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Abstract

Certain languages allow a metaprogram to act as a compiler plugin and thus alter the compilation
process. The metaprogram interacts with low-level details of the compiler, making its construction
difficult and potentially leading to errors. Different parts of the metaprogram may have conflicting
interactions, thus producing unintended outcomes. This article introduces metaprogramming
in the prototype-based object-oriented language Cyan. This language provides the same core
functionality as other metaprogramming systems, while additionally offering several features that
facilitate interactions between the compiler and the metaprogram, as well as between different
components of the metaprogram. Furthermore, Cyan incorporates security measures designed to
circumvent typical issues encountered in metaprogramming.
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1. Introduction

Metaprogramming is the coding of programs, called metaprograms, that treat code as data
(Lilis and Savidis, 2019). The base program, or simply the program, is the program that is treated
as data. A metaprogram can generate new code, change existing programs, or do checks on them.
Metaprogramming offers mechanisms for code reuse that go beyond those offered by traditional
software libraries. It can generate families of related code, as in the case of C++ templates
(Stroustrup, 2013); separate functional and nonfunctional concerns, as in Aspect] (Kiczales et al.,
2001); generate code based on specifications, as ANTLR 4 does (Parr, 2013); support new syntax,
such as Scala macros (Burmako, 2013); detect program bugs through static analyzers'; implement
new type systems using a pluggable-type system (Bracha, 2004); run a program in multiple
stages (Taha, 2007), each stage generating and running a new program; change the program at
runtime (Redmond and Cahill, 2002; Kamin et al., 2003); and support embedded Domain-Specific
Languages (Rompf et al., 2012; Biboudis et al., 2016).

In this paper, the focus is language support for Compile-Time Metaprogramming (CTMP),
which is the handling of a program by a metaprogram at compile-time. To discuss specific
characteristics of compile-time metaprogramming supported by programming languages, we
will define some terms. The program, or base code, is the code that implements the desired
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functionality for the application. A metacode is each of the pieces of code that compose the
metaprogram. The metacode is loaded at the compilation time of the base code and works as an
integral part of the compiler. Data is exchanged between the compiler and the metacode. The
compiler calls metacode at specific points of compilation. Therefore, metacode can interact with
the type checker, code generator, parser, and any other algorithm used by the compiler. They can
also add, delete, or replace code in the program. In practice, languages restrict what metacode
can do to a few things. The metaprogram is designed to help the program achieve the desired
functionality.

Metacode interacts closely with the compiler. This interaction is precisely defined through
a protocol, which specifies which part of each metacode is called in a given compilation phase
and how data is passed from and to the compiler. For example, the protocol may specify that
during the compilation phase parsing, a function? or method duringParsing may be called.
The function or method may perform checks or add code to the program. The protocol would
also specify which parameters the function takes, what it returns, and how the return changes the
compilation.

Although every language with support for CTMP has a protocol for the interactions between
the metacode and the compiler, some of them are said to have a Metaobject Protocol (MOP) by
their designers. These are usually older languages and have some characteristics in common that
are discussed throughout the paper. Let us evaluate languages supporting CTMP with or without
a MOP to show their deficiencies and opportunities for improvement. Some mechanisms not
directly related to the proposal of the paper, such as aspects (Kiczales et al., 2001), will only
be discussed later. A typical Metaobject Protocol associates a metaclass to every class and, in
general, a meta-S to every kind of declaration S. Developers can define their own metaclass for
a class, which directs the compilation of the class. Using a metaclass, one can add code to the
class, do additional checks on it, and change the semantics of the language for that class. For
example, the metaclass can check if all class fields are read-only, intercept object creation, and
change the meaning of inheritance. However, there are limitations. Usually, only one metaclass is
associated with a class and the composition of behavior is difficult. Arguments cannot be passed
to the metaclass, which makes its configuration impossible. There may be limitations on what
can be changed, as in OpenC++ (Chiba, 1995) or OJ (Tatsubori et al., 2000). Or there may be
very few limitations, as in CLOS, but the AST of the class associated with the metaclass is not
available.This makes building the metaclass more difficult.

A language may support CTMP without a MOP such as Groovy (Kénig, 2007), Scala®, or Java*.
In general, support for CTMP is at a much lower level than when using a MOP. The metacode
developer has to interact with low-level compiler algorithms and data structures. It is easy for the
metacode to invalidate compiler invariants or damage internal compiler structures, making the
compiler crash.

There are some problems that occur with metaprogramming languages with or without a MOP,
although mainly with the latter. Not all problems that follow occur in all languages, although
most of them do occur in languages without a MOP. The following list is not exhaustive.

(a) A metacode associated with a source file can change the base code of another file. Hence, to
know the final version of a file, the developer has to know the behavior of every metacode in the
metaprogram.

2Function as in language C
3https://docs.scala-lang.org/scala3/reference/changed-features/compiler-plugins.html
4https://docs.oracle.com/en/java/javase/ 11/docs/api/jdk.compiler/com/sun/source/util/Plugin.html
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As an example, suppose the metacode associated with files X and Y change file Z. To know
the final code of Z, the developer has to know these associations and the runtime behavior of the
metacode, which are run at compile time for the base code.

(b) A class may not have access to the private fields and methods of another class. But the
metacode can because it has access to the compiler’s data structures.
As an example, a metacode associated with class A creates a method
String toJSON(B b)
The metacode checks whether all fields of b have get methods and uses these methods to return the
JSON string of the argument. If class B changes only its private fields, A will not be recompiled.
Therefore, the toJson method created by the metacode will be incorrect.

(c) The developer has to know many details about the compiler since the metacode interacts
with low-level compiler algorithms and data structures. Therefore, metaprogramming is not only
harder, but the metacode can bypass compiler checks, invalidate invariants, damage data structures,
and crash the compiler.

As an example, the metacode may change the AST after the compiler type-checked the code.
The changed AST may have type errors, which may crash the compiler during the following
compilation phase.

(d) Metacode can insert new code into the base code. If the new code has errors, the compiler is
unable to point out which metacode is responsible for adding the new code. This is because the
metacode itself changes the compiler AST to add new AST objects. No trace is left of who did
what.

As an example, suppose the metacode M inserts a new statement to method search for logging
purposes:

searchMethodStat.add( new MethodCall(...) );

The compiler does not record that the statement “MethodCall” was inserted by M. If it has errors,
the compiler does not point out this metacode as its source.

(e) The order in which the metacode is called is not specified by the language. It can even change
between compilations (with the same base code). By changing the metacode calling order, their
view of the program can change if a metacode can view the code added by a metacode executed
previously.

As an example, the metacode may be specified by a compiler option of a ficticious language
Sumatra:

compiler -processor P -processor ( A.sumatra

Metacode P adds a field count to the class A and Q creates get and set methods for all A fields.
This works fine because P is executed before Q (assume this). If we reverse the -processor
options, the get and set methods for count will not be created.

(f) A check made by one metacode may be invalidated by code added by another metacode.

As an example, a metacode P checks that all fields of a class A have get and set methods. After
that, another metacode Q adds a field ghost but not get and set methods. The check that P made
was invalidated by Q.

(g) Metacode may generate metacode that may generate metacode ad infinitum.

As an example, metacode M produces code containing references to M (as a macro M producing
calls to M). If the compiler processes the newly created code, there will be an infinite creation of
code.

(h) Metacode may not terminate its computation. The compiler will not terminate either.
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No example is necessary for this problem.

(i) Metacode may unintentionally generate code that uses identifiers already in use. This is the
hygiene problem of macros.

As an example, suppose a macro (Kohlbecker et al., 1986) compTimeFactorial(r, num)
produces the following code.

r =1;
for (int n = 1; n <= num; ++n) r = r*n;

If we use compTimeFactorial(r, n) in which n is a local variable, the for statement will run
only once.

The goal of this article is to present the Metaobject Protocol (MOP) of the statically typed
prototype-based object-oriented language Cyan (Guimaraes, 2020). The metacode is composed
of metaobjects, which are associated with annotations in the base code. Metaobjects can add
code to the program, which includes new prototypes, fields and methods to prototypes, and
statements and expressions to methods. Besides that, they can intercept message passing, field
access, subprototyping, method overriding, etc. Metaobjects in Cyan have limited power; they
cannot delete program code or replace any compiler algorithm as the type checker. Additional
checks can be added to a program, but none can be bypassed.

The contribution of this article is to show how the Cyan MOP achieves a good balance
between power, security, and ease of use. It combines a full MOP, like that of CLOS, with
metaprogramming features of more recent languages, such as Groovy and BSJ. The Cyan MOP is
powerful enough to allow the implementation of the great majority of metacodes or metaobjects
we have found in the literature. It solves, at least partially, all of the problems listed previously with
CTMP, except those related to nondeterminism and hygiene. Finally, a Metaobject Protocol that
is sufficiently powerful cannot be simple as it must interact with a complex software component,
namely the compiler. But this article tries to argue that some characteristics of the Cyan MOP
make it simpler than most CTMPs with similar power. These are the declarative way of building
metaobject classes in which the compiler calls the metacode and not the opposite (as usual in
CTMP without a MOP), a simplified read-only AST and other compiler data structures, code
generation using strings (instead of the more complex AST objects), and security measures that
prevent the common problems with CTMP.

The Cyan MOP has two main goals. The first one is to build general-use metaobjects such as
property to create get and set methods for a field, annot to associate information to declarations,
checkStyle to verify the style of code, several metaobjects that give information on the source
code (as the line number of the annotation), eval to evaluate code at compile-time, deprecated
to issue a warning if a deprecated declaration is used, and many others.

The second goal of the Cyan MOP is to build metaobjects associated with developers’ packages
(libraries). These metaobjects would generate code and check the use of the packages. As
examples of code generation, package cyan.lang uses metaobjects to generate code for several
generic prototypes, such as Tuple and Array. Based on the real argument, such as Int in
Array<Int>, metaobjects add some methods to Array<Int>.

The semantics of methods, which are usually written in the documentation, can be put in
metaobjects that do checks at compile-time. An example of that is method printf of prototype
Out. Similar to the function with the same name in language C, this method accepts a format
string as the first argument. A metaobject checks at compile-time if the arguments match the
first argument. The semantics of inheritance can also be checked by metaobjects. Annotation
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QoverrideToo ("hashCode") attached to method == of the top Cyan prototype, Any, demands
that, whenever == is overridden in a subprototype, method hashCode should be overridden too.
A metaobject whose annotation is attached to a method may request that this method be called in
every method that overrides it in a subprototype. These examples show that packages’ semantics
can be checked by metaobjects.

The paper’s organization is as follow. Section 2 is a brief introduction to the Cyan language. The
Metaobject Protocol of Cyan is explained in Section 3. Section 4 compares the metaprogramming
systems of other languages with the Cyan MOP. The last section concludes.

Additional information on the Cyan compiler and the language is available at cyan-lang.org.

2. The Cyan Language

Cyan is a statically typed prototype-based object-oriented language. A prototype is a template
from which other objects may be created, the same role is played by classes in Java (Gosling et al.,
2014), C++ (Stroustrup, 2013), CH#, and Smalltalk (Goldberg and Robson, 1983). The difference
is that the prototype itself is an object like any other.®

2.1. Basic Elements of the Language

The look and feel of Cyan is that of a class-based language. The compiler translates Cyan into
non-legible Java code. Thus, many language constructs are directly translated into Java, such as
packages, inheritance, method overriding, message passing, assignment, and prototype declaration
(each prototype is translated to a Java class). Cyan code can import Java packages and classes.
The compiler does all the necessary conversions between names and values of the basic types.

Listing 1 shows the declaration of prototype Student of the package university. Cyan
employs a syntax for method declaration and message passing that is in some ways similar to
Smalltalk. A unary message passing is made up of a receiver and an identifier, which should be
the name of the unary method:

aStudent getName
aStudent is the message receiver. A keyword message passing is composed of a receiver and
one or more message keywords, or just keywords with their parameters:

var Array<String> as = Array<String> new; // creates an object
// ’add:’ is a message keyword, a method ’add:’ is called

as add: "first";
//’at:’ and ’put:’” are keywords, method ’at:put:’ is called

as at: 0 put: "zero";

Both method keywords and message keywords are called keywords. To avoid confusion, Cyan
keyword is used for reserved words in the language.

2.2. Examples of Using Annotations

This Subsection gives a general view of how annotations are used in Cyan code and what
metaobjects can do. An annotation, or metaobject annotation, is the syntax element that links
the program to a metacode. There are several kinds of annotations in Cyan. This Subsection

5https://learn.microsoft.com/en—us/dotnet/csharp
SThere are exceptions to this rule, but this is not important to this paper.
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Listing 1: Prototype Student

package university

object Student
// fields name and number
var String name
var Int number
// this is a constructor. Use ’Student new: name, number’
// or ’Student(name, number)’ to create an object of Student
func init: String name, Int number {
self.name = name;
self.number = number;
}
func getName —> String = name;
func setName: String name { self.name = name }
func getNumber —> Int  { return number }
func setNumber: Int number { self.number = number }
end

Listing 2: Prototype Student with annotations

package university

@init(name, number)
object Student
@property var String name
@property var Int number
end

will only give examples of the most general of them all, that which starts with “@", as shown in
Listing 2. At compile-time, each annotation is linked to a single metaobject (and vice versa). The
metaobject is able to do checks, create new prototypes, and add code to the current prototype. In
this example, the metaobject associated with init will add a constructor to the prototype Student
to initialize the newly created object with the student’s name and number. The two metaobjects
associated with the two property annotations will add get and set methods to Student. The
resulting prototype is identical to the one in Listing 1. We say that the two property annotations
are attached to the declarations of name and number. The annotation init is attached to the
prototype Student. Basic values (3, 3.14, *A?’), identifiers, literal arrays, literal tuples, literal
maps, and any combination of these can be parameters for annotations. Annotation init takes
two identifiers as arguments, name and number, which are treated as strings by the metaobject.

The metaobjects associated with a prototype P, or metaobjects of P, are the metaobjects
associated with annotations of prototype P. There are three metaobjects associated with Student
of Listing 2. We will use “metaobject init” when no confusion may arise. If there are two init
annotations in a code, “metaobject init” will be ambiguous because it may refer to metaobjects
associated with both annotations.
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Annotations with an Attached DSL

The annotation of the following ficticious” example takes as arguments an identifier, build,
and a multiline literal string (delimited by three ").

@buildGUI(build, """
button {
text "Next page",
size (40, 100),
onPressed goNextPage
}

nn ||)
object MyButton ... end

Assume that the metaobject buildGUI adds a method to the prototype MyButton whose name is
the first argument (build in this example). This method builds the graphical elements specified
by the multiline string, which is the code of a DSL for building GUI (Graphical User Interfaces).
Annotations whose last argument is a string with the code of a DSL are very common. There are
so common that a special syntax was invented for them: the DSL code is put after the annotation
arguments, between {* and *}, called “text delimiters”.® Hence, the above example could be
written as

@buildGUI(build){
button {
text "Next page",
size (40, 100),
onPressed goNextPage
}
*}
object MyButton ... end

The text between delimiteres will be called attached text or attached Domain-Specific Language
(DSL) code.

A metaobject uses the attached text as any other string argument. Usually, annotations with the
same name use the same DSL. So, all annotations with the name buildGUI would use the same
DSL for building GUIs. One can imagine the annotation as the name of the DSL compiler that is
called at compile-time to create code (as in the above example) or do checks. Different names
mean different compilers and DSLs.

An annotation could support different DSLs. An example, not yet implemented, would be a
flexible f1exDoc annotation for documentation that should be attached to a prototype, method,
and so on.

@flexDoc(html) {* /* documentation in HTML */  *}
@flexDoc(markdown){* /* documentation in Markdown */ x*}

The annotation argument defines the DSL to be used with the attached text. This is unusual.

7This is just an example, there is no such metaobject.
8There are many possible variations of symbols, as described by Guimardes (Guimardes, 2022), so that the DSL and
the delimiters do not clash.
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Listing 3: Annotation insertCode adds methods to the current prototype

@insertCode {
// adds to the prototype functions like
//  func power_num: Int n —> Int = n*n ... *n;
// $ is the string interpolation, "= $s;" is equal to "= " ++ s ++ ";" in Java
for num in 2..10 {
var sig = "func power_$num: Int n —> Int ";
vars ="n";
// ++ is concatenation of strings
for pin 2..num { s =s ++ "xn"
insert: sig, sig ++ "= $s;"
}
*}
object Program
func run {
assert power_5: 2 ==32; //2"5==32
assert twice: 11 == 22;
}
@doc{ * returns the double of the argument =}
@replaceCallBy(once){* 2xn x}
func twice: Int n —> Int = n + n;
end

Annotation insertCode of Listing 3 takes an attached DSL code that is in the language Myan,
which is a dynamically typed simplified version of Cyan. The DSL of annotation replaceCallBy
(line 19) is a subset of Cyan in which only expressions are legal. Any text is valid for the doc
annotation (line 18). Itis intended as the documentation for the declaration to which the annotation
is attached (twice: in this case).

The metaobject associated with insertCode interprets the Myan code between {* and *} at
compile-time. The insert: method called in line 10 asks the compiler to insert methods into the
current prototype. Its first parameter is the method signature (without the body), and the second is
the complete method. For example, in the first for step (num is 2), the call will be:

insert: "func power_2: Int n —> Int ", "func power_2: Int n —> Int = nxn;"

The metaobject associated with the annotation replaceCallBy intercepts all calls to the
method twice: and replaces them with the expression between {* and *}. The method argument
is only evaluated once because of the once argument to replaceCallBy. Annotations can be
used inside expressions if they were designed with this goal.

var fatorial_of 10 = @eval("cyan.lang", "Int"){x
varr =2;
fornin3..10 {r=rxn}
return r
5
In this example, eval interprets the Myan code and returns 10! at compile-time. Java packages
8




Listing 4: Annotation onOverride whose code is interpreted whenever the attached method is overridden

@onOverride{
if (method getStatementList: env) getStatementList size < 10 {
metaobject addError: "method test should have at least 10 statements"
}
)

func test { }

Listing 5: The generic prototype with varying number of parameters Tuple

package cyan.lang
@createTuple
object Tuple<T+>
end

can be imported and used within Cyan and Myan code. Therefore, one could read a file or open a
web connection and create, based on it, a bunch of methods or fields in the current prototype.

Myan code has access to several compiler objects through the variables method, metaobject,
and env. Listing 4 shows an example where the Myan code attached to the annotation
onOverride is interpreted whenever the attached method (test) is overridden in a subprototype.
It issues an error if the method has fewer than 10 statements.

Generic Prototypes and Metaobjects
Generic prototypes in Cyan take one or more parameters.

object GroupList<T> ... end

T is a generic parameter used inside GroupList in any place a type is expected: as the type
of variables, parameters, fields, the return type of methods, and inside expressions. A generic
prototype is instantiated when real arguments are supplied to it.

var GroupList<GroupElem> groupList;

Assume that GroupElem is a prototype. Instantiation is the process of creating a new prototype
by replacing, textually, the generic parameters with the real arguments. In this example, T is
textually replaced by GroupElem. A new source file is created and compiled. Therefore, the
semantics of Cyan generic prototypes is similar to that of C++ class templates; a new prototype is
created for each set of real arguments.

A generic prototype with a varying number of generic parameters has just one parameter
followed by +, as shown in Listing 5. This is the real code of the prototype Tuple that is used as a
superprototype of literal tuples that can have any number of elements of different types. Parameter
T cannot be used inside the prototype using the Cyan syntax because it represents the list of types
passed as arguments, and there is no syntax to access such a list. But the metaobject associated
with the annotation createTuple has access to the list of real arguments to the instantiation and
uses it to generate code. For example, for the instantiation Tuple<Int, Char>, the metaobject
adds to the prototype methods £1 -> Int and £2 -> Char.

Concepts (Stroustrup, 2003) are constraints on real arguments for generic classes, functions,
and prototypes, an idea that originated in CLU (Liskov et al., 1977). A concept checks whether a
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real-type argument to a generic prototype, for example, is valid before instantiating the prototype
with that type. For example, the GroupList prototype assumes that its type argument has a
method unit. If GroupList is instantiated with a type that does not support this method, such as
Int, the compiler will create a new prototype GroupList<Int>, compile it, and only then will it
issue an error. However, a concept can check whether the type argument, Int in this case, has a
method unit before the instantiation.

Concepts were devised to help the compiler issue clearer error messages during the instantiation
of a template class in C++.° Concepts are so important that they are supported by a plethora
of languages, including G (Siek and Lumsdaine, 2011), JavaGI (Wehr and Thiemann, 2011),
Java (Gosling et al., 2014), Scala (Odersky et al., 2021) (Pelenitsyn, 2015), C#”* (Belyakova and
Mikhalkovich, 2015), Haskell (Wadler and Blott, 1989), Rust (Klabnik and Nichols, 2022), C#
(Csh, 2023), Swift'?, and Genus (Zhang et al., 2015).

Concepts are implemented in Cyan using the metaobject concept, without any help from the
language itself. The DSL code attached to the annotation specifies the restrictions that the generic
parameters should obey. In the example that follows, T is required to define three methods: unit,
*, and inverse, with the given signatures.

@concept{
T has [ func unit —> T, "Type T must supply a "unit’ method"
func =« T —>T
func inverse —> T ]
*}
object GroupList<T> ... end

The DSL of the code attached to the concept annotation has statements for requiring that
a prototype inherits another, a prototype implements another interface, that a parameter is an
interface or a non-interface, a prototype declares a set of methods (used in the above example),
a prototype belongs to a set of prototypes, and the negation of every of these statements. In the
above example, there is a string after “func unit -> T”. This string is a tailored error message.
If we use GroupList<MyGroup> and MyGroup does not have a method unit, the metaobject
will issue this error message.

3. The Cyan Metaobject Protocol

The Cyan Metaobject Protocol (MOP) describes the interactions between the Cyan code being
compiled, the compiler, the MOP library, the metaprogram, and annotations in the Cyan code.
The metaprogram in Cyan is composed of Java classes, Cyan prototypes, or a mixture of both.
The compiler is implemented in Java making it convenient to use Java classes as the metaprogram.
But since the compiler translates each Cyan prototype into a Java class, Cyan can also be used as
the metaprogramming language.

Before presenting the MOP in detail, Subsection 3.1 shows how to build a metaobject class
and how to use metaobject annotations. The interactions between the metacode and the compiler
are presented in Subsection 3.2. Subsection 3.3 explains the phases of the Cyan compiler. The
important features of the Cyan MOP are summarized in Subsection 3.4. Other kinds of annotation

9https://www.iso.org/standard/7935 8.html
lOhttps://docs.swift.org/swift—book
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Listing 6: Annotation get attached to field name

package art

import cyanPack

object Painting
func init: String name { self.name = name }
@get String name

end

are introduced in Subsection 3.5. Annotations can be attached to types too, as explained in
Subsection 3.6.

3.1. An Example of a Metaobject

This Subsection explains how to build a metaobject get whose annotation should be attached
to a prototype field. The metaobject adds to the prototype a method get_field that just returns
the attached field. Listing 6 shows annotation get attached to field name in line 5 and, therefore,
the following method is created and added to Painting.

func get_name —> String = name;
This method can be called as if it were defined in the prototype.

var p = Painting("Kandinsky");
p get_name println;

We will give step-by-step instructions on how to build metaobject get. First, create a Java file
that declares a class CyanMetaobjectGet that inherits from CyanMetaobjectAtAnnot. Next,
select an interface to implement based on the goals of the metaobject. Use Table 1 (end of the
text). This table relates goals and the interfaces the metaobject class should implement to achieve
them. As will be explained in detail later, the interfaces implemented by a metaobject class direct
the compilation. They tell the compiler when (compilation phase) and which metaobject methods
should be called.

The goal of metaobject get is to add a method. Table 1 says class CyanMetaobjectGet should
implement interface IAction_afterResTypes. Based on the documentation of this interface,
we choose to override the method afterResTypes_codeToAdd that is used for adding fields
and methods to the current prototype. The complete metaobject class is in Listing 7 (without the
imports), which will be explained.

The annotation name is "get", it does not take parameters, and it should be attached
to a field. This is all communicated in the call to super in lines 5-6. To code method
afterResTypes_codeToAdd starting at line 9, we again remember the goals of the metaob-
ject, which is to create a method whose name is based on the attached field. So, we need the
name of the field attached to the annotation. Method getAnnotation in line 13 returns an object
with information on the annotation. From it, the code can retrieve the attached declaration using
method getDeclaration (a field in this case). Since, by line 6, we know that the attached
declaration is always a field, the code can cast the object returned to class WrFieldDec. This
is the AST class for Cyan prototype fields. If the annotation get took arguments, these could
be retrieved using another method of the object returned by getAnnotation. The attached field
name is got in line 14 and the method source code, as a string, is created in lines 15-16. The return
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Listing 7: The CyanMetaobjectGet class in Java

public class CyanMetaobjectGet extends CyanMetaobjectAtAnnot
implements [Action_afterResTypes {

public CyanMetaobjectGet() {
super("get", AnnotationArgumentsKind.ZeroParameters,
new AttachedDeclarationKind[] { AttachedDeclarationKind.FIELD_DEC });

}

@OQOverride

public Tuple2<StringBuffer, String> afterResTypes_codeToAdd(
ICompiler_afterResTypes compiler,
List<Tuple2<WrAnnotation, List<ISlotSignature>>> infoList) {

final WrFieldDec field = (WrFieldDec) this.getAnnotation().getDeclaration();
final String name = field.getName();
String methodSig = "func get_" + name + " —> " + field.getType().getFullName();

String method = methodSig + " =" + name + ";";
return new Tuple2<StringBuffer, String>(new StringBuffer(method), methodSig);

type of afterResTypes_codeToAdd is a tuple consisting of the source code of the fields and
methods to be inserted in the current prototype (Painting in the example) and the signatures of
these declarations. The signature of a method is the method without its body, and the signature
of a field is its declaration without any initialization (= expr). If the compiler were smarter, the
return value could be just the code to be inserted.

Class CyanMetaobjectGet should be compiled with the file saci. jar (available on the web-
site www . cyan-lang.org). The resulting . class file should be put in a directory “cyanPack\ -
-meta\javaPack” if class CyanMetaobjectGet is in the Java package javaPack. Now, any
Cyan code that imports package cyanPack can use annotation get.

Let us study what happens in the compilation of Painting of Listing 6. At the start of the
compilation, the compiler imports package cyan.lang (automatically) and cyanPack (line 2 of
this example) and loads dynamically the classes of directories --meta of these packages. It then
creates one object for each class. Using method getName, it has access to the annotation name
of each metaobject, which was given in the call to super (line 5 of Listing 7). During parsing,
when the compiler finds an annotation get, it looks for a metaobject called "get" in the imported
packages. CyanMetaobjectGet is found, and the compiler creates an object of this class, which
is associated with the annotation of line 5 of Listing 6.

In the compilation phase afterResTypes (to be seen later), the compiler calls the method
afterResTypes_codeToAdd. If the returned value is not null, the returned code is inserted in
the source code of the prototype, which needs to be compiled again. Only the text of the prototype
in the compiler memory is changed. In the following compilation phases, the compiler will find a
get_name method in prototype Painting.

A metaobject class seems difficult to build because it demands the knowledge of a lot of cyan
MOP classes, which includes the AST. However, this is only partially true because the MOP and
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the IDE guide the developer throughout the process. Let us see why.

A metaobject class has a standard superclass, and its constructor should call super with the
annotation name, information on the number of annotation arguments, and a list of allowed
attached declarations. The Java compiler will demand that the developer pass this information to
the superclass. Based on the goals of the metaobject, the developer uses Table 1 to discover which
interfaces the metaobject class should implement. The documentation of each interface tells which
methods should be overridden. The coding of a metaobject class method should be based on
information on the annotation or the source code (the current prototype or method). Information on
the annotation (attached declaration, arguments, or attached text between {* and *}) is obtained
from the method getAnnotation. Information on the source code is obtained from an interface
method parameter called compiler or env. For example, the parameter compiler of method
afterResTypes_codeToAdd (line 10 of Listing 7). As an example, suppose we want to check
if there is a method in the prototype with the same name as the method the metaobject will add.
This can be done with the following code, which should be put after line 14.

for (WrMethodDec m : compiler.getMethodDecList()) {
if ( m.getName().equals("get_" + name) ) {
return null; /no method will be added

}
}

“compiler.getMethodDecList ()” returns a list of AST objects of class WrMethodDec, one
for each method of the prototype in which the annotation is. There is no need to learn all MOP
classes and methods. Using the “code completion" feature of the IDE (after typing “param.”),
the developer has access to methods and, from them, to the classes she or he needs.

3.2. Interactions with the Compiler

The metacode of a Cyan program (code) is composed of all Java classes or Cyan prototypes of
the metaobjects associated with the annotations used by the program. To support the metacode,
there are two versions of a MOP library in the saci. jar file: one in Java and another in Cyan
(one is a mirror of the other). The Cyan compiler knows both MOP libraries, and some of their
classes and prototypes are superclasses or superprototypes of the classes and prototypes of the
metacode. The class CyanMetaobjectGet of Listing 7 is part of the metacode of the Cyan
program that has class Painting. This Java class imports its superclass from the MOP library
that is in the saci. jar file, which is also part of the metacode.

When parsing source code, the Cyan compiler creates, for each annotation, an object of the
AST internal to the compiler, which is represented by the round rectangle “annot. AST object”
on the left side of Figure 1. This object represents the annotation as a syntactical element.
Based on the annotation name, the compiler discovers the metaobject class associated with it,
CyanMetaobjectGet in this case, and creates a metaobject, which is represented by the round
rectangle on the left-bottom side of the Figure. The metaobject gets the annotation data, as
well as its arguments and attached declaration, from a wrapper AST object. In the Figure, this
wrapper AST object is represented by a round rectangle enveloping the rectangle “annot. AST
object”. Both objects will be called AST objects. Figure 1 also shows that there are one-to-one
relationships between metaobjects, wrapper AST objects, annotation AST objects, and annotations
(the syntactic element).
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3.3. Phases of Compilation

The Cyan compiler goes through six compilation phases for each source file, as shown inside
the rectangle with dashed lines on the left of Figure 2. The flow of control is from top to bottom.
Phase parsing does the syntactical analysis and builds the Abstract Syntax Tree (AST) of the
source file. Some AST objects are associated with a type and have a type field that is initially
set to null. A type field, for example, exists in AST objects representing method parameters,
prototype fields, implemented interfaces, the superprototype, message passings, and expressions.

There are two kinds of AST objects associated with types: those representing expressions and
local variable declarations, which are always inside method bodies, and those outside method
bodies. The type field of the later AST objects is set in phase resTypes (resolving types). Thus,
the field name of Student in Listing 1 is represented by an AST object whose field type is null
at the beginning of phase resTypes. During this phase, the compiler sets the type field to the AST
object representing the prototype String. Phase resTypes, therefore, is included in the semantic
analysis of the source code. The compiler goes through phase resTypes on a source file only after
parsing all source files referenced in this file or loading the jar file with the referenced types.

Phases afterResTypes and afterSemAn only exist because of the MOP; they could be elimi-
nated if Cyan did not support metaprogramming. Phase afterResTypes means after resolving
types. Phase afterSemAn means after semantic analysis. In phase semAn (the remaining part of
the semantic analysis), the compiler sets the type field of AST objects representing expressions
and local variable declarations. In this phase, the compiler also does other checks, as demanded
by the language. The last compilation phase is code generation. Currently, no metaobject method
is called in this phase.

During the compilation of a prototype P, for each phase X in the set { parsing, afterResTypes,
semAn, afterSemAn }, the compiler runs the following algorithm:

for every metaobject metalbj associated with P {
if the class/prototype of metaObj implements any interface
associated with phase X
then
for each method ’met’ of each interface associated with phase X {
metaObj.met(...); // call method ’met’
}
endif

}

The right-hand side of Figure 2 represents metaobjects associated with annotations of a hypotheti-
cal prototype Proto (not shown). According to the above algorithm, during phase parsing, the
compiler calls the method parsing_codeToAdd of the metaobject associated with 1ineNumber.
During phase afterResTypes, the compiler sends the message afterResTypes_codeToAdd to
the metaobject property, and so on.

The Cyan compiler calls specific metaobject methods in each compilation phase, as exemplified
in Figure 2. It also calls some metaobject methods when some events happen, such as “message
passing”, “method missing”, “field access”, “field missing”, “inheritance”, and “method overrid-
ing”. That is, some interfaces are associated with triggers. For example, methods of interface

TActionMethodMissing_semAn
are called whenever the compiler is unable to find a method that matches a message passing. The
methods of this interface can return an expression that replaces the message passing. Hence, this
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interface allows the implementation of virfual methods. In light of what was presented in this
Subsection, the reader is invited to study Table 1. It shows the goals and the interfaces that the
metaobject class should implement to achieve them. For example, to intercept “message passing”,
the metaobject class should implement the method

IActionMessageSend_semAn
Note that the interface name ends with the compilation phase.

3.4. Important MOP Features

The following list complements the information on the MOP given in the previous Subsection.

(a) Metaobjects always generate code as strings. The code is added to a copy in memory of the
prototype source code; the original file is not changed.

(b) The class or prototype of a metaobject may implement any number of interfaces for any
number of phases. As a result, a metaobject can act in multiple compilation phases.

(c) In each phase, all metaobjects associated with a prototype have the same view of the code,
which is how the code was in the last compilation phase. In phase afterResTypes, however, each
of a prototype’s metaobjects knows what fields and methods the other metaobjects generated. This
information is passed through the parameter infoList (see line 11 of Listing 7). The methods are
called in rounds. In the first round, infoList is null. In the second round, infolList contains
information on the code generated in the previous round. And so on until a maximum of 5 rounds.
Each metaobject can then change the code it generates based on the code generated in the previous
round. In phase semAn, no metaobject is aware of the code added by other metaobjects in that
phase. A consequence of the above is that the order in which metaobject methods are called
is not important. It would be relevant if a metaobject could view the code just added by other
metaobjects in the same phase.

(d) Fields and methods can only be added in phase afterResTypes, and statements and expressions
can only be added in phase semAn. Hence, metacode developers can be sure that, in phase semAn,
the fields and methods of prototypes will not change.

(e) Base code can be changed by metaobjects in only one way: method statements and expressions
can be replaced by others. Metaobjects cannot change inheritance (add or remove), method
parameter types, implemented interfaces, and so on.

(f) A metaobject may add code in several phases. The added code may have annotations. However,
the associated metaobjects will only be active in the next phase. Accordingly, in compilation
phase X, a metaobject may generate code with annotations. But the metaobjects associated with
these annotations will only be used in the compilation phases following X.

For example, suppose an annotation @addField (0) adds the following code to a prototype in
phase afterResTypes.

@addField(1)
var Int fieldO;

The annotation @addField (1) should also add field field1 to the prototype. However, this
does not happen: the metaobject associated with this annotation will only be active in the next
compilation phase, semAn, and in this phase, metaobjects cannot add fields to prototypes.

(g) The compiler keeps track of which code was inserted by which metaobject. If there is a
compilation error, it points out exactly the annotation that inserted the code with errors. That is
16



only possible because: (i) metaobject methods return code as strings; and (ii) metaobjects do not
change the AST directly, it is the compiler that inserts the code.

(h) The Cyan compiler is the active part of the metaprogramming system. It calls the metaobject
methods, which may return code to be inserted. However, it is the compiler that inserts the code.

(i) Metaobject methods only have access to a simplified and read-only version of the compiler
AST. For example, the class WrFieldDec used in line 13 of Listing 7 is the read-only version of
the AST class FieldDec of the compiler (that represents a field of a prototype). Internal compiler
details of the latter are not revealed in the former.

(j) A metaobject method can add fields and methods to the prototype P in which the metaobject
annotation is. In this case, the natural prototype context of the metaobject is P. A metaobject
method whose annotation is in prototype P can be called when P is inherited by Q. In this case, the
metaobject method will be called in the context of Q, which will be the natural prototype context
of the metaobject (natural context, for short). The AST of Q will be visible to the metaobject
method.

A prototype cannot view the fields (all are private) and private methods of other prototypes.!!
A metaobject method cannot view the private fields and methods of a prototype different than its
natural context prototype. The visibility of a metaobject method is the same as its natural context.

We will explain that using the example of Subsection 3.1. Suppose the expression

((WrPrototype) field.getType()).getFieldList(compiler.getEnv())
is inside the afterResTypes_codeToAdd method of the CyanMetaobjectGet class of Listing 7.
This expression tries to get private information about the type of the field, which is the list of fields
of the type. There would be a compilation error in the example of Listing 6 because a metaobject
of Painting would be trying to access private information of String, the type of the field name.
However, there would be no error if the type of name were Painting because a prototype has the
right to know its own private parts.

(k) When the compiler calls a metaobject method, it passes as an argument an object describing the
compiler itself. The method parameter has names such as compiler (line 10 of Listing 7) or env.
The available information varies according to the interface phase in which the metaobject method
was declared. During parsing, metaobjects do not know method statements, other prototypes, or
any information on code that comes textually after the annotation. In phase resTypes, metaobjects
have access to AST objects that describe everything outside method statements. In phase semAn,
metaobjects have access to all information except the types of variables and expressions that come
after the annotation. Finally, all the information is available for metaobjects in phase afterSemAn
(the code and the AST cannot be changed in this phase).

(I) Metaobjects cannot add code in phase afterSemAn. Therefore, the metaobjects that act in this
phase view the final code, which cannot be changed any longer.

To build a metaobject in Java, the developer has to create a class, import the compiled version of
the Cyan compiler (a . jar file), define the appropriate methods, compile it, and put the compiled
version of the metaobject class in a special directory of a package. The annotation will be available
for those source files that import that package. Although this process is not painful, there is an
easy way that will be presented using the metaobject

action_afterResTypes_semAn
of package cyan.lang. An example of its use is shown in Listing 8, which shows an annotation

"For a complete discussion of the visibility rules of Cyan, refer to the Cyan manual.
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1

Listing 8: Annotation that takes Myan code

// inside a method
@action_afterResTypes_semAn{
func semAn_codeToAdd {
runFile: #printData_at_semAn; // load and interpret this file
return "one = 1; ";
1
func afterResTypes_codeToAdd {
// return a tuple
return [. "func getZero —> Int =0; ", "func getZero —> Int" .];
}
*}

that is inside the body of a method (assume this). The attached annotation code is in the language
Myan (interpreted Cyan), but methods of interfaces associated with afterResTypes and semAn
can be defined. There should be no parameters to the methods. The metaobject will insert the
expected parameters into the scope automatically. For example, a parameter compiler can be
used inside the first method, semAn_codeToAdd, because the equivalent method in the MOP
library has a parameter with this name. In this example, the first method loads and executes a
Myan file from disk and returns a string that will be the generated code. The second method inserts
a method getZero into the current prototype. Metaobjects like these streamline the process of
metaprogramming.

3.5. Other Annotation Kinds

Listing 2 shows examples of annotations starting with @, the most common kind. There are other
annotations with different syntax or having other roles: annotations to types (next subsection),
macros, literal numbers and strings, and Codegs.

A macro is associated with an identifier that starts the macro call (no @). When the compiler finds
the identifier, it passes control to the associated metaobject, which then controls the compilation
process. Therefore, after the initial identifier, any syntax may follow. Besides generating code,
Cyan macros have all the power of other metaobjects. They have access to the prototype AST and
can add fields and methods to the current prototype.

A literal number ending with an identifier such as 110bin or OFFF_Hex is an annotation. The
associated metaobject can replace the number with any expression and even perform checks in the
current prototype.

Literal strings starting with an identifier are annotations, as r"x[A-Z]*" and xm1""" code
in XML""". They generate an object for a regular expression and an object for XML code,
respectively. The last example uses a multiline string that starts and ends with triple quotes. The
metaobjects associated with bin, Hex, and r are defined in package cyan.lang, and therefore
these annotations can be used without importing any other package.

Our final metaobjects are known as Codegs (Code + eggs). They depend on an IDE plugin to
work. There are several flavors of syntax for Codegs: @id, literal numbers ending with identifiers,
and literal strings starting with identifiers. At editing time in the IDE, two clicks on an annotation
linked to a Codeg trigger the call to a method of the associated metaobject that usually shows a
graphical user interface (GUI). This GUI then allows the developer to make choices that are used
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to generate data that is recorded in a file (this management is done by the IDE plugin). At compile
time, the compiler passes to the metaobject the file data stored at editing time. The metaobject
can use it to generate code and do checks. For example, suppose the following piece of code is in
a file that imports Codeg color.

func defaultColor —> Int = @color(cyan);

At editing time, two mouse clicks on color are intercepted by the IDE plugin. Then, it calls a
method of the metaobject color that shows the window of Figure 3. After a color is visually
chosen, the developer presses the Ok button, and the window disappears. The plugin saves the
color number in a file hidden from the developer. During compilation, the compiler reads the
file and passes the file contents (just a number) to the metaobject, which returns this number
as the code to be generated (no further processing is necessary in this case). Codegs cannot be
replaced by IDE tools because they are metaobjects without any limitations. They can combine
the information obtained at editing time with compiler data, such as the prototype AST.

3.6. Pluggable-Type Systems

Annotations can be attached to types for additional type checking. Hence, Cyan supports a
limited pluggable-type system (Bracha, 2004). In the last two lines of this code, for example,
metaobjects range and secretValue issue compile-time errors.

var Int@range(1, 12) month,;

//’s’ can be assigned only to other secretValue variable
var String@secretValue s = "a secret";

month = 12; // ok

month = 0; // error

var String gossip =s; // error

Metaobjects whose annotations can be attached to types, such as range and secretValue, should
implement a specific interface of the MOP. This interface declares two methods. One of them is
called when a value of the type is used on the left-hand side of an assignment, as month in line 4.
The other method is called when a value of the type is used on the right-hand side, such as s in
the last line.
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4. Comparison with Related Work

This section presents some metaprogramming systems and how they are related to Cyan. The
first subsection describes mechanisms for code generation and the benefits and drawbacks of
each of them. Subsection 4.2 compares Cyan with runtime metaprogramming. Cyan support for
pluggable-type systems is covered in Subsection 4.3. The comparisons related to internal and
external DSLs are made in Subsections 4.4 and 4.5. The last subsection compares Cyan with
languages and systems supporting compile-time metaprogramming.

4.1. How Code is Generated and Represented

Metaprograms generate code in many representations using several mechanisms (Smaragdakis
etal., 2015), described next.

(a) As text. Code is generated in string format. There is no guarantee that the generated code is
error-free.

(b) Handling of the program Abstract Syntax Tree. Code is generated by creating objects of
the AST representing it, considering that the compiler is implemented in an object-oriented
language.'? Therefore, the developer has to know a great number of classes (it would be more
than one hundred in Cyan). Code generation is difficult because it demands the mapping, by
the metaprogrammer, of human-legible source code into the creation of AST objects. AST
handling has the advantage that the metaprogram compiler usually catches all syntactic errors in
the generated code. However, the AST objects created by metaprogramming may have semantic
errors. If this happens, the compiler will not be able to identify the metacode that produced the
AST objects that caused the errors.

(c) Quoting A special language syntax is used to transform text into AST objects. Therefore,
the metaprogram handles text that is converted into AST objects. As a short example, in the
Python-based language Converge (Tratt, 2008), the AST of 1 + 2 1is obtained by the quasi-quoted
expression [| 1 + 2 [].

(d) Specialized languages Domain-Specific Languages are used to generate code. There are many
languages that fit in this category: Genoupe (Draheim et al., 20050) (Draheim et al., 2005a),
SafeGen (Huang et al., 2005), and PTFJ (Miao and Siek, 2012), CTR (F#hndrich et al., 2006),
MorphJ (Huang and Smaragdakis, 2011), MTJ (Reppy and Turon, 2007), and PTFJ (Miao and
Siek, 2012). They share the common characteristic that the modifications they can make are
limited. Either the code generation is inflexible (based on a pattern) or limited to certain tasks (as
adding fields and methods to a class and only this). These languages are not further discussed
because they are not comparable with the Cyan MOP, which is more general.

Cyan generates code as strings, and any errors in them are not caught either at compile-time or
runtime of the metaprogram (metaobject code). However, errors are discovered in the compilation
of the base program. The compiler will give precise error messages because it associates every
code added to the source file with an annotation, which is the annotation associated with the
metaobject that generated the code. The compiler will indicate precisely which annotation is
linked to the code with errors.

12The reasoning does not change if the AST is implemented in a language that is not object-oriented.
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4.2. Runtime Metaprogramming

The Smalltalk MOP (Goldberg and Robson, 1983) (Nierstrasz et al., 2009) is fundamentally
different from that of Cyan because it cannot change the program. However, a Smalltalk program
can change itself at runtime using methods inherited from fundamental classes such as Behavior,
which are outside the MOP. There are methods that can, for example, add a new method to a class.

In Python 3 (Ramalho, 2015), metaclasses are used to change classes, including adding code to
them. Each class has a single metaclass, a limitation that drastically reduces the complexity of
metaprogramming in Python because there would be no interactions between metacode. Many
of the problems with CTMP cited in Section 1 do not exist in Python. But the limit of just one
metaclass per class severely damages the usability of metaclasses. A metaclass cannot intercept
class inheritance or method overrides in a subclass. There are no compile-time guarantees in
relation to metaclasses because classes are created only at runtime. Metaobjects in Cyan have
access to the AST of the current prototype. In Python, the AST is not readily available. In Cyan,
there are four compiler phases in which metaobjects may act. In Python, metaclasses act only
when the class is created.

The prime example of a Metaobject Protocol is that of CLOS (Kiczales et al., 1991) (Kiczales
et al., 1993) (Paepcke, 1993) (Bobrow et al., 1993) (DeMichiel and Gabriel, 1987), an extension
of Common Lisp (Steele, 1990) with features for object-oriented programming. The CLOS MOP
acts at runtime, allowing the intercepting of several operations: object creation, memory allocation,
the calculus of superclass precedence,13 method calls, field access, and many more. The MOP
of this language uses metaclasses, which are classes of classes and methods.'* Metaclasses are
objects too. By using a user-made metaclass for a class, we change its expected behavior. For
example, a metaclass can introduce a field into a class that keeps track of how many objects were
created. The method that creates instances of the class may increment this field every time it
is called. The Cyan MOP has a great number of the features of the CLOS MOP, such as the
intercepting of method calls and the addition of code to classes/prototypes. However, there are
many differences:

(a) metaprogramming occurs at runtime in CLOS and at compile time in Cyan. In Cyan, errors
are detected earlier, and DSL code attached to annotations can be checked at compile-time;

(b) in CLOS, a class or other element has a single metaclass. In Cyan, any number of metaobjects
can be attached to a declaration, and each annotation may have parameters and an attached
DSL code (as insertCode of Listing 3), allowing for easy metaobject configuration;

(c) the AST is not available for the metaclass. This limits what metaclasses can do;

(d) Cyan has a lot of security measures that CLOS does not support. In Cyan, a metaobject has
limited view privileges, which are usually the same as the view of the prototype associated
with it.

4.3. Pluggable-Type Systems
In Cyan, annotations can be attached to types, as seen in Section 3.6.

var Int@range(1, 12) month = 0; // error

13The superclasses have to be ordered because the language supports multiple inheritance.
14CLOS has both methods and generic methods. For our purposes, it is not necessary to distinguish between them.
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Type annotations have a subset of the power of the Checker Framework (Papi et al., 2008)
because the metaobjects of the former have access to local code only. The Checker Framework is
implemented as a Java annotation processor that can access the whole program. However, most
annotations only need information about the prototype in which the annotation is used, which
is supplied by the Cyan Metaobject Protocol. For example, the metaobject method that checks
whether “month = 07 is correct has no access to the AST of any other prototype. Since most
checks only need the AST of the current prototype, most Checker Framework annotations can be
implemented in Cyan.

4.4. Internal DSLs

Internal DSLs (Fowler, 2010) are those built using a host general-purpose language. Regular
language code is organized in such a way that it looks like the code of a DSL. The most common
and old way of supporting this is through macros, as in CLOS (Steele, 1990) and Rust (Klabnik
and Nichols, 2022). Languages like Ruby (Flanagan and Matsumoto, 2008), Groovy (Konig,
2007), and Scala (Odersky et al., 2021) offer other mechanisms for creating internal DSLs.
These mechanisms include flexible syntax, anonymous functions, optional parentheses and
punctuation, dynamic typing, extension methods (which simulate the addition of methods to
classes at compile-time), metaprogramming (the insertion of methods into objects or classes),
and many language-specific features. In Cyan, internal DSLs are implemented using mainly
metaobject grammarMethod.

Metaobject grammarMethod intercepts the “method missing” error and tests if the message
passing that caused it matches the regular expression given in the DSL code attached to an
annotation.

@grammarMethod {
((forward: Int | backward: Int | turn: Double)+
(ligthOn: | beep:) )

*}

func robot: Tt { ... }

For example, suppose a prototype Robot declares a single method, the one shown above. Variable
myRobot refers to an object of this prototype.

myRobot forward: 5 turn: 30.0 backward: 10 turn: 60.0
forward: 25 beep:;

This message passing causes a “method missing” error, which is intercepted by the metaobject
grammarMethod which packs the message into an object of type T. This object is passed as an
argument in a call to the method “robot:”. Type T is a complex type composed of arrays, tuples,
and unions. It is not explained here. Metaobject grammarMethod can be used for implementing
internal DSLs that use keywords and regular grammars.

Metaobject grammarMethod can simulate argument labels of language Swift or named param-
eters of Groovy (Subramaniam, 2013) and Kotlin.'> This feature allows the caller to use labels
associated with parameter names to distinguish the arguments. The order is not important. Both
this and optional arguments can be easily implemented using grammar methods.

Bhttps://kotlinlang.org
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It is interesting to note that metaobjects that intercept the “method missing” error can simulate
the implementation of implicit arguments of language Scala (Odersky et al., 2021). Implicit
arguments in Scala are arguments passed to a method without being explicitly stated. In Cyan, a
metaobject that intercepts the “method missing” error can replace the message passing by any
expression. In particular, the metaobject can replace it with another message passing with more
arguments. Like Scala implicit arguments, one of the added arguments can be taken from the
original message-passing environment. This is possible because the metaobject has access to the
full AST of the prototype of the original message passing.

4.5. DSL Code Embedded Within Base Code

Cyan supports external DSLs embedded in its code. The DSL code is put either between {*
and *} attached to the annotation (see Listing 3 and the grammar method examples) or inside a
string preceded by an identifier (as in xm1" .. ."). The metaobject associated with the annotation
is responsible for parsing and analyzing the DSL code at compile time. Converge (Tratt, 2008), a
Python-based language, supports a similar mechanism:

$<<compilerFunc>>
dslCode

Function compilerFunc is called at compile time with ds1Code as an argument (a string) and
returns an AST object that replaces the DSL block (this whole example). Unlike metaobjects,
this function cannot add fields, methods, or classes to the program. This Converge language
mechanism is the closest we have found in the literature to Cyan annotations with attached DSL
code.

4.6. Compile-Time Metaprogramming

This subsection is divided into parts. First, the text presents some compile-time metaprogram-
ming systems. They are then compared with Cyan.

Aspects

Aspect]'® (Kiczales et al., 2001) is a Java extension for Aspect-Oriented Programming (AOP)
(Kiczales et al., 1997). In this paradigm, code for an aspect of a program, like error handling and
logging, is grouped and put in just one place instead of being scattered in the program. In Aspect],
several operations can be intercepted, like method calls, field access, and the creation of objects.
This is specified through an aspect language, a DSL, resembling Java. The Aspect] compiler,
directed by user code, can add methods, fields, and constructors to classes and change inheritance
and implemented interfaces.

Aspect] can change the inheritance hierarchy, which includes the replacement of the superclass
and the addition of implemented interfaces. By design, this is not allowed in Cyan because big
changes like this damage the readability of the base code. The DSL used by Aspect] to select
the joint points (methods and classes that will be changed) is static, as is the code to be added.
Hence, before adding a method to a class, Aspect] cannot examine the class AST to tailor the
addition of the method. Instead of changing a specific class or method through an annotation, as
Cyan does, Aspect] is able to change all classes and methods that match the pattern of pointcuts.

I6https://www.eclipse.org/aspectj/doc/next/progguide/language.html
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The Cyan MOP and Aspect] have different goals and, therefore, very different functionalities.
In particular, most of the existing Cyan metaobjects'’ cannot be implemented in AspectJ. For
example, the metaobject £ smDSLMethods adds code before the prototype methods to enforce that
they are called in an order specified by a finite state machine (FSM). For example, method open
should be called before write, and this should be called before close. The FSM is given in the
attached text to the annotation. Although Aspect] can add code to classes, it does not support
annotations attached to classes with a DSL code for directing the code generation.

Metaprogramming Systems with a MOP

OpenC++ (Chiba, 1995) is a C++ extension in which metaclasses for classes and methods
are given the opportunity of changing the AST after parsing. A metaclass for a class C may
intercept method calls whose receivers have type C. The method call may, after the interception,
be changed or replaced. The MOP of OpenC++ also allows interception of variable declarations,
creation of objects, and reading and writing in fields. OJ (Tatsubori et al., 2000) (Tatsubori,
1999) is a Java extension in which a class may be associated with a user-defined metaclass.
Methods of the metaclass have the opportunity of changing the AST. For example, a method
called translateDefinition of a metaclass may add methods to the class. expandFieldRead
can change the read of a class field. The user-defined metaclass can also define methods for
intercepting object creation, array allocation, writing to fields, method calls, and casts to the class.

Metaprogramming Systems without a MOP

Languages Xtend'®, Groovy (K6nig, 2007), and Nemerle'® (Skalski, 2005) support compile-
time metaprogramming without a Metaobject Protocol. These languages support metaprogram-
ming features. They share many similar characteristics, as described below, and therefore will be
considered together.

(a) Annotations are attached to classes, methods, and other declarations;

(b) An annotation is linked to a Processor Class (PC) that can implement interfaces and define
methods that change the compilation;

(c) Methods of the PC are invoked in several phases of the compilation, like before parsing,
after parsing, before typing members (similar to afterResTypes of the Cyan compiler), after
semantic analysis, during code generation, etc.;

(d) Methods of the Processor Class have parameters that represent language elements that can be
changed at compile time. For example, the AST object of the annotated class or method is
passed as an argument. Methods of the PC can, using these AST objects, add methods to an
annotated class, change inheritance, add statements to an annotated method, change method
statements, and so on. Any AST object reachable from the method arguments can be changed.
Therefore, a method can be added to a class that is not annotated or is not directly related
to the annotated class. The class may be, for example, just the type of a method parameter
accessible to the PC method;

Ty cyan-lang.org

Bhttps://www.eclipse.org/xtend
http://nemerle.org
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(e) A method of the Processor Class that overrides an interface method is used in the compilation
phase associated with that interface (much like Cyan).

Compiler Plugins

A compiler plugin is composed of metacode that interacts at low-level with the compiler,
changing the compilation process. The difference between the terms compiler plugins and
metaprogramming systems without a MOP is that the former emphasizes implementation aspects
(low-level details), whereas the latter emphasizes conceptual aspects (high-level specifications).
Compiler plugins are supported by the languages Scala®’, Java?!, X10 (Nystrom and Saraswat,
2007), Kotlin,?? TypeScript>®, and Rust?*. Java annotation processors (Darcy, 2006) are compiler
plugins for Java that allow checks but not code modifications. They are used, for example, for
implementing pluggable types (Bracha, 2004). Project Lombok (Kimberlin, 2010) is a Java
annotation processor whose supported annotations can add code to classes because it uses non-
supported downcasts. Compiler plugins will not be discussed in depth in this paper because there
is a shortage of good documentation about them. However, languages whose compilers accept
plugins have all the main characteristics of languages supporting compile-time metaprogramming
without a Metaobject Protocol, as discussed above.

Comparison with the Cyan MOP

The Cyan MOP was built on the metaprogramming system of modern languages, such as
Groovy, but with some characteristics of MOPs. From Metaobject Protocols, Cyan took the
interception of message passings, inheritance, field access, and errors such as method or field
missing. From the other systems, it took all the rest.

The following comparison will be guided by the list of problems with metaprogramming given
in the introduction. The problem letter precedes each discussion.

(a) A metacode associated with a source file can change the base code of another file. Hence,
to know the final version of a file, the developer has to know the behavior of every metacode in the
metaprogram.

Languages OJ, Xtend, Groovy, and Nemerle allow non-local changes through AST handling.
Hence, a metacode of one class can change another class. In particular, metacode associated with
annotations of a source file can change another source file, which is called obliviousness (Filman
and Friedman, 2000). Generally, any metaprogramming system that supplies the AST to metacode
has this problem (Clifton and Leavens, 2003). CLOS, OpenC++, and BSJ limit the changes to the
scope of the metaclass or metacode. In Cyan, metaobjects have access to a read-only AST and
it is the compiler that changes the base code. The compiler only allows changes in the current
prototype or the prototype that the metaobject was intended to change, which is its natural context
prototype, as explained in item j of Subsection 3.4.

(b) A class may not have access to the private fields and methods of another class. But the
metacode can because it has access to the compiler data structures.

20https://docs.scala-lang.org/scala3/reference/changed-features/compiler-plugins.html

21https://docs.oracle.com/en/java/javase/ 11/docs/api/jdk.compiler/com/sun/source/util/Plugin.html

22https://kotlinlang.org/docs/all-open-plugin.html

Zhttps://github.com/microsoft/TypeScript/wiki/Using-the-Compiler-APT

24Compiler plugins are an unstable feature of the language. See https://doc.rust-lang.org/beta/unstable-book/language-
features/plugin.html
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As explained in item j of Subsection 3.4, there is a compilation error when a metaobject attempts
to access private data of a prototype that is not its natural context prototype.

(c) The developer has to know many details about the compiler since the metacode interacts
with low-level compiler algorithms and data structures. Therefore, metaprogramming is not
only harder, but the metacode can bypass compiler checks, invalidate invariants, damage data
structures, and crash the compiler.

In Cyan, metaobjects have access to a read-only and simplified AST of the base code. In most
metaprogramming systems, the metacode has direct access to the compiler’s AST. Thus, metacode
can easily damage the AST. If the compiler discovers the damage, it will not be able to point out
the guilty metacode. The metacode may break compiler invariants after the compiler does the
final checks, leading it to generate incorrect code or crash. That is impossible in Cyan. Besides
that, Cyan metaobjects generate code as strings. Hence, metaobject developers do not need to
have deep knowledge of the AST or the compiler.

(d) Metacode can insert new code into the base code. If the new code has errors, the compiler
is unable to point out which metacode (or associated annotation) is responsible for adding the
new code. This is because the metacode itself changes the compiler AST to add new AST objects.
No trace is left of who did what.

This problem occurs in all metaprogramming systems that allow metacode to handle the AST.
In Cyan, metaobject methods return code as strings that are inserted in the base code by the
compiler. The compiler associates the inserted code with the annotation that asked for its insertion.
If there is an error in the code produced by the metaobject, the compiler will point out exactly
which annotation is responsible for it.

The Converge programming language (Tratt, 2005) (Tratt, 2008) supports compile-time
metaprogramming. The compiler tracks who produced which code to issue precise error messages.
It goes beyond Cyan in two aspects: (a) every bytecode® knows its origin, which can be used in
runtime error messages, and (b) an AST node can be associated with more than one location (an
error may be associated with more than one source).

(e) The order in which the metacode is called is not specified by the language. It can even
change between compilations (with the same base code). By changing the metacode calling order,
their view of the program can change if a metacode can view the code added by a metacode
executed previously.

To our knowledge, the only metaprogramming languages that guarantee the execution order of
metacode are BSJ (Palmer and Smith, 2011) and Cyan (as explained in item ¢ of Subsection 3.4).
The order is important if there are two or more metacode associated with the same class, prototype,
or source file. What one metacode does may impact the following metacode the compiler calls.

(f) A check made by one metacode may be invalidated by code added by another metacode.

In Cyan, metaobjects should do checks in phase afterSemAn, in which the code cannot be
changed anymore. In languages that allow irrestrict changes in the AST, checks made by a
metacode may be invalidated by code added later by another metacode.

(g) Metacode may generate metacode that may generate metacode ad infinitum.

This problem usually does not occur in metaprogramming languages because the base code is
processed just once for each metacode. In Cyan, metaobjects may generate code with annotations,
but these will only be used in the next compilation phase. As the number of phases is finite, so
will be the compilation.

25The source code is translated into bytecodes of a Converge VM.
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(h) Metacode may not terminate its computation. The compiler will not terminate either.

In Cyan, there is a time limit for each metaobject method to terminate its execution, which can
be changed by a compiler option. To our knowledge, no other metaprogramming language with
or without a MOP employs this solution.

(1) Metacode may generate code that uses identifiers already in use. This is the hygiene problem
of macros.

This problem does occur in Cyan and, to our knowledge, in all metaprogramming systems with
or without a MOP. In Cyan, it can be easily avoided. There is a MOP method that returns an
identifier name that is guaranteed not to crash with any other identifier in the program.

4.7. Comparison of Features

The Cyan MOP has some features that are not found in other metaprogramming systems without
a MOP, generally. These are the systems directly related to Cyan, both in terms of implementation
and functionality. These features are described next. It is not difficult to add them to any language.

In Cyan, a source file that imports a package has access to all metaobjects defined in that
package. In other languages, the path (directory and file name) of the metacode should be
specified through some configuration file or through the command line.

In Cyan, annotations can be expressions such as eval presented in Subsection 2.2 or

@currentmethodname ("currentmethodname")
that return the current method name as a string. We are unaware of any other metaprogramming
language that allows this.

Codegs, presented in Subsection 3.5, collect at editing time information that may be used at
compile time. Codegs play the role of plugins to the IDE but, at the same time, have the full power
of metaobjects. They are not directly related to any metaprogramming system cited in this article.

Cyan has a project file that specifies which packages compose the program. Metaobjects can
be used in the project file to specify compiler options, create and associate variables with values
(that can be used by metaobjects), and apply an annotation to a bunch of prototypes. For example,
instead of attaching metaobject checkStyle to all prototypes of the package cyanPack, we can
just attach the annotation to the package in the project file.

Metaobjects can transfer information from a prototype P to a generic prototype that takes P as
an argument. As an example, a metaobject associated with prototype Int supplies the code of a
method sum that is added to Array<Int> by a metaobject associated with this last prototype.

In phases afterResTypes, semAn, and afterSemAn, metaobjects of the same prototype can
communicate with each other through the exchange of data. This may be used for coordinating
their actions.

Some metaobjects take interpreted Cyan (Myan) code as the attached DSL text. Using this
feature, metacode can be specified inside regular Cyan code. As examples, see Listings 3 and
4 of Subsection 2.2 and Listing 8 of Subsection 3.4. The attached text of these annotations are
metacode in Myan, which can be put in standard directories of a package and loaded at compile
time as shown in line 4 of Listing 8.

When there is a compilation error in a source file, the compiler produces a file with the final
source code, which includes the code added by metaobjects. The developer can view the code
generated by metaobjects and discover possible errors in them.
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5. Conclusion

No sufficiently powerful metaprogramming system is easy to use, which includes the Cyan MOP.
However, we consider that this MOP is not too difficult to use in relation to its power because of
the following reasons. The goals direct the implementation of metaobject classes (which interfaces
to implement; see Table 1 and Subsection 3.1). Therefore, the metaprogrammer, guided by the
goals, makes the most important decisions before starting to code. In each compilation phase,
metaobject methods ask the compiler to add code. As a result, the metaprogram acts passively
in relation to the compiler, who is in control of the execution flow of the metaprogram. The
developer has access to simplified read-only compiler data structures (which include the AST of
the base code), the developer does not need to know the compiler internal details, there cannot
be a compiler crash caused by metacode. When there is a compilation error in a source file, the
compiler points out exactly the annotation that caused the error and produces a new file with the
code added by metaobjects. There are many security mechanisms that are not present in other
systems.

Metaobjects have been extensively used in the Cyan libraries. There are many general metaob-
jects, such as property, init, immutable, eval, and doc, but also those for specific prototypes
and methods. Among the latter, there are metaobjects for generating code, such as createTuple
and createFunction (they create all methods of prototypes Tuple<T> and Function<T+>).
And there are ones for doing checks based on the semantics of methods, such as checkIsA (check
if an argument is a prototype), checkMethodEqualEqual (check if the result of “el == e2”
is known at compile time and, therefore, the comparison is unnecessary), and overrideToo
(demand that, if == is overridden in a subprototype, method hashCode is too). The use of metaob-
jects in the Cyan libraries is a good justification of the main goals of the Cyan MOP, which are
to build general metacode and to make libraries easier to build (because of code generation) and
safer to use (because of compile-time checks).

We have plans to further improve the Cyan MOP. One of the planned features is to support
variable ownership, like in language Rust (Klabnik and Nichols, 2022). The Cyan compiler is
available for download at cyan-lang.org. There one can find the language manual, a complete
description of the Cyan MOP, and a list of around one hundred metaobjects with examples.

Acknowledgments. This project was partially financed by FAPESP (Sao Paulo - Brazil) under
Process number 2014/01817-3.

References

Belyakova, J. and Mikhalkovich, S. (2015), ‘Pitfalls of c# generics and their solution using concepts’, Proceedings of ISP
RAS 27(3), 29-46.

URL: http:/fmi.mathnet.ruftisp134

Biboudis, A., Inostroza, P. and Storm, T. v. d. (2016), Recaf: Java dialects as libraries, in ‘Proceedings of the 2016
ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences’, GPCE 2016,
Association for Computing Machinery, New York, NY, USA, p. 2-13.

Bobrow, D. G., Gabriel, R. P. and White, J. L. (1993), Object-oriented programming, in A. Paepcke, ed., ‘Object-oriented
Programming’, MIT Press, Cambridge, MA, USA, chapter CLOS in Context: The Shape of the Design Space,
pp. 29-61.

Bracha, G. (2004), Pluggable type systems, in ‘In OOPSLA’04 Workshop on Revival of Dynamic Languages’.

Burmako, E. (2013), Scala macros: Let our powers combine! on how rich syntax and static types work with metaprogram-
ming, in ‘Proceedings of the 4th Workshop on Scala’, SCALA 13, Association for Computing Machinery, New York,
NY, USA.

28



Chiba, S. (1995), A metaobject protocol for c++, in ‘Proceedings of the Tenth Annual Conference on Object-oriented
Programming Systems, Languages, and Applications’, OOPSLA *95, ACM, New York, NY, USA, pp. 285-299.

Clifton, C. and Leavens, G. T. (2003), Obliviousness, modular reasoning, and the behavioral subtyping analogy, Technical
Report 329, Computer Science Technical Reports - Iowa State University.

Csh (2023), ‘C# language specification’.

URL: https:/learn.microsoft.com/en-us/dotnet/csharp/

Darcy, J. (2006), ‘Java specification request 269: Pluggable annotation processing api’.
URL: http:/fjcp.orglenfjst/detail ?id=269

DeMichiel, L. G. and Gabriel, R. P. (1987), The common lisp object system: An overview, in ‘European Conference on
Object-oriented Programming on ECOOP *87°, Springer-Verlag, Berlin, Heidelberg, pp. 151-170.

Draheim, D., Lutteroth, C. and Weber, G. (20054), ‘Generative programming for ¢c#, ACM SIGPLAN Notices 40(8), 29-33.

Draheim, D., Lutteroth, C. and Weber, G. (2005b), A type system for reflective program generators, in ‘Proceedings of the
4th International Conference on Generative Programming and Component Engineering’, GPCE’05, Springer-Verlag,
Berlin, Heidelberg, p. 327-341.

Fahndrich, M., Carbin, M. and Larus, J. R. (2006), Reflective program generation with patterns, in ‘Proceedings of the
5th International Conference on Generative Programming and Component Engineering’, GPCE ’06, Association for
Computing Machinery, New York, NY, USA, p. 275-284.

Filman, R. E. and Friedman, D. P. (2000), Aspect-oriented programming is quantification and obliviousness, in ‘OOPSLA
2000 Workshop on Advanced Separation of Concerns’, Minneapolis, MN.

Flanagan, D. and Matsumoto, Y. (2008), The Ruby Programming Language, first edn, O’Reilly.

Fowler, M. (2010), Domain Specific Languages, 1st edn, Addison-Wesley Professional.

Goldberg, A. and Robson, D. (1983), Smalltalk-80: the language and its implementation, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

Gosling, J., Joy, B., Steele, G. L., Bracha, G. and Buckley, A. (2014), The Java Language Specification, Java SE 8 Edition,
1st edn, Addison-Wesley Professional.

Guimardes, J. d. O. (2020), The cyan language.

URL: http:/fcyan-lang.org/articles/

Guimardes, J. d. O. (2022), The cyan language metaobject protocol.
URL: http:/cyan-lang.org/docs

Huang, S. S. and Smaragdakis, Y. (2011), ‘Morphing: Structurally shaping a class by reflecting on others’, ACM Trans.
Program. Lang. Syst. 33(2).

Huang, S. S., Zook, D. and Smaragdakis, Y. (2005), Statically safe program generation with safegen, in ‘Proceedings of the
4th International Conference on Generative Programming and Component Engineering’, GPCE’05, Springer-Verlag,
Berlin, Heidelberg, p. 309-326.

Kamin, S., Clausen, L. and Jarvis, A. (2003), Jumbo: Run-time code generation for java and its applications, in
‘Proceedings of the International Symposium on Code Generation and Optimization: Feedback-Directed and Runtime
Optimization’, CGO ’03, IEEE Computer Society, USA, p. 48-56.

Kiczales, G., Ashley, J., Rodriguez, L., Vahdat, A. and Bobrow, D. G. (1993), Object-oriented Programming: The CLOS
Perspective, MIT Press, Cambridge, MA, USA, chapter Metaobject protocols: Why we want them and what else they
can do, pp. 101-118.

Kiczales, G., des Rivieres, J. and Bobrow, D. G. (1991), The Art of Metaobject Protocol, MIT Press, Cambridge, MA,
USA.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and Griswold, W. G. (2001), An overview of aspectj, in J. L.
Knudsen, ed., ‘ECOOP’, Vol. 2072 of Lecture Notes in Computer Science, Springer, pp. 327-353.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M. and Irwin, J. (1997), Aspect-oriented
programming, in M. Aksit and S. Matsuoka, eds, ‘ECOOP’97 — Object-Oriented Programming’, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 220-242.

Kimberlin, M. (2010), ‘Reducing boilerplate code with project lombok’.

URL: http:/fjnb.ociweb. com/jnb/jnbJan2010.html

Klabnik, S. and Nichols, C. (2022), The Rust Programming Language, second edn, No Starch Press.
URL: https:j/doc.rust-lang.org/book

Kohlbecker, E., Friedman, D. P., Felleisen, M. and Duba, B. (1986), Hygienic macro expansion, in ‘Proceedings of the
1986 ACM Conference on LISP and Functional Programming’, LFP 86, ACM, New York, NY, USA, pp. 151-161.

Konig, D. (2007), Groovy in Action, Manning, New York.

Lilis, Y. and Savidis, A. (2019), ‘A survey of metaprogramming languages’, ACM Comput. Surv. 52(6).

Liskov, B., Snyder, A., Atkinson, R. and Schaffert, C. (1977), ‘Abstraction mechanisms in CLU’, Communications of the
ACM 20(8), 564-576.

Miao, W. and Siek, J. (2012), Pattern-based traits, in ‘Proceedings of the 27th Annual ACM Symposium on Applied
Computing’, SAC "12, Association for Computing Machinery, New York, NY, USA, p. 1729-1736.

29



Nierstrasz, O., Ducasse, S. and Pollet, D. (2009), Squeak by Example, Square Bracket Associates.

Nystrom, N. and Saraswat, V. (2007), An annotation and compiler plugin system for x10, Technical report, Technical
Report RC24198, IBM TJ Watson Research Center.

Odersky, M., Spoon, L., Venners, B. and Sommers, F. (2021), Programming in Scala, Fifth Edition, Artima Incorporated.

Paepcke, A. (1993), Object-oriented programming, in A. Paepcke, ed., ‘Object-oriented Programming’, MIT Press,
Cambridge, MA, USA, chapter User-level Language Crafting: Introducing the CLOS Metaobject Protocol, pp. 65-99.

Palmer, Z. and Smith, S. F. (2011), ‘Backstage java: Making a difference in metaprogramming’, SIGPLAN Not. 46(10), 939—
958.

Papi, M. M., Ali, M., Correa, Jr., T. L., Perkins, J. H. and Ernst, M. D. (2008), Practical pluggable types for java, in
‘Proceedings of the 2008 International Symposium on Software Testing and Analysis’, ISSTA *08, ACM, New York,
NY, USA, pp. 201-212.

Parr, T. (2013), The Definitive ANTLR 4 Reference, 2nd edn, Pragmatic Bookshelf.

Pelenitsyn, A. (2015), ‘Associated types and constraint propagation for generic programming in scala’, Program. Comput.
Softw. 41(4), 224-230.

URL: https://doi.org/10.1134/S0361768815040064

Ramalho, L. (2015), Fluent Python: Clear, Concise, and Effective Programming, O’Reilly Media.

Redmond, B. and Cahill, V. (2002), Supporting unanticipated dynamic adaptation of application behaviour, in ‘Proceedings
of the 16th European Conference on Object-Oriented Programming’, ECOOP *02, Springer-Verlag, Berlin, Heidelberg,
pp. 205-230.

Reppy, J. and Turon, A. (2007), Metaprogramming with traits, in ‘Proceedings of the 21st European Conference on
Object-Oriented Programming’, ECOOP’07, Springer-Verlag, Berlin, Heidelberg, p. 373-398.

Rompf, T., Amin, N., Moors, A., Haller, P. and Odersky, M. (2012), ‘Scala-virtualized: Linguistic reuse for deep
embeddings’, Higher Order Symbol. Comput. 25(1), 165-207.

Siek, J. G. and Lumsdaine, A. (2011), ‘A language for generic programming in the large’, Sci. Comput. Program.
76(5), 423-465.

Skalski, K. (2005), Syntax-extending and type-reflecting macros in an object-oriented language, Master’s thesis, University
of Wroclaw, Poland. Nemerle.

Smaragdakis, Y., Biboudis, A. and Fourtounis, G. (2015), Structured program generation techniques, in ‘Grand Timely
Topics in Software Engineering - International Summer School GTTSE 2015, Braga, Portugal, August 23-29, 2015,
Tutorial Lectures’, Vol. 10223 of Lecture Notes in Computer Science, Springer, pp. 154—178.

Steele, G. L. (1990), Common LISP: The Language (2nd Ed.), Digital Press, USA.

Stroustrup, B. (2003), Concept checking - a more abstract complement to type checking, Technical Report N1510=03-
0093, C++ Standards Committee Papers. ISO/IEC JTC1/SC22/WG21.

URL: http:jwww.stroustrup.com/nl510-concept-checking.pdf

Stroustrup, B. (2013), The C++ Programming Language, 4th edn, Addison-Wesley Professional.

Subramaniam, V. (2013), Programming Groovy 2: Dynamic Productivity for the Java Developer, number v. 2 in ‘Pragmatic
Bookshelf’, Pragmatic Bookshelf.

URL: https:/lbooks.google.com.br/books ?id=jvbTmAEACAAJ

Taha, W. (2007), A gentle introduction to multi-stage programming, part II, in R. Lammel, J. Visser and J. Saraiva,
eds, ‘Generative and Transformational Techniques in Software Engineering II, International Summer School, GTTSE
2007, Braga, Portugal, July 2-7, 2007. Revised Papers’, Vol. 5235 of Lecture Notes in Computer Science, Springer,
pp. 260-290.

URL: https:/ldoi.org/10.1007/978-3-540-88643-3_6

Tatsubori, M. (1999), An Extension Mechanism for the Java Language, Master’s thesis, University of Tsukuba, Japan.

Tatsubori, M., Chiba, S., Itano, K. and Killijian, M.-O. (2000), Openjava: A class-based macro system for java, in
‘Proceedings of the 1st OOPSLA Workshop on Reflection and Software Engineering: Reflection and Software
Engineering, Papers from OORaSE 1999, Springer-Verlag, London, UK, UK, pp. 117-133.

Tratt, L. (2005), The Converge programming language, Technical Report TR-05-01, Department of Computer Science,
King’s College London.

Tratt, L. (2008), ‘Domain specific language implementation via compile-time meta-programming’, ACM Trans. Program.
Lang. Syst. 30(6), 31:1-31:40.

Wadler, P. and Blott, S. (1989), How to make ad-hoc polymorphism less ad hoc, POPL ’89, Association for Computing
Machinery, New York, NY, USA, p. 60-76.

URL: https://doi.org/10.1145/75277.75283

Wehr, S. and Thiemann, P. (2011), ‘Javagi: The interaction of type classes with interfaces and inheritance’, ACM Trans.
Program. Lang. Syst. 33(4), 12:1-12:83.

Zhang, Y., Loring, M. C., Salvaneschi, G., Liskov, B. and Myers, A. C. (2015), ‘Lightweight, flexible object-oriented
generics’, SIGPLAN Not. 50(6), 436-445.

URL: http:jldoi.acm.org/10.1145/2813885.2738008

30



Table 1: Table goal-“which interface to implement” for a metaobject myAnnot whose annotation is attached to prototype

P or is inside P

Goal

Metaobject interface

Create a new prototype in the package of P

IActionNewPrototypes_parsing

IActionNewPrototypes_afterResTypes

[ActionNewPrototypes_semAn

Associate information with a declaration that can be
later retrieved by other metaobjects

ICompilerInfo_Parsing

Add new fields and methods to P, add code before
the first statement of a method of P, or check the
signatures of fields and methods of P

TAction_afterResTypes

Add code after the annotation myAnnot, know the
fields and methods of P, know the AST of state-
ments before the annotation, or replace a statement
of P by another statement

TAction_semAn

Add code after the annotation, which should be
attached to a local variable declaration

TActionVariableDeclaration_semAn

Replace a message passing by any statement. Anno-
tation myAnnot should be attached to a method that
can be called by the message passing

IActionMessageSend_semAn

Replace a message passing for which there is no
associated method. myAnnot should be attached to
P or one of its methods. The type of the receiver of
the message passing should be in the hierarchy of P

IActionMethodMissing_semAn

Replace assignments to a field or the ger of a field.
myAnnot should be attached to a field

TActionFieldAccess_semAn

Replace the get of a non-existing field by an expres-
sion; replace the assignment to a non-existing field
by an expression. myAnnot should be attached to P

TActionFieldMissing_semAn

Implement pluggable-type systems

TActionAttachedType_semAn

Check the subprototypes of P. The metaobject meth-
ods are executed in the context of the subprototype
and can check anything: if the subprototype defines
some methods, if a method has some statements, etc

ICheckSubprototype_afterSemAn

Check overridden subprototype methods. If the an-
notation myAnnot is attached to method m of P, the
metaobject can check methods of subprototypes that
override m. The metaobject has access to the AST
of the subprototype method

ICheckOverride_afterSemAn

Check a declaration, which may be a prototype,
method, or field. The metaobject has access to the
whole AST of the declaration

ICheckDeclaration_afterSemAn

Check every message passing that may call the
method attached to myAnnot

ICheckMessageSend_afterSemAn
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