for regular methods and a bit more complex for overloaded methods. If an

overloaded method can be called, the search also starts at the prototype of the object and looks for a method

there with the expected name that can accept the real arguments. That is, if the type of each real argument

is a subtype of each formal method argument. The first method tested is the first one textually declared in215

the prototype. The search for an adequate method continues in textual order. If the method is not found in

the prototype of the receiver object, the search continues in the superprototype. A method is always found

at runtime because the compiler ensures that. Note two important things:

(a) the compile-time types of the message passing arguments and of the receiver object are not important

in the search for a method;220

(b) in a prototype, the runtime search for a method follows the textually declared order of the methods.

A consequence of this search mechanism is that Cyan supports a restricted version of multi-methods, like

those of CLOS [14], through overloaded methods. The great difference from true multi-methods is that the

methods are tied to a hierarchy of prototypes, and there is a special place for the message receiver.

The design of overloaded methods in Cyan was oriented to avoid the usual problems of this feature. Was225

it successful? Let us examine each of the causes of misinterpretations. The three first ones, (a), (b), and

(c), are caused by the use of compile-time types for selecting a method at runtime. This does not occur

in Cyan because the compile-time types of arguments are never important when selecting a method to be

called at runtime. Issue (c) is also avoided because there is no automatic casting between basic types. Cyan

does not support default values for parameters. Thus, the issue (d) does not happen. Item (e) cannot be230

avoided. However, this issue is not serious because the language does not support multiple inheritance, and

overloaded methods cannot be defined in interfaces. Keyword overload cannot be used in interfaces, and a

prototype cannot implement interfaces declaring methods overloaded in it.

Some languages, such as Java, choose the method to be called at compile-time (if inheritance is not

used) based on the types of the message passing arguments. This is better for efficiency reasons because the235

compiler reduces the number of methods that can be called at runtime. There is more static information

that is known by both the compiler and the developer. In this sense, Java and similar languages are more

readable than Cyan.

9

The method to be called, in all object-oriented languages, depends on the type of the receiver argument.

In languages supporting multi-methods, the method to be called depends on all argument types. That240

means runtime information is more important than in languages that do not support this mechanism. Cyan

tries to give precedence to runtime information in such a way that the developer is never in doubt if the

method to be called for a message passing will be decided based on runtime types of objects or compile-time

types. It is always based on runtime types.

Gradual Typing. Cyan supports gradual typing [15] [16], which allows a mixture of dynamically typed245

and statically typed code in the same program, even in the same expression. Expressions of type Dyn can

be mixed with expressions of other types. The compiler will do all possible type checkings and insert code

to do the checks that can only be done at runtime.

var Dyn dyn = 0;

var extremes = [’a’, ’z’];250

var ch = extremes at: dyn*2;

assert ch == ’a’;

The message passing dyn*2 has type Dyn. However, extremes has type Array<Char> and the compiler is

able to deduce that to ch is assigned a Char value. The compiler can calculate the return type of at:

of Array<Char> because all methods with the same name should have the same return type. This design255

decision helps contain the spread of Dyn types in expressions.

The compiler stops doing type checking and inserts code for runtime type checking in two situations:

(a) an expression of type Dyn is used where an expression of type T (different from Dyn) is expected. The

compiler inserts code that checks if the object resulting from the expression has a type that is a subtype

of T. For example, in an assignment of the kind “T = Dyn” or when an expression of type Dyn is used260

after the keyword if or while;

(b) a message passing whose receiver has type Dyn at compile time. The compiler inserts a test to check if,

at runtime, the object has the method corresponding to the message passing.

To make dynamically-typed programming in Cyan easy, the developer does not need to supply type Dyn

on two occasions: when declaring method parameters and in the declaration of local variables (without265

assigning an expression to the variable).

// n has type Dyn

func at: n with: String s {

var k; // has type Dyn

var m = 0; // has type Int270

...

10

}

One of the goals of gradual typing is to make it easy for the developer to code the program using dynamic

typing and later convert the program to static typing, at least partially. This is done by replacing type Dyn

with another type (a union or a real prototype) in the declaration of local variables, parameters, fields (called275

collectively variables), and in the return type of methods. After that, the compiler can associate non-Dyn

types with some expressions that had previously type Dyn. This replacement can cause compile-time errors,

and the code may need to be corrected by the developer. However, we set a reasonable language design

goal that, when there are no compile-time errors, the semantics of the new program should not be different

from the old one. Let us study whether this goal was achieved or not. Type changes occur in variables and280

method return types. This also causes expressions to change types, which influences:

(a) statements checked at compile time, such as assignments, if statements, and method return statements.

By design, their semantics are not attached to the static type of the expressions or variables used;

(b) message passings. The receiver and message arguments may change types. The semantics is not changed

because the runtime search for a method after a message passing does not use the static type of the285

expressions. This is true even if the method is overloaded.

To ease the transition from dynamic to static typing, Nil is used as the return type of methods that do

not declare a return type. Hence, we can always assign the value returned by a method to a variable of type

Dyn, even if the return type is unknown at compile time.

As a complement to gradual typing, Cyan offers two alternative mechanisms for message passing. The290

first one allows the calling of a method using its name as a string (obj `messageAsString: args). The

second one suspends compile-time type checking for the message passing when the message keywords or the

unary message name is preceded by ?, as in obj ?at: 0.

Anonymous Functions. An anonymous function (or just function) with parameters of types T1, T2, ...,

Tn and a return type R is defined as295

{ (: T1 t1, ... Tn tn -> R :) /* stats */ }

The compiler transforms this function into a hidden prototype that inherits from Function<T1, T2, ... Tn, R>

which is an instantiation of a generic prototype (to be seen later). The hidden prototype overrides an eval

(no parameters) or eval: method inherited from Function<...>. The compiler puts inside this method

the statements stats of the function.300

The code inside an anonymous function can access variables and fields visible at the static scope of

its declaration. Keyword return is used to return a value from a method. It cannot be used inside an

anonymous function. A function returns a value by supplying an expression after ^ as in the code

var zero = { ^0 };

11

1 object Prod(Int &product) extends Function <Int , Nil >

2 override

3 func eval: Int x {

4 product = product * x;

5 }

6 end

Listing 3: Prod is an context object

The code of anonymous functions cannot be reused because they are literal objects. Context objects are305

a generalization of functions in which fields can be bound to local variables and fields visible at the creation

of an object. Listing 3 shows a context object Prod that inherits from Function<Int, Nil>, the type of

functions that take an Int as parameter and returns Nil. Prod declares a field product preceded by &,

which suggests that this field is some kind of reference. It is, and it refers to the variable or field passed as

a parameter at the object creation time:310

var p = 1;

// calls Prod passing every array element as an argument

[2, 3, 5] foreach: Prod(p);

assert p == 30;

Any changes to the field product of Prod are immediately reflected in the local variable p. Context objects315

cannot cause runtime errors. There will never be a case in which a local variable removed from the stack is

referenced in a context object.

Related Works. Unions, intersections, Dyn, Any, Nil, and the subtyping rules of Cyan are not novelties.

All or some of these concepts appear in several languages, such as C♯ [6], Kotlin [17], Ceylon [18], Scala [9],

and Scala 3 [19]. However, there are many differences between Cyan and other statically typed languages320

that support some form of null values. In Cyan, (a) there is no bottom type such as Never of Dart, null

of Java, or Nothing of Scala; (b) like in Smalltalk and Dart, and unlike most statically typed languages,

Nil is a real type (there are methods defined in it);2 and (c) the return type of methods that do not return

anything is Nil. The last item is particularly important because the caller knows that the return value can

only be the object Nil (this prototype has no subprototypes).3325

By its definition, method overloading causes uncertainty because it associates two or more methods with

the same name (they can be considered a single method with numerous implementations). The confusion

2Even its source code is available!
3For efficiency reasons, the generated code does not really return object Nil.

12

increases when the methods belong to different classes and interfaces that are inherited and implemented.

Cyan limits this problem by: (a) demanding that the top-level declaration of an overloaded method be

preceded by the keyword overload; (b) prohibiting overloaded methods in interfaces. In any object-oriented330

language, the method called at runtime because of a message passing is always the most specific in the

receiver class hierarchy. The design of method overloading in Cyan ensures that this is valid even when

using overloaded methods.

Gradual typing in Cyan is rather conventional, except for one point: the semantics is not changed when

types are added or removed from the code. We have seen that in overloaded methods: the runtime search335

does not use the compile-time types. The meaning of all other statements of the language remains the same

when Dyn is replaced by a prototype, and vice versa. This can be checked by a tedious process of examining

all statements (not done here).

With environmental acquisition [20], objects can acquire behaviors from their containers at runtime. As

an example, a Door object of a car can acquire its color from the Car object in which it is part of. This specific340

example is simulated in Cyan using context objects (prototypes with reference fields). In the constructor of

the prototype Car, each Door object would be created by passing the field color as an argument. Prototype

Door could be declared as

object Door(Int &color)

Any changes in the car color would be reflected in each door object.345

To our knowledge, context objects are not directly related to any construction of other languages. They

can be simulated in a language that allows inheritance from function types and supports C-like pointers. In

the example of Listing 3, Prod inherits from Function<Int, Nil> (a function type) and product is a field

implemented as a pointer to an Int. The importance of context objects is that they permit the safe reuse

of code. Instead of using an anonymous function in one place, the developer can put its code in the eval:350

method of a context object reused multiple times. Even the access to local variables can be abstracted in

the context object. Of course, this code reuse can be done using regular objects, albeit in a more complex

way.

4. Object Initialization

Prototypes have fields, which are instance fields or instance variables, and shared fields, shared by all355

objects of the same prototype. Two different mechanisms initialize these two categories. Let us study

non-shared fields first.

Initialization of Object Fields . Fields are initialized in their declarations or in methods init or init:,

which are called constructors. The latter should have at least one parameter. Every init and init: method

should initialize every field that is not set in its declaration. The declaration of a field can assign to it a Safe360

13

1 object Dangerous

2 func init {

3 LeakSelf leak: self;

4 liquid = 0;

5 }

6 func getLiquid -> Int = liquid;

7 var Int liquid;

8 end

Listing 4: Leaking self

Expression (SE) that is a basic type (such as Int), a basic value optionally preceded by a unary operator

(5 or -5), a literal array, a map, a tuple, or an object creation. The arguments or elements of these arrays,

maps, etc should be SEs (such as Array<Char>(4), 4 is a SE).

A prototype may not define any constructors if all fields are initialized in their declarations. In this case,

the compiler creates an empty init method for it. If a superprototype S of a prototype P defines an init:365

but not an init method, every P constructor should call the method init: of S as its first statement.

The compiler inserts a call to init of S in P constructors if the superprototype does not define any init:

method.

One problem with object initialization is self leakage, which is to pass it as a parameter to a method

inside the constructor. Then the method can use an uninitialized field of self. As an example of this case,370

in Listing 4, the constructor calls method leak: of LeakSelf before initializing the field liquid. If method

leak: calls method getLiquid, it would access an uninitialized liquid field (as will be seen, the compiler

issues an error in this example). To prevent this and other problems, there are restrictions on the statements

inside constructors:

(a) a field can only be used in expressions after it has been initialized;375

(b) self can only be used in two situations: (i) the prototype is final (it cannot be inherited) and self

appears after statements that initialize all fields; or (ii) self is the receiver of a message passing in

which the method to be called is preceded by the annotation

@accessOnlySharedFields

The metaobject associated with this annotation ensures that the annotated method accesses only shared380

fields and does not leak self. This method can be overridden in subprototypes.

If these rules were not obeyed, a field could be used before its initialization.

14

Method Overloading for init: . There are special rules for constructor overloading in Cyan. First,

the keyword overload does not need to be used because init and init: methods cannot be overridden

in subprototypes. Hence, the compiler knows which methods should be called at runtime. There may be385

several constructors with the same number of parameters. However, for every two init: methods with the

same number of parameters of the same prototype, there should be at least one n such that the type of the

nth parameter of a method should not be a subtype or supertype of the type of the nth parameter of the

other method. This avoids any ambiguity in the call to an init: method.

Initialization of Shared Fields . Every shared field should be initialized either in its declaration or in390

a special private method called initShared. In both places, only Restricted Safe Expressions (RSE) can

be assigned to shared fields. An RSE is defined as a SE except that only object creations from package

cyan.lang prototypes are allowed. The initShared method cannot have any statements that are not

initializations of shared fields.

Related Works . Any attempt to solve the initialization problem locally is doomed to failure. Its causes395

are non-local to a prototype because objects may reference each other. Objects in a cycle of references

should be set up simultaneously.

A group of objects that should be simultaneously initialized go through a series of states, starting with

“no field has a value” and ending with “all fields of all objects have a value” [21]. In each state, only some

object methods are available, which are those that only access the fields already set. These are the methods400

that can be called to help with the initialization process. Therefore, a mechanism for object initialization that

takes care of all possible cases should link methods to the fields they access, clearly breaking encapsulation.

There are other elements to consider:

(a) languages supporting null-safety do not allow null or equivalent values to be temporarily assigned to

non-null fields during the initialization;405

(b) in the initialization of a cyclic object structure, at least one object should be used before it is fully

initialized;4

(c) immutable objects demand each field be assigned precisely one time;

(d) invariants inside and between objects should be kept;

(e) the leaking of self and message passings to self inside a constructor may call methods that access410

non-initialized fields;

(f) the number and classes of the objects that should be simultaneously initialized may not be known at

compile time;

4If objects x and y should refer to each other, one of them should be passed to the constructor of the other before being

fully initialized.

15

(g) the combination of all the above elements in a sole initialization.

There are several proposals [22] [23] [24] [25] [26] [27] that address some issues related to object initial-415

ization. They rely on annotations in the code and code analysis to prevent the full use of partially initialized

objects.

Cyan provides mechanisms that prevent most problems associated with unsafe object initialization.

These mechanisms are: (a) annotation accessOnlySharedFields; (b) limitations on the expressions that

can be assigned to fields; and (c) restrictions on accesses to fields and self. In our limited experience,420

these mechanisms are not a burden to developers, since most constructors are simple. According to a Java

data set studied by Gil and Shragai [28], only 8% of constructors can potentially send messages to this

and, hence, call methods in subclasses. In practice, subclass methods are called inside constructors in only

1% to 2% of the cases. This is because either the class is not inherited or the methods are not overridden

in subclasses. These numbers seem to suggest that constructors, in general, do not need to process their425

arguments. If we extrapolate these numbers to Cyan, which uses a Java-like inheritance mechanism, we can

conclude that the accessOnlySharedFields annotation will be used in a few cases.

None of the solutions to the initialization problem are easy to use and cover all cases nicely. This is

because of its inherent complexity. The Cyan solution is minimal and works in most cases we have found in

practice. When it does not work properly, the developer is forced to change some field types to unions T|Nil430

(instead of just T) and make the initialization in (usually) two steps. The first one assigns Nil to some fields

in the constructor, and the second step assigns a non-Nil object to them. It is important to note that Cyan

partially solves the initialization problem. A field can be used before initialization in the following scenario:

a prototype InitBug declares a non-shared field value and defines only an init: Int constructor. In the

first line of the following example, the prototype method returns a reference to InitBug.435

a = InitBug (5) prototype;

a getValue println;

In the second line, the field value is accessed without being initialized because there is no init constructor.

5. Limitations for Prototypes

Class-based languages that consider everything as objects [4] are forced to supply a class for a class,440

its metaclass. And then a class for a metaclass, and so on, which gives rise to a problem called “the

infinite regression of metaclasses” [29]. In a prototype-based language, a prototype is both a template

for the creation of objects and an object itself, thus avoiding infinite regression. However, a new issue is

created, described in this Section, which is a tension between safe object initialization and the main feature

of prototype-based programming, which is to consider prototypes as ready-to-use objects. Without loss of445

16

generality, assume that only constructors do object initialization. If all or some fields are initialized in their

declarations, this is the same as adding all declaration assignments at the start of every constructor. If

there is no developer-declared constructor, all fields should have been initialized in their declarations. The

compiler uses these initializations to create a parameterless constructor.

Non-prototype objects are created by developer code that can choose the arguments for constructors.450

That is not the case with prototypes when considered as objects. They should be created by the Runtime

System (RTS) before their first use using an init or an init: method. If there is no parameterless init

constructor, the RTS should choose default arguments for one of the init: methods. For example, the

empty string and 0 would be used as arguments for a Planet constructor, representing the name and mass

of a planet. Clearly, default arguments may result in the assignment of non-valid values to fields.455

There is another problem with this solution: which values should be used as arguments if the corre-

sponding types were created by the developer? It cannot be Nil because all types but some unions are

non-nullable. One solution would be to use the prototype itself. For example, prototype Company would be

used if a constructor of prototype Employee took a Company parameter. Again, non-valid values could be

assigned to fields, and object invariants could not be obeyed. We conclude that there is a conflict between460

the ability to use prototypes as objects and safe object initialization.

Some prototypes can only be properly initialized with constructors that take parameters. Because of

that, Cyan does not consider prototypes without an init constructor as objects, except in a few special

situations:

(a) the prototype receives a message whose name is new or new:;465

(b) the prototype receives a message whose corresponding method is inherited from Any and annotated with

canBeCalledOnPrototypes. The compiler guarantees that the method does not access any prototype

field. Among these methods, there are isA: (returns true if the receiver is an object of the argument,

which should be a prototype) and several methods declared in Any for introspective runtime reflection

(they give information on the prototype itself);470

(c) the prototype is Nil.

In all these cases, no field of the prototype is accessed, and hence there is no risk of a runtime error. We

consider Cyan a prototype-based language because prototypes with an init method can be used as objects.

However, someone could consider that, because of this restriction, Cyan is in the intercession of prototype

and class-based languages (or none of them).475

6. Generic Prototypes

A generic prototype takes one or more parameters that allow the generation of a specialized version of

the prototype at compile time. An example is Box of Listing 5. An instantiation of Box creates a new and

17

1 package main

2 // creates a constructor

3 @init(value)

4 object Box <T>

5 // create get and set methods

6 @property var T value

7 end

Listing 5: The generic prototype Box

specialized version of this prototype by supplying a real argument at compile time:

var intBox = Box <Int > new: 0;480

var Box <String > strBox;

Here, Int and String are the real arguments to Box. For each set of arguments, different prototypes are

created that do not relate to each other.

Generic prototypes may occasionally use the concept of identifier, which is a sequence of letters and

numbers starting with a lowercase letter. For example, write, speed, and year2022. These will be called485

lowercase identifiers, which are never confused with types. A type name starts with an uppercase letter

optionally preceded by the package name as Person or main.Tree. Both lowercase identifiers and types

can be real arguments for generic prototypes. The documentation of a prototype defines whether a certain

parameter should be one or the other.

In the instantiation process, the compiler replaces a formal parameter by the corresponding real ar-490

gument, in the body of the prototype, if the parameter appears: (a) where a type is expected (including

expressions); (b) in an annotation (either as an argument or in the attached annotation text); (c) after #

(#str is the same as "str"); (d) as a method name.

A real argument for a generic prototype instantiation may be a lowercase identifier. For example, the

instantiation MyList<Int, speed> may create a list optimized for speed. A metaobject associated with an495

annotation inside MyList would create the prototype code based on the second argument, which could be

speed or space.

A prototype that is not generic may be declared with the generic prototype syntax, such as Box<Char>

of Listing 6. If each parameter between < and > is a type or a lowercase identifier, as in this example, we

have a generic prototype with real arguments (GPRA). The compiler differentiates between a GPRA and a500

regular prototype using the file name in which the prototype is (Box(Char).cyan and Box(1).cyan). The

same base name Box can be used for generic prototypes with different numbers of parameters (there could

18

1 package main

2 @init(value)

3 object Box <Char >

4 func toUpperCase { value = value toUpperCase }

5 @property var Char value

6 end

Listing 6: The generic prototype with real arguments Box<Char>

be, in package main, a Box with two parameters, for example). A generic prototype with a varying number

of arguments (GPV) is declared as

package cyan.lang505

@createTuple

object Tuple <T+> end

In an instantiation of this prototype, the real arguments can only be accessed through a metaobject. The

above code is the full definition of prototype Tuple used for the creation of literal tuples. The methods and

fields are created by metaobject createTuple based on the real arguments. For example, when the compiler510

finds

[. 0, "zero", ’0’ .]

it creates an object of

Tuple <Int , String , Char >

During the instantiation, metaobject createTuple generates the fields and methods of the prototype.515

A package may have regular generic prototypes (with various numbers of parameters), GPRA, and GPV

with the same base name. In an instantiation, like Box<Int> or Box<Char>, the compiler will look for an

adequate prototype in the following order: list of GPRA, regular generic prototypes, and GPV.

Concepts [30] [31] are constraints on real arguments to generic classes, functions, and prototypes. An

attempt to pass an invalid argument to a generic structure results in a compile-time error. Cyan itself does520

not support concepts, which are implemented through metaobject concept. Listing 7 shows a new version

of the generic prototype Box with the annotation concept. In line 3, the metaobject demands that the

real argument T have a method < with the given signature.5 If the requirement is not satisfied, there is a

compilation error issued by the metaobject. There may be a sequence of instantiations that leads to Box<T>.

5The signature of a method is composed of its keywords, parameter types, and return type.

19

1 package main

2 @concept {*

3 T has [func < T -> Boolean]

4 *}

5 @init(value)

6 object Box <T>

7 func < (Box <T> other) -> Boolean =

8 value < other getValue;

9 @property var T value

10 end

Listing 7: Box with annotation concept

For example, prototype Program instantiates A<Int, Person> that instantiates B<Person> that instantiates525

Box<Person> that causes the error. The compiler shows this sequence in the error message and shows the

filename and line number of each instantiation.

The concept language of the metaobject concept has several kinds of statements that test whether a

certain condition is satisfied or not. The types used may be formal generic prototype parameters (as T),

regular prototypes (as String or Array<Int>), or calls to the compile-time function typeof (which returns530

the type of an expression). The available statements of the concept language test whether: two types are

equal; a type implements an interface; a prototype is a superprototype or subprototype of another; a type

is an interface or a non-interface prototype; a type declares a list of methods (used in the Box example); a

type is in a list of prototypes; a generic prototype parameter is a lowercase identifier; the negation of any of

these statements is true. Furthermore, a file with concept language code may be imported, which allows the535

reuse of concepts. The concept metaobject also supports axioms, which automatically generate test cases

in some special directories managed by the compiler.

Related Works. Concepts are supported by languages G [32], C++ [33], JavaGI [34], Java [5], Scala [35]

[36], C♯cpt [37], Haskell [38], Rust [39], C♯ [6], Swift [8], and Genus [40]. These languages are vastly different

in the level of concept support and in the features they offer, as verified by Belyakova [41], Garcia et al [42],540

and Siek [43]. The comparisons made by these authors are not repeated here (that would require a whole

article). Instead, we emphasize what is already supported in Cyan [44]. Metaobject concept supports most

features of concepts of the languages cited above except:

(a) modeling. A type may model a concept in two different ways. That is, there is more than one way for

a type to adapt to a concept (< for strings may use lexicographic order or just the size of the string).545

20

This is supported by C♯cpt and Genus;

(b) retroactive modeling, to adapt a type to a concept after its release. For example, supplying a method

to a class through extension methods. This is supported by C♯cpt, Genus, Rust, Swift, Haskell, G, and

JavaGI;

(c) associated types, which are types derived from the generic prototype parameters (a concept can place550

restrictions on types of formal method parameters, for example). This is supported by Haskell, Scala,

Rust, Swift, G, and C♯cpt. Cyan supports associated types only partially.

Some characteristics of the concept metaobject that are unique to Cyan or supported by only a few

languages are:

(a) axioms, which are used for generating test cases (also supported by Magnolia [45]);555

(b) customization of error messages (the custom message can be put after the concept statement);

(c) the developer can change it; she or he can implement his or her own concept metaobject. Unlike all other

languages we know, concepts are not part of the language. Since metaobjects have access to the AST

of the prototype, almost everything can be checked by the associated metaobject DSL code (written in

the concept language);560

(d) the concept metaobject is not limited to generic prototypes. Its annotations can also be used in non-

generic prototypes (as C++ concepts), thus playing the role of a compile-time specification language.

Generic prototypes in Cyan benefit from metaprogramming. Metaobjects are used for dealing with a

varying number of parameters and generating code. This allows the creation of type-specific code for each

instantiation. As an example, a metaobject creates methods for the Tuple prototype based on its real type565

arguments. Another interesting example is the createArrayMethods annotation that is attached to generic

prototype Array. At compile time, the metaobject associated with this annotation adds some methods to

the prototype, such as hashCode, asString:, and sort (if the type parameter defines a method <=>).

7. The Exception Handling System

The exception handling system (EHS) of Cyan was based on that of Green [46] [47], although with several570

improvements. Statement

throw expr

throws the exception expr, whose type should be a prototype inheriting from prototype CyException of

package cyan.lang.

The format of the try-catch statement in Cyan is shown in Listing 8. After each catch clause, there575

should appear an expression called the catch expression. Usually, this expression is an anonymous func-

tion, as shown in Listing 9. In this case, both the syntax and the semantics of Cyan are very similar to

21

try

statement -list

catch expr1

catch expr2

...

catch exprN

finally {

statement -list

}

Listing 8: The try-catch statement

Java/C++/C♯/etc. In particular, the statements of the finally clause (see Listing 8) are always executed,

even if an exception was thrown and no catch clause caught it. Both the catch clauses and the finally

clause are optional, but there should be at least one of them.580

Let us explain how the example of Listing 9 works. Exceptions are thrown in lines 4 and 7. In line 4,

prototype ExcDivZero, which is an expression, is thrown.6 In line 7, the negative number is passed to the

constructor of ExcNegNumber.

At runtime, if exception ExcNegNumber is thrown (line 7 is executed), the try-catch statement searches,

among the objects of the catch clauses, for one that defines an eval: method that accepts an argument of585

type ExcNegNumber. Note that both ExcNegNumber and ExcNegNumber should inherit from CyException.

The expression of the catch clause in line 10 is an anonymous function that declares a method

func eval: ExcDivZero e { "Division by 0" println }

Since ExcNegNumber is not a subprototype of ExcDivZero (assume this), the search continues in the next

catch object (line 13), which declares method590

func eval: ExcNegNumber e {

Out println: (

"Illegal negative number: " ++ (e getNumber));

}

This method can accept an argument of type ExcNegNumber. Hence, it is called to treat the exception. If595

the catch expressions are all anonymous functions, the semantics is exactly the same as in the languages

Java/C++/C♯. The novelty in Cyan is that the catch expressions do not need to be functions. They can be

6There is no need to create a new object because there is no information associated with the exception.

22

1 ...

2 try

3 if num == 0 {

4 throw ExcDivZero

5 }

6 if num < 0 {

7 throw ExcNegNumber(num)

8 }

9 share = value/num;

10 catch { (: ExcDivZero e :)

11 "Division by 0" println

12 }

13 catch { (: ExcNegNumber e :)

14 Out println: (

15 "Illegal negative number: " ++ (e getNumber));

16 };

Listing 9: Catching an exception

23

any expressions whose types declare at least one eval: method that accepts a subprototype of CyException

as a parameter.

For example, one argument can be an object CatchAll of package cyan.lang.600

object CatchAll

func eval: CyException e { }

end

Therefore, the example could be changed to

try605

// same statements

catch CatchAll;

Now, only one catch clause is necessary because the eval: method parameter type (CyException) is at

the top of the hierarchy of exceptions. This eval: method does nothing, and this last code is equivalent to

the following Java code.610

try { ... }

catch(Throwable e) { }

The anonymous functions of Listing 9 that are expressions of the catch clauses can be transformed into

method bodies of eval: methods, as shown in Listing 10. Keyword overload is required because there

are two methods with the same name and number of parameters in the sole selector. The code below has615

exactly the same semantics as the Listing 9 code, assuming the statements are the same.

try

// same statements

catch CatchErrNum;

CatchErrNum could have declared just one eval: method whose parameter type is the union620

ExcDivZero | ExcNegNumber

A type-case statement would be necessary for taking different actions for each type.

The iterations between throw and the two other statements that cause sudden changes, return and

break,7 may be confusing. For this reason, some use patterns are prohibited in Cyan.

(a) There cannot be any return in the statements between try and catch if there is a finally clause. If625

the return appears only inside a finally clause, it is legal.

(b) A break keyword cannot be used to end a repetition statement if the break is between try and catch

and there is a finally clause.

7break works like in language C: it finishes the repetition of while, repeat-until, and for statements.

24

1 object CatchErrNum

2 overload

3 func eval: ExcDivZero e { "Division by 0" println }

4 func eval: ExcNegNumber e {

5 Out println: (

6 "Illegal negative number: " ++ (e getNumber));

7 }

8 end

Listing 10: Catching an exception

The reason for both prohibitions is that it is not clear if the finally statements should be executed or

not.630

Related Works. The exception handling system (EHS) of Cyan is different from the EHS of most object-

oriented languages in one point: after a catch, there should appear an expression whose type has at least one

eval: method. If an anonymous function is used after the catch keywords, both the syntax and semantics

of Cyan are very similar to languages Java/C++/C♯/Python.

Cyan has rules to prevent code from mixing exception capturing (with try-catch) with statements635

return and break. The mixing would be confusing because it is not always clear what would be the result

of the interaction [12].

In Cyan, the EHS interacts with many language features:

(a) type system. The compiler checks whether every catch expression has an eval: method accepting one

parameter whose type is a subprototype of CyException;640

(b) method overloading. Conventional try-catch statements look for an adequate catch clause in the

textual order of the declaration. To mimic this behavior, Cyan uses overloaded eval: methods in catch

objects. The behavior is the same by design: the overload method to be called is also the first adequate

method found in a textual order search;

(c) inheritance. A prototype that catches a family of related errors (for example, those related to file645

handling) can be subprototyped, and some catch methods can be overridden;

(d) polymorphism. The argument to a catch clause may be an expression. The prototype of the resulting

object may vary every time the expression is evaluated at runtime.

try ... catch catchVar;

Hence, error treatment can be easily changed at runtime due to polymorphism;650

25

(e) generic prototypes. Several prototypes of package cyan.lang catch only some specified exceptions that

are type arguments to them.

try ... catch CatchWarning <E1 , E2 >;

Exceptions E1 and E2 are caught; the others are propagated. The generic prototype ExceptionConverter

takes an even number of type parameters that should be exceptions. It catches the exception of position655

i (even) and throws the exception of position i+1 (odd).

try ...

catch ExceptionConverter <ExcNegNumber , ExcOutOfLim >;

Exception ExcNegNumber is caught, and ExcOutOfLim is thrown instead. That is used when combining

two libraries that use different exception prototypes for equivalent errors;660

(f) context objects. In some cases, the exception treatment needs to change local variables to correct the

error. Usually, that is done using an anonymous function as the catch expression.

var Int n = 1;

try ...

catch { (: ExcNegNumber e :) n = 0 };665

The anonymous function code can be reused if put inside a context object.

var Int n;

try ...

catch CatchNeg(n);

8. Conclusion670

Cyan supports gradual typing, method overloading, partially safe object initialization, anonymous func-

tions, generic types with concepts, and an exception handling system. Although these constructs are well

known, Cyan introduces several novelties in their support. In relation to gradual typing, the semantics of

the code does not change by replacing a prototype with Dyn, and vice versa. The language grammar was

designed such that omitting the types of method parameters (making them of type Dyn) does not cause675

any ambiguity. In relation to method overloading, the compile-time types of message arguments are never

considered when choosing a method at runtime.

The initialization of objects is partially safe. There are draconian rules for shared fields and more relaxed

ones for regular fields. The rules ensure that, except in one particular known case, non-initialized fields are

never used. Context objects are a safe way to reuse code that can access local variables. They can replace680

non-reusable anonymous functions. Generic prototypes can take an undetermined number of parameters,

26

and the metaobject concept can check them, issuing customized error messages (if necessary). Test cases

can be automatically generated. Regular developers can change this metaobject, adapting it to their needs.

The exception handling system (EHS) is object-oriented. Consequently, error handling code can be

reused, and there may be a hierarchy of prototypes for error treatment. Besides that, the EHS interacts685

with other language features such as polymorphism, generic prototypes, and context objects.

A language is used because of its features and programming environment. Although the compiler is

user-friendly (clear error messages), there is no IDE for Cyan. To address this flaw, we plan to implement

a Language Server for Cyan. A Language Server Protocol (LSP)8 defines a bridge between an IDE and a

language server to provide features such as “go to definition” (declaration), code completion, information690

on hovering an element, quick fixes for errors, an outline of the program (its packages, files, types, and type

hierarchies), and automatic build. Once the server is created, it can be used with all the main IDEs. Another

alternative would be to use Xtext [48], a framework for implementing languages and their integration in the

Eclipse IDE.9 Although Xtext is associated with DSL, it can also be used with any language. Since Cyan is

closely linked to Java, Xbase [49] could be used for implementing parts of the Cyan language expressions.695

Xbase is an expression language that can be used in Xtext through the concept of language inheritance. In

this way, an implementation can inherit not only the syntax for expressions but also the associated tools

such as a parser, an unparser, a compiler, and an interpreter.

Acknowledgments. This project was partially financed by FAPESP (São Paulo - Brazil) under Process

number 2014/01817-3.700

References

[1] LLVM, The llvm compiler infrastructure (Aug. 2022).

URL https://llvm.org

[2] G. Blaschek, Object-oriented programming with prototypes, Monographs in Theoretical Computer Science - An Eatcs

Series, Springer-Verlag, 1994.705

[3] G. Bracha, Pluggable type systems, in: In OOPSLA’04 Workshop on Revival of Dynamic Languages, 2004.

[4] A. Goldberg, D. Robson, Smalltalk-80: the language and its implementation, Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA, 1983.

[5] J. Gosling, B. Joy, G. L. Steele, G. Bracha, A. Buckley, The Java Language Specification, Java SE 8 Edition, 1st Edition,

Addison-Wesley Professional, 2014.710

[6] C# language specification (Sep. 2023).

URL https://learn.microsoft.com/en-us/dotnet/csharp/

[7] B. Stroustrup, The C++ Programming Language, 4th Edition, Addison-Wesley Professional, 2013.

[8] Swift, The Swift Programming Language (Swift 5.6), 1st Edition, Apple Inc., 2022.

URL https://docs.swift.org/swift-book/715

8https://microsoft.github.io/language-server-protocol
9https://www.eclipse.org

27

https://llvm.org
https://llvm.org
https://learn.microsoft.com/en-us/dotnet/csharp/
https://learn.microsoft.com/en-us/dotnet/csharp/
https://docs.swift.org/swift-book/
https://docs.swift.org/swift-book/

[9] M. Odersky, P. Altherr, V. Cremet, G. Dubochet, B. Emir, P. Haller, S. Micheloud, N. Mihaylov, A. Moors, L. Rytz,

M. Schinz, E. Stenman, M. Zenger, The Scala Language Specification (2004).

URL http://www.scala-lang.org

[10] L. Cardelli, A semantics of multiple inheritance, in: Information and Computation, Springer-Verlag, 1988, pp. 51–67.

[11] J. d. O. Guimarães, The cyan language metaobject protocol (2022).720

URL http://cyan-lang.org/docs

[12] J. Bloch, N. Gafter, Java Puzzlers: Traps, Pitfalls, and Corner Cases, 2005.

URL http://www.javapuzzlers.com

[13] J. Chan, W. Yang, J. Huang, Traps in java, J. Syst. Softw. 72 (1) (2004) 33–47. doi:10.1016/S0164-1212(03)00040-2.

URL https://doi.org/10.1016/S0164-1212(03)00040-2725

[14] D. G. Bobrow, R. P. Gabriel, J. L. White, Object-oriented programming, in: A. Paepcke (Ed.), Object-oriented Program-

ming, MIT Press, Cambridge, MA, USA, 1993, Ch. CLOS in Context: The Shape of the Design Space, pp. 29–61.

[15] J. Siek, What is gradual typing, last accessed in September 21, 2021 (2014).

URL https://wphomes.soic.indiana.edu/jsiek/what-is-gradual-typing

[16] J. Siek, W. Taha, Gradual typing for objects, in: Proceedings of the 21st European Conference on Object-Oriented730

Programming, ECOOP’07, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 2–27.

[17] Jetbrains, The kotlin language (Jun. 2022).

URL https://kotlinlang.org/

[18] G. King, The ceylon language (Jun. 2022).

URL https://ceylon-lang.org735

[19] D. Pollak, V. Layka, A. Sacco, Beginning Scala 3: A Functional and Object-Oriented Java Language, Apress Berkeley,

CA, 2022.

[20] J. Gil, D. H. Lorenz, Environmental acquisition: A new inheritance-like abstraction mechanism, OOPSLA ’96, New York,

NY, USA, 1996, p. 214–231. doi:10.1145/236337.236358.

URL https://doi.org/10.1145/236337.236358740

[21] F. Liu, O. Lhoták, E. Xing, N. C. Pham, Safe Object Initialization, Abstractly, Association for Computing Machinery,

New York, NY, USA, 2021, p. 33–43.

[22] F. Liu, O. Lhoták, A. Biboudis, P. G. Giarrusso, M. Odersky, A type-and-effect system for object initialization, Proc.

ACM Program. Lang. (OOPSLA) (nov 2020). doi:10.1145/3428243.

[23] M. Servetto, J. Mackay, A. Potanin, J. Noble, The billion-dollar fix - safe modular circular initialisation with placeholders745

and placeholder types, in: G. Castagna (Ed.), ECOOP 2013, Vol. 7920 of Lecture Notes in Computer Science, Springer,

2013, pp. 205–229. doi:10.1007/978-3-642-39038-8_9.

URL https://doi.org/10.1007/978-3-642-39038-8_9

[24] A. J. Summers, P. Mueller, Freedom before commitment: A lightweight type system for object initialisation, OOPSLA

’11, New York, NY, USA, 2011, p. 1013–1032. doi:10.1145/2048066.2048142.750

URL https://doi.org/10.1145/2048066.2048142

[25] M. Fähndrich, K. R. M. Leino, Declaring and checking non-null types in an object-oriented language, in: Proceedings of

OOPSLA 03, OOPSLA ’03, New York, NY, USA, 2003, p. 302–312. doi:10.1145/949305.949332.

[26] T. Etzel, Flexible initialization of immutable objects, SPLASH Companion 2016, New York, NY, USA, 2016, p. 53–54.

doi:10.1145/2984043.2998541.755

[27] X. Qi, A. C. Myers, Masked types for sound object initialization, in: Proceedings of the 36th Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL ’09, ACM, New York, NY, USA, 2009, pp. 53–65.

doi:10.1145/1480881.1480890.

28

http://www.scala-lang.org
http://www.scala-lang.org
http://cyan-lang.org/docs
http://cyan-lang.org/docs
http://www.javapuzzlers.com
http://www.javapuzzlers.com
https://doi.org/10.1016/S0164-1212(03)00040-2
https://doi.org/10.1016/S0164-1212(03)00040-2
https://doi.org/10.1016/S0164-1212(03)00040-2
https://wphomes.soic.indiana.edu/jsiek/what-is-gradual-typing
https://wphomes.soic.indiana.edu/jsiek/what-is-gradual-typing
https://kotlinlang.org/
https://kotlinlang.org/
https://ceylon-lang.org
https://ceylon-lang.org
https://doi.org/10.1145/236337.236358
https://doi.org/10.1145/236337.236358
https://doi.org/10.1145/236337.236358
https://doi.org/10.1145/3428243
https://doi.org/10.1007/978-3-642-39038-8_9
https://doi.org/10.1007/978-3-642-39038-8_9
https://doi.org/10.1007/978-3-642-39038-8_9
https://doi.org/10.1007/978-3-642-39038-8_9
https://doi.org/10.1007/978-3-642-39038-8_9
https://doi.org/10.1145/2048066.2048142
https://doi.org/10.1145/2048066.2048142
https://doi.org/10.1145/2048066.2048142
https://doi.org/10.1145/949305.949332
https://doi.org/10.1145/2984043.2998541
https://doi.org/10.1145/1480881.1480890

[28] J. Y. Gil, T. Shragai, Are we ready for a safer construction environment?, in: Proceedings of the 23rd European Conference

on ECOOP 2009 — Object-Oriented Programming, Genoa, Springer-Verlag, Berlin, Heidelberg, 2009, p. 495–519. doi:760

10.1007/978-3-642-03013-0_23.

[29] J. d. O. Guimarães, The Green language type system, Comput. Lang. Syst. Struct. 35 (4) (2009) 435–447. doi:10.1016/

j.cl.2008.09.001.

URL http://dx.doi.org/10.1016/j.cl.2008.09.001

[30] B. Stroustrup, Concept checking - a more abstract complement to type checking, Tech. Rep. N1510=03-0093, C++765

Standards Committee Papers. ISO/IEC JTC1/SC22/WG21 (Oct. 2003).

URL http://www.stroustrup.com/n1510-concept-checking.pdf

[31] A. Sutton, B. Stroustrup, Concepts lite: Constraining templates with predicates, retrieved march 2021 (feb 2013).

URL isocpp.org

[32] J. G. Siek, A. Lumsdaine, A language for generic programming in the large, Sci. Comput. Program. 76 (5) (2011) 423–465.770

doi:10.1016/j.scico.2008.09.009.

[33] ISO/IEC, Iso/iec 14882:2020 programming languages — c++ (2021).

URL https://www.iso.org/standard/79358.html

[34] S. Wehr, P. Thiemann, Javagi: The interaction of type classes with interfaces and inheritance, ACM Trans. Program.

Lang. Syst. 33 (4) (2011) 12:1–12:83. doi:10.1145/1985342.1985343.775

[35] M. Odersky, L. Spoon, B. Venners, F. Sommers, Programming in Scala, Fifth Edition, Artima Incorporated, 2021.

[36] A. Pelenitsyn, Associated types and constraint propagation for generic programming in scala, Program. Comput. Softw.

41 (4) (2015) 224–230. doi:10.1134/S0361768815040064.

URL https://doi.org/10.1134/S0361768815040064

[37] J. Belyakova, S. Mikhalkovich, Pitfalls of c# generics and their solution using concepts, Proceedings of ISP RAS 27 (3)780

(2015) 29–46. doi:10.15514/ISPRAS-2015-27(3)-2.

URL http://mi.mathnet.ru/tisp134

[38] P. Wadler, S. Blott, How to make ad-hoc polymorphism less ad hoc, POPL ’89, Association for Computing Machinery,

New York, NY, USA, 1989, p. 60–76. doi:10.1145/75277.75283.

URL https://doi.org/10.1145/75277.75283785

[39] S. Klabnik, C. Nichols, The Rust Programming Language, 2nd Edition, No Starch Press, 2022.

URL https://doc.rust-lang.org/book

[40] Y. Zhang, M. C. Loring, G. Salvaneschi, B. Liskov, A. C. Myers, Lightweight, flexible object-oriented generics, SIGPLAN

Not. 50 (6) (2015) 436–445. doi:10.1145/2813885.2738008.

URL http://doi.acm.org/10.1145/2813885.2738008790

[41] J. Belyakova, Language support for generic programming in object-oriented languages: Peculiarities, drawbacks, ways of

improvement, in: F. Castor, Y. D. Liu (Eds.), Programming Languages, Springer International Publishing, Cham, 2016,

pp. 1–15.

[42] R. Garcia, J. Jarvi, A. Lumsdaine, J. Siek, J. Willcock, A comparative study of language support for generic programming,

Proceedings of OOPSLA ’03 (2003) 115doi:10.1145/949305.949317.795

URL http://portal.acm.org/citation.cfm?doid=949305.949317

[43] J. G. Siek, A language for generic programming, Ph.D. thesis, Indiana University (August 2005).

[44] J. d. O. Guimarães, Concepts for generic prototypes in cyan (2022).

URL http://cyan-lang.org/docs

[45] A. H. Bagge, Constructs & Concepts: Language design for flexibility and reliability, Ph.D. thesis, University of Bergen,800

PB 7803, 5020 Bergen, Norway (2009).

29

https://doi.org/10.1007/978-3-642-03013-0_23
https://doi.org/10.1007/978-3-642-03013-0_23
https://doi.org/10.1007/978-3-642-03013-0_23
http://dx.doi.org/10.1016/j.cl.2008.09.001
https://doi.org/10.1016/j.cl.2008.09.001
https://doi.org/10.1016/j.cl.2008.09.001
https://doi.org/10.1016/j.cl.2008.09.001
http://dx.doi.org/10.1016/j.cl.2008.09.001
http://www.stroustrup.com/n1510-concept-checking.pdf
http://www.stroustrup.com/n1510-concept-checking.pdf
isocpp.org
isocpp.org
https://doi.org/10.1016/j.scico.2008.09.009
https://www.iso.org/standard/79358.html
https://www.iso.org/standard/79358.html
https://doi.org/10.1145/1985342.1985343
https://doi.org/10.1134/S0361768815040064
https://doi.org/10.1134/S0361768815040064
https://doi.org/10.1134/S0361768815040064
http://mi.mathnet.ru/tisp134
https://doi.org/10.15514/ISPRAS-2015-27(3)-2
http://mi.mathnet.ru/tisp134
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/75277.75283
https://doc.rust-lang.org/book
https://doc.rust-lang.org/book
http://doi.acm.org/10.1145/2813885.2738008
https://doi.org/10.1145/2813885.2738008
http://doi.acm.org/10.1145/2813885.2738008
http://portal.acm.org/citation.cfm?doid=949305.949317
https://doi.org/10.1145/949305.949317
http://portal.acm.org/citation.cfm?doid=949305.949317
http://cyan-lang.org/docs
http://cyan-lang.org/docs
http://www.ii.uib.no/~anya/phd/

URL http://www.ii.uib.no/~anya/phd/

[46] J. d. O. Guimarães, The Green language, Comput. Lang. Syst. Struct. 32 (4) (2006) 203–215. doi:10.1016/j.cl.2005.

07.001.

URL http://dx.doi.org/10.1016/j.cl.2005.07.001805

[47] J. d. O. Guimarães, The green language exception system., Comput. J. 47 (6) (2004) 651–661.

URL http://dblp.uni-trier.de/db/journals/cj/cj47.html#Guimar04

[48] L. Bettini, Implementing Domain-Specific Languages with Xtext and Xtend, 2nd Edition, Packt Publishing, 2016.

[49] S. Efftinge, M. Eysholdt, J. Köhnlein, S. Zarnekow, R. von Massow, W. Hasselbring, M. Hanus, Xbase: Implementing

Domain-Specific Languages for Java, in: GPCE, ACM, 2012, pp. 112–121.810

30

http://www.ii.uib.no/~anya/phd/
http://dx.doi.org/10.1016/j.cl.2005.07.001
https://doi.org/10.1016/j.cl.2005.07.001
https://doi.org/10.1016/j.cl.2005.07.001
https://doi.org/10.1016/j.cl.2005.07.001
http://dx.doi.org/10.1016/j.cl.2005.07.001
http://dblp.uni-trier.de/db/journals/cj/cj47.html#Guimar04
http://dblp.uni-trier.de/db/journals/cj/cj47.html#Guimar04

	Introduction
	Basic Syntax of Cyan
	Type Checking and Gradual Typing
	Object Initialization
	Limitations for Prototypes
	Generic Prototypes
	The Exception Handling System
	Conclusion

