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ABSTRACT

The compilation of a program can be changed by a metaprogram that acts as a
compiler plugin. The process of creating such a metaprogram is called compile-
time metaprogramming. The interface between the compiler and the metaprogram
is described by a metaprogramming system or a Metaobject Protocol (MOP). A
metaprogram can change the compilation process in several ways: it can add or
remove program code, do additional checks, replace compiler algorithms, and
intercept operations such as object creation, message passing, and field access.
Powerful metaprogramming systems have several drawbacks. The metaprogram can
have low-level interactions with the compiler, expose private source code information
to other files, and introduce non-expected dependencies among language entities.
The view of the program by a metacode, which is a snippet of the metaprogram,
may be different from the view of other metacode. The calling metacode order, by
the compiler, may have unexpected consequences. This article presents the MOP
of the prototype-based object-oriented language Cyan. Although the Cyan MOP
has the main functionality of other metaprogramming systems, it addresses the
metaprogramming problems cited previously.

Keywords object-oriented languages, metaprogramming, metaobject, computational reflection,
prototype-based languages, compilers

1 Introduction

Metaprogramming is coding of programs, called metaprograms, that treat code as data. The program
that is treated as data is called the base program or simply program. A metaprogram can generate
new code, change existing programs, or do checks in these programs. Metaprogramming offers
mechanisms for code reuse that go beyond that offered by traditional software libraries. It can
generate families of related code, as in the case of C++ templates [Str13]. It can separate functional
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and nonfunctional concerns, as in AspectJ [KHH+01], generate code based on specifications, as in
ANTLR 4 [Par13]. It can also support new syntax (macros as in Scala [Bur13]), detect program
bugs through static analyzers [Spo20] [Err20], implement new type systems using a pluggable type
system [Bra04], run a program in multiple stages [Tah07], with each stage generating and running
a new program, change the program at runtime [RC02] [KCJ03], and support embedded Domain
Specific Languages [RAM+12] [BIS16].

In this paper, the main focus is language support for Compile-Time Metaprogramming (CTMP),
which is handling of a program by a metaprogram at compile-time. Therefore, this text does not
deal with metaprogramming that use tools like ANTLR 4 [Par13] and SpotBugs [Spo20]. Nor does
it deal with metaprogramming carried out at preprocessing-time (changes made in the source code
before the program is parsed), runtime, or loading time (changes in the program are made when the
binaries or bytecodes of a virtual machine are loaded into computer memory).

To discuss specific characteristics of compile-time metaprogramming supported by programming
languages, we need to define some terms concerning metaprogramming. A program is the code that
implements a desired functionality for a specific application, which is also called the base program.
A metacode is any piece of code that comprises a metaprogram. Metacode work as compiler plugins
that exchange data with the compiler and can change compilation. The compiler calls metacode at
specific points of compilation. Metacode can replace the type checker, code generator, parser, and
any other algorithm used by the compiler. They can also add, delete, or replace pieces of program.
In practice, however, languages restrict the action of metacode.

Metacode can be intertwined with base program or defined externally. External metacode may
be linked to a source code by syntactic elements called annotations such as “@property”. The
compiler calls metacode during one or more compilation phases. The protocol specifies which part
of each metacode should be called during a given compilation phase. For example, a function1

or method duringParsing may be called during the compilation phase parsing. The function or
method may do checks or add code to the program.

Languages that support CTMP face many problems caused by unforeseen interactions between
the metaprogram and the compiler and conflicts among different pieces of metacode. Metaprogram
need to access and change low-level compiler data structures, which is a dangerous operation.
Changes to the compiler data by metacode are not recorded. Therefore, if there is a compilation
error, the compiler will not be able to point out which metacode produced the invalid code. Metacode
often access private information not visible to their compilation unit and different metacode may
have different views of the program. Changes in the order of annotations or metacode embedded
in the source code may change the compilation, making the code fragile. Checks made by one
metacode may be invalidated by code added later by other metacode. Metacode associated with one
source file may change another source file. As a result, the semantics of a source file may depend on
every metacode in the metaprogram. Metacode may generate metacode, which may cause infinite
loops: a metacode generates metacode that generates metacode and so on. Finally, there may be a
cycle of information dependency among metacode. In its simplest case, a metacode depends on
information produced by another one and vice-versa.

1Function as in language C
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Metaprogramming can be a powerful tool, despite these pitfalls. The Cyan language [Gui20]
and its Metaobject Protocol were designed to address totally or partially each of the problems
with Compile-time metaprogramming described previously. Cyan is a statically-typed, prototype-
based, object-oriented language that supports Java-like interfaces, generic prototypes, optional
dynamic typing, anonymous functions, non-nullable types, and an object-oriented exception system.
The Cyan language allows the definition of prototypes, which are the counterpart of classes of
class-based languages as C++ [Str13] or Smalltalk [GR83]. The compile-time Metaobject Protocol
(MOP) of Cyan specifies the relationships between the compiler, the metaprogram, and the program.
Metaobjects from the metaprogram can add code to the program, which includes new prototypes,
fields and methods to prototypes, and statements and expressions to methods. Moreover, they can
intercept message passing, field access, subprototyping, and method overriding. Metaobjects in
Cyan have limited power, they cannot delete program code or replace any compiler algorithm as
type checker. Additional checks can be added to a program but no existing checks can be bypassed.
The code of Cyan metaobjects were previously called metacode in this text. A metaobject is an
object that exists at compile-time with methods called by the compiler at one or more compilation
phases. An annotation in the source code, as @property, is associated with a metaobject.

The contribution of this paper is to show how the Cyan MOP addresses totally or partially each
of the problems with Compile-time metaprogramming described previously. The characteristics of
the Cyan MOP, described below, are related to the above mentioned problems.

Metaobject methods return source code, as strings, that are added to the program by the compiler.
The compiler tracks down which metaobjects have added code to the program. If the generated code
contain errors, the compiler will know whom to blame. Code are only added by metaobject methods
that return strings. The Abstract Syntax Tree (AST) is never changed directly. An innovative
algorithm guarantees that, during an important compilation phase, the order in which metacode
appear in the base code is not important and that there are no circular information dependencies
among metaobjects associated with the same prototype. The textual order of the annotations in
the code is hardly important. After semantic analysis, metaobjects cannot change the code and,
therefore, further checks will never be invalidated by other metaobjects. The compiler has a
security mechanism that prevents metaobjects from accessing private information of prototypes of
other source files. Code added by metaobjects in one compilation phase may contain annotations.
However, these annotations will only be activated in the next compilation phase. Since number of
phases is finite, the compilation process will eventually end.

The paper organization is as follows. The problems with metaprogramming, sketched in this
section, are detailed in section 2. They are the motivation for this work. Section 3 is a brief
introduction to the Cyan language. The Metaobject Protocol of Cyan is explained in section 4.
Section 5 compares the metaprogramming systems of other languages with the Cyan MOP.

2 Motivation

Before comparing Cyan with other languages, we describe some problems with metaprogramming,
mainly with CTMP, which is the main topic of this paper. Only problems relevant to various
metaprogramming systems are considered here; specific drawbacks are not listed. Each problem has
a name which is placed in boldface. Cyan jargon is used in the descriptions: a prototype is a template
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Figure 1: The program and the metaprogram

from which objects are created. A prototype belongs to a package as in Java. Let us assume that
there is a one-to-one correspondence between prototypes and source files. A metacode associated
with a source file is either inside the source file, as A in Figure 1, or it is linked to an annotation that
is inside the source file, as B in the same figure. A metacode associated with a prototype (or method)
resides inside the prototype or it is linked to an annotation inside the prototype (or method).

MessWithOthers A metacode associated with a source file changes another source file, which is
called obliviousness [CL03]. The code of a prototype presented in a text editor may not be its real
code because other source files can change it. Therefore, code becomes harder to understand.

WhoDependsOnWho The compiler of an object-oriented language typically builds a prototype
dependency graph representing the relationship between its prototypes. In the prototype dependency
graph, vertices are prototypes and there is an edge from R to S if S has to be recompiled whenever R
changes. This is the case when S inherits from R or declares a variable whose type is R.

Metacode have to be taken into account to build the prototype dependency graph. Whenever a
metacode associated with prototype S uses information about prototype R, there should be an edge
from R to S. This cannot be done if metacode act in the compiler data structures directly, as when
an AST node is passed, as an argument, to a metacode function or method. Handling of the AST
node by the metacode is unknown to the compiler and, therefore, it cannot update the prototype
dependency graph based on it. As an example, suppose a metacode associated with prototype S

generates a method that returns the number of public methods of prototype R. Prototype S depends
on R but this dependency is unknown to the compiler.

KnowsFriendsSecrets A metacode associated with a prototype S may generate code or do checks
based on private information about prototype R as its list of fields, its list of private methods, or
even statements of its methods. Use of private information coming from other source files damages
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modularity because prototype S cannot be understood without the knowledge of private information
about R.

Compiler-Interactions A metacode interacts with the compiler using low-level compiler data
structures, like the AST, in several compilation phases. This approach has several drawbacks
[SZN15]:

(a) it demands a deep knowledge of the design and implementation of the compiler, which includes
details of all the compilation phases and the data structures used. The metacode may require
complex AST transformations that should keep compiler invariants (often undocumented);

(b) incorrect AST handling may crash the compiler or make it generate incorrect code;

(c) metacode may bypass compiler checks causing the acceptance of flawed source code. That is,
metacode may add code after the compiler does some checks that will never be done in the
added code.

Moreover, metacode become tied to the compiler data structures. Changes to these data structures,
like the AST classes, invalidate metaprograms.

WhoDidWhat Metacode leave no trace of their activities, as happens when they directly manipulates
compiler data structures. Therefore, if a metacode generates an invalid code, detected in later
compilation phases, the compiler will issue an error. But it will be unable to point out the metacode
that generated the invalid code.

OrderMatters When a prototype has many associated metacode, they can be called in an order that
is unclear to the metaprogrammer [PS11] or they may be called in an order that prevents them from
producing correct code or doing the intended checks.

An example, cited by Palmer and Smith [PS11], considers a metacode A that adds to a class X
a field for every class in the same source file. The field name is the class name in lower-case (y
for Y). Initially, there is only class X in the file but a metacode B adds another class Y. If A is run
before B, metacode A adds only field x to class X. If it is run after B, it adds fields x and y. But if the
semantics of metacode A is “adds a field to X for every class in the final source file, after all code
addition made by metacode”, then metacode A should be the last one to run. But many languages
with support to metaprogramming cannot guarantee that.

There are two subproblems of OrderMatters. One is DifferentViews: different metacode may
have different views of the base program, as happens in the previous example, caused by metacode
calling order. When one metacode adds code to the base program, other metacode can view the
added code. This is a problem because the calling order may not be clear and also because a change
in the metacode textual order in a source file may change the calling order. The developer does not
expect that such subtle changes cause drastic code modifications.

Other subproblem of OrderMatters is InvalidateChecks. A metacode checks the program that
is later changed by another metacode, invalidating the check. For example, metacode A issues
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a compilation error if any prototype field uses underscore in its name. Metacode B, run after A,
introduces a field color_name. The check made by A is invalidated.

InfiniteMetaLoop Metacode may generate metacode added to the source code, which in turn may
generate metacode and so on, creating an infinite loop. As an example, a metacode may generate
itself as code, which is the equivalent of a function that just calls itself.

Nontermination

Metacode are called by the compiler. Therefore, if a metacode does not finish its computation,
the compiler does not finish it either.

Nondeterminism Metacode are not limited to interact with the source code or the compiler. They
can interact with the file system, the network, and other running programs. This means metacode
may be nondeterministic. Two different compilations of the program with the same source code
may result in two different behaviors: checks may be different and the code added by metacode to
the program may differ.

NoGeneratedCodeGuarantees

Metacode may generate defective code if they are given full freedom relating to what to generate.

NoContracts

A metacode may demand specific features from the base code it is attached to and vice-versa
[LE16]. For example, the metacode may demand that a base prototype T declares a method for
comparing two T objects. And the base code may demand that the metacode adds to a prototype
TArray2 a method sort (that should be built with the comparison method). Ideally, there should be
a contract DSL3 to specify the agreements between the metacode and the base code. The contract
could be enforced by the compiler. If there is no contract DSL, a metacode can check the demands
it places on the base code itself. However, these demands would be more precisely described using
a DSL code that is easily examined by the developer. Without a contract, the demands that the base
code places on metacode are not verified.

Thus, the causes of compilation errors are more difficult to discover. Errors may appear only in
the final version of the source code which is a combination of base code with the code added by
metacode. To discover the errors, the developer has to examine the source file and scrutinize code
generated by metacode, which exposes their implementation details.

CircularDependency To explain this problem, we use two graphs whose vertices are metacode.
A code generation graph is a tree and there is a directed edge from A to B if metacode A generates
code containing embedded metacode B or an embedded annotation linked to metacode B. Therefore,
if there is an edge from A to B, the compiler runs metacode A that generates code containing B or a
link to B and, then, the compiler runs metacode B. In a dependency graph, there is a directed edge

2An array of T objects
3Domain Specific Language
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Figure 2: Two graphs: one showing metacode generation and the other showing which metacode
uses information produced or changed by others

from A to B if base-program information produced or changed by metacode A is used by metacode
B. This information is a characteristic of the base program such as the number of prototype fields,
the superprototype, or the presence or absence of a given method. The dependency graph may have
cycles and this results in the problem CircularDependency.

The compiler has to choose a metacode in a cycle to be the first to be run. Suppose the first one
is metacode B. Since this vertex is in a cycle, there will be an ingoing edge from another vertex,
say A, to B. By the definition of dependency graph, A produces or changes information used by B.
The problem is that the compiler first runs B generating code or doing checks based on information
that will be later changed when the compiler runs metacode A. Therefore, metacode B does its job
based on an outdated information. When there is a cycle, the CircularDependency problem cannot
be solved by choosing any vertex to start from.

Figure 2 shows an example of a code generation tree, using dashed edges, and of a dependency
graph, using solid edges. A simple cycle4 has only two vertices as the cycle that is composed of A
and F in the figure. Therefore, metacode A depends on information produced by F and vice-versa.
The metacode that runs first will produce bad code because it does not have the information produced
by the other. Note that the F metacode produces code with no embedded metacode, as there is no
dashed arrow coming out. The CircularDependency problem is an extended version of OrderMatters
in which there is no adequate order of annotations.

Other Problems

There are also some other problems with metaprogramming that this paper will not further
discuss. One of them is the unintended capture of identifiers by the code generated by metacode
[KFFD86]. This happens when the generated code uses identifiers, already in use, in the environment
where the code is inserted and their semantics are equaled by accident. This problem is solved by
renaming identifiers. When the metacode is a Lisp-like macro, the solution is called macro hygiene.
The second problem occurs when there are no direct links between annotations in the base program
and external metacode. Thus, the developer may not know which metacode is associated with her

4A vertex that has an edge to itself is a cycle. There will only be a problem when the metacode is not correctly
implemented because, otherwise the metacode would consider the consequences of the code it produces on itself. Thus,
we consider that the simplest cycle having this problem has two vertices.
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Listing 1: Prototype Student
package university

object Student

let String name

var Int number

func init: String name, Int number {

self.name = name;

self.number = number;

}

func getName -> String = name;

func getNumber -> Int { return number }

func setNumber: Int number { self.number = number }

end

or his base code. The third problem happens when metaprogramming is very powerful. In this
case, metacode can profoundly alter the base program in unforeseen ways, making it difficult to
understand. For example, metacode may remove methods and statements of the program.

3 The Cyan Language

Cyan is a statically-typed prototype-based object-oriented language. A prototype is a template from
which other objects may be created, which is the same role played by classes in Java [GJS+14], C++
[Str13], C♯ [Csh23], and Smalltalk [GR83]. The difference is that, in Cyan, the prototype itself is
an object like any other if it declares a constructor without parameters. The compiler translates
Cyan to non-legible Java code. Thus, many language constructs are directly translated into Java,
as inheritance, method overriding, message passing, assignment, and prototype declaration (each
prototype is translated to a Java class). The two languages interoperate: Cyan code can import Java
packages and classes and vice-versa.

3.1 Types and Prototypes

Listing 1 shows the declaration of prototype Student of package university. A package in Cyan
is a named set of prototypes and has no important conceptual differences from Java packages.
A compilation unit is a single source file composed of import declarations, with the imported
packages for this file, and a single prototype. The file name is composed of the prototype name and
extension “cyan”. Fields that can change their values are declared with keyword var, as number
in the example. The type precedes the field name. Read-only fields are declared with let, as
name. If neither var nor let is used, let is assumed. Fields are always private to their prototypes.
Inheritance is done with the Cyan keyword extends. A prototype that does not explicitly inherit
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from any other prototype inherits from Any, the superprototype of every other prototype but Nil.
There is no sub or superprototype of Nil.

3.2 Methods and Message Passings

Cyan employs a syntax for method declaration and message passing in some way similar to
Smalltalk. Methods are declared using the Cyan keyword func. A unary method is a parameterless
method like getName and getNumber from the example. Its name does not end with “:”. The
return type is given after “->”. If missing, the return type is considered to be Nil and it is optional
to return a value in the method. The method body is a list of statements between { and } or an
expression after “=”. See methods getNumber and getName. A method is public unless one of the
following Cyan keywords are used before func: private, package, or protected.

A non-unary method, called a keyword method, has one or more method keywords or just
keywords. Each keyword is composed of an identifier ending with “:” followed by zero or more
parameter declarations. Method setNumber: of prototype Student is a keyword method with
one keyword, setNumber:. There may be more than one keyword, each one with zero or more
parameters. A unary message passing is composed of a receiver and an identifier that should be the
name of a unary method:

aStudent getName

aStudent is the message receiver. A keyword message passing is composed of a receiver and one
or more message keywords or just keywords with their parameters:

var Box t = Box new; // creates an object

// t is the message receiver

t get println; // the same as (t get) println

t add: "xyZ#8Z" at: 5, 7 doc: "Password for NotSecretAnymore";

Both method keywords and message keywords are called keywords. To avoid confusion, Cyan
keyword is used for reserved words of the language.

self is a pseudo-variable that refers, inside a method, to the object that received the message
that caused the method execution; the same concept as Smalltalk’s self and this of C++/Java/C♯.
Constructors are methods with names init (no parameters) or init: (with parameters). They are
used to create objects of a prototype. The compiler adds to the prototype a new: method for each
init: method, with the same parameters. And a new method for a init method. The return type
of the new or new: method is the prototype in which it is defined. Thus, for Student the compiler
creates method

func new: String name, Int number -> Student { ... }

A Student object is created as
Student new: "Newton", 1

or just Student("Newton", 1).

3.3 Interfaces

There are Java-like interfaces declared with the Cyan keyword interface instead of “object”.
The method bodies should be omitted and a prototype may implement an interface using keyword

9
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implements. It then should define all methods inherited from the interface. By convention, interface
names in Cyan start with the letter I like IMachine. Interfaces are prototypes whose method bodies
are not declared explicitly. The compiler supplies the method bodies, which are statements that
throw exceptions.

3.4 Generic Prototypes

Package cyan.lang, automatically imported by every compilation unit, declares generic prototypes
Array and Tuple:

var Array<Int> primes = [ 2, 3, 5 ];

var Tuple<String, Int> nameAge = [. "Newton", 85 .];

Array<Int> is a generic prototype instantiation: the compiler creates a new prototype for each
different set of arguments to the generic prototype. This example also shows a literal array and
a literal tuple. A generic prototype with a varying number of generic parameters has just one
parameter followed by +, as shown in Listing 2. This is the real code of prototype Tuple. Parameter
T cannot be used inside the prototype using the Cyan syntax. But the metaobject associated with
annotation createTuple generates code using the real arguments.

3.5 Other Features

Unlike dynamically-typed prototype-based languages such as Self [US87], there is no runtime
structural reflection in Cyan. Thus, methods and fields cannot be added to a prototype at runtime,
inheritance cannot be changed, and so on. Cyan is similar to statically-typed class-based languages
and it is also similar to the statically-typed prototype-based language Omega [Bla94]. The preferred
way of creating an object in Cyan is using method new, not method clone. There are other features
of the Cyan language that are not presented in this section: anonymous functions, the exception
handling system (made only with message passing), safe object initialization (fields are initialized
before being used, except in a few circumstances), and a generalization of anonymous functions
called context objects.

4 The Cyan Metaobject Protocol

The Cyan Metaobject Protocol (MOP) describes the interactions between the Cyan code being
compiled, the compiler, the MOP library, the metaprogram, and annotations in the Cyan code that
tells the compiler which metacode should be called during the compilation. The metaprogram
in Cyan is composed of Java classes, Cyan prototypes, or a combination of both. The compiler
is implemented in Java making it convenient to use Java classes as the metaprogram. But since

Listing 2: The generic prototype with varying number of parameters Tuple
package cyan.lang

@createTuple

object Tuple<T+>

end

10
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Listing 3: Prototype Person that uses metaobject annotations
1 package human

2

3 @init(name)

4 object Person

5 @property var String name

6 func test {

7 let Array<String> list = @compilationInfo("field list");

8 list println;

9 }

10 end

Listing 4: Prototype Student
// this is a comment

// the delimiters for 'doc' are {* and *}

// the delimiters for 'replaceCallBy' are {:< and >:}

@doc{* returns the double of the argument *}

@replaceCallBy(once){:< 2*n >:}

func twice: Int n -> Int = n + n;

the compiler translates each Cyan prototype into a Java class, Cyan can also be used as the
metaprogramming language.

The following subsection shows a complete example using the Cyan Metaobject Protocol. It sta-
blishes the terminology and explains how the MOP works. Subsection 4.2 shows all Cyan interfaces
that can be implemented by metaobjects to implement their desired functionality. Subsection 4.3
explains how the Cyan MOP addresses the problems of section 2. Some shortcomings of MOP are
presented in subsection 4.4.

4.1 A Complete Example Explained

An annotation or metaobject annotation is the syntax element that links the program to a meta-
code. Listing 3 shows a prototype Person that uses three annotations: property, init, and
compilationInfo, each one preceded by “@”. Annotation compilationInfo takes a string as
parameter and init takes as parameter an identifier that is, for practical purposes, also a string.
property is attached to the declaration of field name and init is attached to prototype Person.
init creates a constructor with field name, property creates get and set methods for name, and
compilationInfo generates a literal array with the prototype fields.

Basic values (3, 3.14, 'A'), literal arrays, literal tuples, literal maps, and any combination of
these can be parameters to annotations. An annotation may be followed by a text given between
two delimiters, as shown in Listing 4. This text will be called attached text or attached DSL5 code.

5Domain Specific Language
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Figure 3: Relation between metaobjects, annotations, metaobject classes, MOP interfaces, and
compilation phases

Its semantics is defined by the metaobject, it works like a further string parameter to the annotation.
In this example, the attached DSL code of doc and replaceCallBy are documentation in English
and an expression, respectively. There are many possible variations of delimiters, described by
Guimarães [?], so that the DSL code and the delimiters do not clash. As a rule, the right delimiter
should mirror the left one. Annotations replaceCallBy and doc are attached to method “twice:”.
replaceCallBy takes one parameter.

A metaobject is an object of a Cyan prototype or a Java class and the Cyan compiler is able to
work with these two languages. A Cyan package contains one or more prototypes that are kept in a
directory with the same name as the package. A special subdirectory of the package may contain
the compiled version of a Java metaobject class or a Cyan metaobject prototype — a “.class”
file. Whenever the package is imported, the annotations associated with the package’s metaobject
classes or prototypes can be used in the source file. Therefore, Cyan packages hold two kinds
of resources: prototypes and metaobjects. Every metaobject class or prototype has a getName

method that returns the annotation name. This links the annotation in the source code, found during
parsing, to the metaobject class or prototype. All the metaobjects used in Listing 3 could have been
implemented by a regular developer. However, they belong to the package cyan.lang which is
imported automatically by every Cyan source file.

When parsing source code, the Cyan compiler creates, for each annotation, three objects:
an object of the AST representing the annotation, a wrapped object of the AST object, and a
metaobject. The former is used only by the compiler. Metaobjects have only access to wrapped,
read-only, and restricted versions of AST objects. The wrappers are also called “AST objects”.
A metaobject is an object of a Cyan prototype or Java class that inherits from prototype or class
CyanMetaobjectAtAnnot.6

6There is a Cyan prototype and a Java class with this same name. Suffix “AtAnnot” means “annotation that starts
with an @”. Some annotations do not use this syntax, but they are not described in this paper.
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A metaobject refers to its associated wrapper AST object and vice-versa. Since the wrapper
object represents an annotation in the source code, metaobject methods, through the AST object,
have access to information such as annotation parameters, attached DSL code, and the annotation
environment (AST objects of the compilation unit, prototype, and method to which the annotation
belongs).

Figure 3 shows the relationships, after parsing, among all of the elements related to annotation
property of Listing 3. The rectangle with round border labelled “AST object” on the left is the
compiler AST object of the annotation. It is wrapped by another rectangle representing the wrapped
AST object used by the MOP. This figure shows that the AST object and the metaobject refer
to each other. CyanMetaobjectProperty is the Java class of metaobject property. It inherits
from CyanMetaobjectAtAnnot and implements interface IAction_afterResTypes, overriding
the interface method afterResTypes_codeToAdd. This is the method that creates the get and set
methods for field name. CyanMetaobjectAtAnnot extends class CyanMetaobject, not shown in
the figure. Appendix A shows the complete code, in Cyan, of the prototype of a metaobject called
myproperty. This is a simplified version of property.

We use “metaobject property” when no confusion arises. If there are two property annota-
tions in a code, “metaobject property” becomes ambiguous because it may refer to metaobjects
associated with both annotations. In Listing 3, there is only one annotation for each metaobject and
therefore there is no confusion.

MOP library is a name used for two packages: one in Cyan and the other in Java. The MOP
library in Cyan (Java) contains prototypes (classes) imported by the compiler and used for building
metaobject prototypes (classes).

As shown in Figure 3, CyanMetaobjectAtAnnot and IAction_afterResTypes belong to
the Cyan MOP library. There are also classes in the Java MOP library with the same names. If
a metaobject is implemented in Java, there is a Java class for it and therefore the Java package
representing the MOP library is used. The same concept applies to Cyan. The Cyan MOP library
mirrors Java MOP library. The compiler is capable of interacting with the two libraries.

The Cyan compiler goes through six compilation phases for each source file. The phases are
shown inside the rectangle with dashed lines on the left of Figure 4. The flow of control is from top
to bottom. Phase parsing does the syntactical analysis and builds the Abstract Syntax Tree (AST)
of the source file. Some AST objects are associated with a type and have a type field, initially
set to null. For example, some AST classes that declare a type field are classes that represent
method parameters, prototype fields, implemented interfaces, superprototype, message passings,
and expressions.

There are two kinds of AST objects associated with types: those inside method bodies, repre-
senting expressions, and those outside method bodies. The type field of the latter AST objects is
set in phase resTypes (resolving types). Thus, field name of Person of Listing 3 is represented by
an AST object whose field type is null at the beginning of phase resTypes. During this phase, the
compiler sets the type field to the AST object representing the prototype String. Phase resTypes,
therefore, is part of the semantic analysis of the source code. The compiler goes through phase
resTypes on a source file only after parsing all source files referenced in this file or loading the jar
file with the referenced prototypes.
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Figure 4: The compilation phases and their links to methods of metaobjects at compile-time

Phase afterResTypes means after resolving types, which is used only by the Cyan MOP. Some
methods of metaobjects are called in this phase. For example, the method of metaobject property
that adds the get and set methods to the prototype is called in phase afterResTypes. AST objects that
represent expressions in the Cyan code have a type field set in phase semAn (semantic analysis),
which is the remainder of the semantic analysis. In this phase, the compiler also does further checks
required by the language. Phase afterSemAn means after semantic analysis, which is used only by
the MOP. Some metaobject methods are called in this phase. Currently, no metaobject method is
called in the last compilation phase, code generation.

The non-dashed rectangles of Figure 4 represent the phases of parsing, afterResTypes, semAn,
and afterSemAn associated with interfaces of the MOP library. A phase is associated with multiple
interfaces but each interface is associated with just one phase. The interface name ends with the
phase it is associated with as IAction_semAn.

During the parsing of prototype Person of Listing 3, the compiler creates a metaobject for each
annotation. Then, in each of the phases of parsing, afterResTypes, semAn, and afterSemAn, for all
metaobjects, the compiler calls all of the metaobject methods declared in interfaces of that phase. In
the Person example, the dashed rectangle on the right of Figure 4 shows a list of metaobjects created
for this prototype. There are three metaobjects represented by rectangles with the annotation name
(init, property, and compilationInfo). In the compilation phase afterResTypes, shown on the
left, the compiler calls methods afterResTypes_codeToAdd of metaobjects init and property.
Method afterResTypes_codeToAdd is declared in interface IAction_afterResTypes. In the
same way, the compiler calls method semAn_codeToAdd in phase semAn.

There is a point that has been left out: at which point during each compilation phase does the
compiler call each method? It depends on the interface the method is declared. Some interfaces are
associated with triggers. For example, methods of

IActionMethodMissing_semAn

are called whenever the compiler is not able to find a method that matches a message passing. The
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“missing method” error triggers calling of the interface methods. The compiler calls methods of
interface IAction_afterResTypes in phase afterResTypes regardless of any trigger. We may also
consider that the trigger is simply the processing of the prototype in this phase.

Metaobjects always generate code as strings. The code is added to a copy of the prototype source
code in memory — the original file is not changed. In Listing 3, metaobject property generates
methods “getName” and “setName:”. Metaobject init generates code for a method “init:”, a
constructor, setting field name. The compiler inserts the code generated by the two metaobjects in
the Person prototype that goes through the parsing and resTypes phases again. Phase afterResTypes
is skipped, and the compilation proceeds to phase semAn. Then, metaobject compilationInfo
generates a string whose contents is

[ "name" ]

This is a literal string array with one element: the name of the Person field. The compiler inserts
the code produced just after the annotation.

After code is inserted in phase semAn, the whole source code is compiled again. But phase
afterResTypes is skipped and the metaobjects that act in phase semAn are not used. A planned
optimization of the compiler is to compile just the inserted code in phases afterResTypes and semAn.
Note that the compiler does not allow an infinite loop of metaobjects producing annotations that
produce annotations, and so on. The number of compilation phases is fixed even when metaobjects
generate code. For example, if property generated a @property annotation, it would not be used
because the compiler skips phase afterResTypes in the recompilation. And this annotation only acts
in this phase.

4.2 The Interfaces of the MOP Library

This subsection explains how metaobjects direct the compilation of Cyan code. That is, how the
compiler chooses methods of metaobject classes/prototypes to be called at specific phases of the
compilation. Although metaobjects can be implemented in either Java or Cyan, this subsection
assumes they are implemented in Cyan. Therefore, the MOP library used is composed of prototypes,
including CyanMetaobjectAtAnnot.

In the following text, we will use current prototype for the prototype inside which the annotation
resides. Therefore, for all of the metaobjects associated with the annotations of Listing 3, the current
prototype is Person. The current compilation unit is the compilation unit of the current prototype.

Base methods are methods of the current prototype, which will be called just methods. Methods
of the metaobject prototypes or methods of the interfaces of the MOP library will be called
metamethods or just methods if no confusion arises.

The design of a metaobject prototype starts by defining its goals. Then, the programmer
chooses one or more interfaces to satisfy these goals. If the metaobject should add fields and
methods to the current prototype, it should implement interface IAction_afterResTypes. If it
should intercept access to a prototype field, the metaobject prototype should implement interface
IActionFieldAccess_semAn. And so on. This is very important: the functionality of a metaobject
prototype is driven by the interfaces it implements. In some other languages, a metacode decides
what to do during its execution, which is at compile-time of the base program. This is more prone
to errors since what to do depends on runtime decisions.
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The metaobject prototype should override the interfaces’ methods. Every metaobject prototype
inherits a method that returns the annotation AST object, the right arrow labeled “refer to” in
Figure 3. This object holds information on the annotation parameters, attached DSL code, and the
declaration it is attached to. The compiler calls every metaobject method passing as one of the
arguments an object with information on the environment of the annotations, including the AST
objects of current prototype and current method. The available information varies according to the
compilation phase in which the metaobject method was declared. During parsing, metaobjects do
not know method statements, other prototypes, or any information on code that comes textually
after the annotation. In phase resTypes, metaobjects have access to AST objects that describe
everything outside method statements. In phases semAn and afterSemAn, metaobjects have access
to all information on the current prototype.

The following subsections describe the interfaces of the MOP library that can be implemented
by metaobject prototypes. Some interfaces described by Guimarães [?] are missing because they
are either marked as deprecated or are irrelevant to the paper conclusions.

4.2.1 Interfaces of Phase parsing

The interfaces of this phase are used for parsing the attached DSL code of an annotation, for
generating code after the annotation, and for passing information, like documentation, from the
annotations to declarations.

4.2.2 Interfaces of Phase afterResTypes

Interface IAction_afterResTypes declares four methods. One is used for adding statements at
the beginning of methods of the current prototype. Another method is used for renaming methods.7

The two remaining methods of interface IAction_afterResTypes, afterResTypes_codeToAdd:
and runUntilFixedPoint, work together and are explained after some definitions.

A method signature is the method declaration without its body, but including keyword func.
Parameter names are optional. The signature of a field is composed of its declaration, preceded by
var or let, without the optional expression assigned to it. Method afterResTypes_codeToAdd:

returns a tuple composed of two strings: the code of base fields and methods (to be added to the
current prototype) and the signatures of these base fields and methods (separated by “;”).

func afterResTypes_codeToAdd: ICompiler_afterResTypes compiler,

Array<

Tuple<WrAnnotation,

Array<ISlotSignature>>> infoList

-> Tuple<String, String>

The first parameter, compiler, is a restricted version of the compiler object. It has methods to return
the current prototype, the current compilation unit, methods and fields of the current prototype,
and so on. The second parameter, infoList, is an array of tuples, each one composed of an

7Whenever a method is renamed, the metaobjects should add another base method with a name equal to the old
base method name. This is to prevent the difficult-to-understand compilation error “method was not found” when the
developer clearly view the method in the source code editor.
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annotation and an array of base method and field signatures.8 The Cyan compiler may call method
afterResTypes_codeToAdd: of each metaobject multiple times. The following example shows
that a single call may be sufficient.

Let’s assume a metaobject addFieldInfo adds to the current prototype a field whose name is the
first annotation parameter, initialized with the number of prototype fields. In a naive implementation,
if there are two annotations addFieldInfo attached to a prototype with no declared fields, each
metaobject will add to the current prototype a field initialized with 1 instead of the correct value 2.
This is because one metaobject does not view the code added by the other one. To work correctly,
the metaobject class needs to be changed. Before showing how to do that, we need to understand
the algorithm FixMeta used by the compiler in phase afterResTypes.

This algorithm works in rounds of method calls using all the metaobjects sharing the same
current prototype. Calls to method afterResTypes_codeToAdd: of all prototype metaobjects
form a round. In the first round, the second argument for each method call is an empty array — no
signatures have been created yet. In all other rounds, the second argument is an array of all base
method and field signatures generated in the previous round. Therefore, each metaobject can adjust
its own code generation because it knows the base method and field signatures generated by other
metaobjects in the previous round. The rounds end either when all metaobjects produce the same
code as in the previous round or when the number of rounds is greater than five.9 In the last case, the
compiler issues an error because the metaobjects were not able to reach an agreement in 5 rounds.
If a metaobject defines a method runUntilFixedPoint that returns false, the compiler only calls
its method afterResTypes_codeToAdd: in the first round. This is the correct implementation if
the code generation does not depend on the code produced by other metaobjects.

Let us return to the addFieldInfo example. To work correctly, the metaobject class should de-
fine a method runUntilFixedPoint that returns true and a method afterResTypes_codeToAdd:
that takes into consideration the code generated by other metaobjects. When these changes are
carried out, the metaobjects generate incorrect code in the first round (the fields are initialized
with 1, as before). In the second round, each metaobject knows the code generated by the others.
This information is given by the second method argument, infoList. Therefore, each metaobject
generates correct code (fields initialized with 2). In the third round, there is no change in the code
generated and FixMeta ends.

4.2.3 Interfaces of Phase semAn

The interfaces of phase semAn are:
IAction_semAn, for generating code after the annotation
IActionMessageSend_semAn, for intercepting message passings
IActionMethodMissing_semAn, for intercepting the error “method not found”
IActionFieldAccess_semAn, for intercepting get and set of fields
IActionFieldMissing_semAn, for intercepting the error “field not found”

The sole method of interface IAction_semAn returns a string containing code to be
added after the annotation. If only used for checkings, the method should return an empty

8A slot is either a method or a field, represented by interface ISlotSignature.
9This number can be changed by a compiler option.
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string. Some annotations produce expressions, like compilationInfo of Listing 3. Interface
IActionMessageSend_semAn is used for intercepting message passings. The associated annota-
tions should be attached to base methods. This interface is useful for intercepting message passings
when the compiler finds an adequate base method. The metaobject associated with the annotation,
which is attached to a base method, may check the message arguments, at compile-time, and replace
the message passing by another expression.

For every message passing, the compiler collects the base methods that match it considering
the compile-time type of the message passing receiver. If this type is T, the compiler initially
collects the base methods in T. Then, the compiler collects the metaobjects associated with these
base methods implementing interface IActionMessageSend_semAn. The metamethods of these
metaobjects are called. There are three possibilities based on the number of metaobject methods
returning a non-empty code string:

1. more than one. The compiler issues an error because there is an ambiguity here;

2. exactly one. The returned code replaces the message passing. This replacement is visible in
the next compilation phase, afterSemAn;

3. none. The same search for a base method is done in the superprototypes and superinterfaces
of T, in this order.

The items above lead us to the conclusion that the order of the annotations of a prototype is not
important for interface IActionMessageSend_semAn. The metaobject class of replaceCallBy,
shown in Listing 4, implements this interface.

The Cyan MOP offers a mechanism for introducing virtual methods in prototypes; that is,
methods that do not exist but whose existence is simulated by metaobjects. Whenever a method for
a message passing is not found, a metaobject can replace the message passing by an expression.
As an example, a metaobject could simulate the existence of a large number of get methods that
return the values of virtual fields. The field values could be created on-demand or retrieved from a
database.

When the compiler analyzes a message passing in phase semAn, first of all it looks for
the type of the receiver expression. Let us suppose it is T. If there is no adequate method for
the message passing, the compiler collects, into a list, all metaobjects that implement interface
IActionMethodMissing_semAn and whose annotations reside in prototype T. This interface de-
clares two metamethods; one for unary and the other for keyword messages. Then, the compiler
proceeds as it does in the case of method

IActionMessageSend_semAn

except that implemented interfaces are not taken into account.

Metaobjects whose prototypes implement interface IActionFieldAccess_semAn intercept
field access. A method of this interface is called when the value of the field is retrieved and another
one is called when the field is set. Each metamethod returns code that replaces the operation of
getting and setting a field. The annotation should be attached to the prototype field whose access is
intercepted. If more than one metaobject tries to replace a field access, the compiler issues an error.
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Prototypes may have virtual fields that are used as regular fields. This is achieved by metaob-
jects whose prototypes implement interface IActionFieldMissing_semAn. Annotations of these
metaobjects should be attached to prototypes. If multiple metaobjects are entitled to handle a missing
field event, only one of them should return a non-empty code string. Otherwise, the compiler issues
an error message.

In phase semAn, the Cyan compiler resolve types in a method’s body in the textual order
of statement declarations. The metaobject associated with an annotation has access to the types
resolved in lines that come before the annotation. This information can be used for checking or
code generation.

There is a metamethod that belongs to the MOP but is not associated with an interface:
replaceStatementByCode. This metamethod is declared in the superprototype of all metaob-
ject prototypes, CyanMetaobjectAtAnnot. Therefore, it can be called inside any metaobject
metamethod. As the name implies, replaceStatementByCode replaces a statement, which in-
cludes expressions, by a code. The statement and the code are given as an AST object and a string,
respectively. If called in any compilation phase other than semAn, this metamethod issues an error.

We claim that a metaobject mo cannot have a reference to a statement that is inside a prototype Q
different from its current prototype P. A variable of mo may refer to the AST object representing
a base method of Q but metamethod getStatementList of this AST object checks if Q is the
current prototype of the caller, mo in this case. Since P and not Q is the current prototype of mo,
getStatementList throws an exception, proving the claim. Hence, replaceStatementByCode
can only be used for replacing statements of the current prototype.

Metaobjects have access to Abstract Syntax Tree (AST) objects from parameters passed to
overridden interface metamethods and from the associated annotations. By calling methods of
AST objects, metaobjects have access to information on the current prototype, method, etc. AST
objects can be visited using the Visitor Design Pattern [GHJV95]. This pattern and metamethod
replaceStatementByCode are used in the demonstrative metaobject shout that belongs to the
Cyan libraries. This metaobject visits the AST objects of the current method and replaces all literal
strings by the equivalent ones in upper case.

4.2.4 Interfaces of Phase afterSemAn

Checks made in any phase other than afterSemAn can be invalidated by metaobjects that change the
code. Therefore, all checks should be made in phase afterSemAn because, from this phase onwards,
code cannot be changed. There are four interfaces in phase afterSemAn:

ICheckSubprototype_afterSemAn, for checking subprototypes
ICheckOverride_afterSemAn, for checking overridden methods
ICheckDeclaration_afterSemAn, for checking declarations
ICheckMessageSend_afterSemAn, for checking message passings

The sole method of interface ICheckSubprototype_afterSemAn is called when the current
prototype is inherited or implemented. The AST object of the subprototype is passed as parameter.
Through which, the metaobject can do checks. For example, the metaobject may require that
an interface be implemented only by prototypes that also inherit from another class, as done
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by a feature of language Hack [Hac20]. A metaobject annotation whose prototype implements
interface ICheckOverride_afterSemAn can only be attached to a base method. Whenever the base
method is overridden, even in a sub-subprototype, the compiler calls the metaobject metamethod
that overrides the only metamethod of this interface. The compiler passes, as an argument to
this metamethod, the AST object of the subprototype base method. Annotations associated with
metaobjects whose prototypes implement interface ICheckDeclaration_afterSemAn should
be attached to a declaration, which is a prototype, method, field, or local variable. Interface
ICheckMessageSend_afterSemAn is used for message passing checkings. The corresponding
annotations should be attached to the base methods they intend to check. For each message passing,
the compiler calls all metaobject methods that match the message, including those whose current
prototype is in superprototypes.

4.3 The Cyan MOP and the Problems with Metaprogramming

This subsection shows how the Cyan MOP deals with the metaprogramming problems described in
section 2. The problem name is in boldface and a short description is in italics.

MessWithOthers A metacode in a file changes another source file.

A metaobject whose prototype implements interfaces IActionMessageSend_semAn or
IActionMethodMissing_semAn causes non-local changes. That is, a metaobject whose anno-
tation is in prototype P may replace a message passing that is in prototype Q. The message passing
is replaced to obey the semantics of the associated P method or the virtual method. The replacement
of the message passing in Q by a metaobject of P is expected. The problem with MessWithOthers
are the unexpected changes that the developer cannot discover. Therefore, we consider that these
two interfaces do not cause this problem.

A metaobject that does not implement the interfaces cited in the previous paragraph can only
replace or add code to its current prototype. This is assured by several mechanisms:

(a) the AST is read-only. Therefore, even if a metaobject has a reference to the AST object
representing a prototype that is in another source file, the metaobject cannot change this object;

(b) there is no method in any interface to add code to an external prototype;

(c) method replaceStatementByCode, described in Subsection 4.2.3, asks the compiler to replace
a statement by a code given as a string. The statement is an AST object. This method can only
change the current prototype because there is no way of a metaobject, whose current prototype
is P, has a reference to an AST object representing a statement that is in another prototype
Q. This happens because some methods of the AST classes have security checks that prevent
access to private parts of other prototypes. An exception is thrown if the access is illegal.

WhoDependsOnWho Metacode are not taken into account when the compiler builds the depen-
dency graph among source files.

The Cyan MOP addresses this problem because the first statement of all relevant methods of the
MOP library is a call to a method that builds the dependency graph. That is, if a metaobject calls a
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method mm of the MOP library and this action introduces a dependency among source files, the first
statement of mm will add this dependency in a compiler dependency table. Classes of the AST are
included in the MOP library.

KnowsFriendsSecrets Metacode in one source file know private information of another file.

Metaobjects whose annotations reside in a prototype have the same program view as this
prototype. This ensures that a metaobject whose annotation is inside a prototype does not know the
secrets of other prototypes. This is enforced by two techniques:

(a) methods of the AST return more information or less information according to the caller.
The amount of information varies to match the current prototype view of the program. For
example, class WrProgramUnit of the AST represents a prototype and declares a method
getMethodDecList returning the list of methods of the prototype. Suppose a metaobject
whose annotation is in prototype P sends message getMethodDecList to an AST object
representing prototype Q. This method takes an argument that is a compilation environment.
Through it, the method can identify prototype P. getMethodDecList returns a list of Cyan
methods that includes the Q public methods and: (a) the package10 methods of Q if P and Q are
in the same package; (b) the protected11 methods of Q if P is a subprototype of Q.

(b) methods of the AST throw exceptions if the metaobject is trying to retrieve private information
of other prototypes; that is, a metaobject whose annotation is in P tries to retrieve private
information of Q.

Compiler-Interactions Metacode interact with compiler low-level structures.

We consider that this problem is addressed in Cyan for several reasons:

(a) metaobjects use simplified and high-level wrapped versions of the compiler data structures. The
wrapped AST classes mirror the language features they represent. That means they are not
highly subject to change. They are modified only when the language change;

(b) the wrapped data structures are read-only. There is no way of crashing the compiler by calling
the wrong methods;

(c) metaobjects do not add code by handling the AST (calling its methods or changing fields).
Therefore, metaobjects cannot bypass a compiler check by adding code after the compiler does
that check.

WhoDidWhat The compiler does not link an inserted code to the metacode that made the insertion.

The compiler keeps track of the annotation associated with the metaobject that asked for
replacement or addition of code. If there is an error in the source code replaced or added by a

10A method preceded by the Cyan keyword package. It is visible in all package prototypes.
11Methods preceded by the Cyan keyword protected, visible in all subprototypes.
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metaobject, the compiler can point out the line and the source file of the annotation associated with
the metaobject.

OrderMatters The order in which metacode are called inside a source file changes metacode
behavior.

For each prototype, the Cyan compiler processes the metaobjects in the textual order of their
annotations. To explain that, the term metaobject metaprototype will refer to the prototype of
the metaobject (it is in the metaprogram). In each compilation phase, for each prototype and for
each metamethod mm of each interface IN of the MOP library of that phase, the Cyan compiler
calls metamethod mm of every metaobject of the current prototype. The calling order is the textual
order of the metaobject annotations in the source code of the current prototype. Assume that
the metaobject metaprototype implements interface IN. If the order of metamethod calls is not
important, the annotation order in the source code is also irrelevant. In the following paragraphs,
we will examine all interfaces and their methods to discover if the order of calls is important or not.

The calling order of metaobject methods in phase parsing is not important for two reasons: (a)
metaobjects can add code which will be visible by other metaobjects only in the next phase and
(b) metaobjects can add information to declarations (such as documentation) but this data cannot
be read in phase parsing. A method of interface IAction_afterResTypes is used for renaming
methods. The order of calls is not important because the compiler issues an error if two metaobjects
try to rename the same base method. Another metamethod of this interface adds statements to the
beginning of base methods of the current prototype. There may be two or more metaobjects that
try to add statements to the same base method. In this case, the textual order is important, the
statements are added in the textual order of the metaobject annotations. If necessary, a metaobject
may demand to be the only one to add statements to a given method.

Algorithm FixMeta of subsection 4.2.2 calls method afterResTypes_codeToAdd: in rounds.
In each round, every method can view the information produced by all of the calls of the previous
round. Thus, the call order is not important.

In phase semAn, metaobjects can only add code, in the current prototype, after the annotation.
The code added by other metaobjects in this phase will only be visible in the next phase, afterSemAn.
Thus, as far as code generation is concerned, the calling order of the methods is not important.
Metaobjects can replace a message passing or field access by some other code. The calling order
is not important because only one metaobject can replace the message passing or field access. If
two or more try to do a replacement, the compiler issues an error. Methods of interfaces of phase
afterSemAn do checks in an immutable program. Since they cannot add code, the calling order of
their methods is irrelevant.

Subproblem DifferentViews only happens in phase semAn. In this phase, a metaobject knows
the types of all expressions that come before its annotation in a method body. Hence, if there are two
annotations in the same method, the one that comes textually afterwards has more information than
the first. The information available to metaobjects, in phase parsing, cannot be changed by them and,
therefore, all metaobjects have the same program view. In phase afterResTypes, all methods view
the AST built in the previous compilation phase, resTypes. Methods of metaobjects that participate
in algorithm FixMeta view also what other methods have produced in each round of the algorithm.
Therefore, all of these metaobject share the same program view. Some metaobjects choose not to
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participate in this algorithm because the code produced by other metaobjects is unimportant for
them. In phase afterSemAn, all metaobjets view the AST produced in the previous phase. Therefore,
all of them have the same program view.

The subproblem InvalidateChecks of OrderMatters happens only if a metaobject does checks in
compilation phases different from afterSemAn. This means that the metaobject is poorly designed,
which is not a flaw of the Cyan MOP. Checkings should be done in phase afterSemAn when code is
in its final form.

InfiniteMetaLoop Metacode can generate metacode that, in its turn, generate metacode, and so on.

The Cyan MOP prevents this error by enforcing drastic rules: annotations added to the base
program, by metaobjects, in a compilation phase are only active in the next phase.

Nontermination Metacode may not finish its computation.

In Cyan, if a metaobject method does not end its computation after a maximum execution time,
given by a compiler option, the compiler issues an error and exits. Therefore, Cyan does solves this
problem.

Nondeterminism Metacode is nondeterministic.

Metaobjects are regular Cyan objects which can interact with external libraries. Therefore they
can be nondeterministic.

NoGeneratedCodeGuarantees Metacode may generate defective code.

Metaobjects in Cyan can produce defective code.

NoContracts The contract between the metacode and the base code is explicitly stated.

This kind of contract is not supported by the Cyan MOP. Note that NoContracts is similar to the
problem that motivated the creation of concepts [GJS+06] for C++ templates (See subsection B.3).
Concepts are predicates on generic prototype parameters. They restrict what a parameter can be,
like “parameter T should have a unary method init”.

A solution to problem NoContracts would be to add a concept-like DSL to specify: (a) the
restriction a metaobject expects from the current prototype and (b) the code a metaobject should
generate. This DSL will certainly be more complex than concept DSLs because the diversity of
code generation and checking of metaobjects is much greater than that of generic prototypes.

CircularDependency Metacode may depend on information produced or changed by other meta-
code. This dependency relation may be circular.

Metaobjects cannot access any information produced by other metaobjects in phase parsing, pre-
venting this problem from occurring. In phase afterResTypes, algorithm FixMeta of subsection 4.2.2
deals with circular dependencies. This algorithm ensures that all metaobjects that participate in the
algorithm have the same information on the current prototype. However, FixMeta is not useful for
some unusual metaobjects. For example, suppose a metaobject generates a field for each prototype
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method and another metaobject generates a method for each field. This results in an endless loop
and, in Cyan, there is no fix for that.

FixMeta only considers information on the current prototype. There may be a cyclic dependency
among metaobjects associated with annotations of different prototypes. For example, an annotation
associated with prototype A depends on information about prototype B and an annotation associated
with B depends on A. This dependency may be unsolvable or it may be possible to extend algorithm
FixMeta for its solution. The latter was deemed too complex and was not added to the Cyan MOP.
There may be circular dependency in phase semAn for the same reasons it may occur in phase
afterResTypes. A FixMeta-like algorithm for phase semAn was not added to the Cyan MOP because
we could not found a single real case the algorithm would be useful. From phase afterSemAn
onwards, the AST cannot change anymore and all metaobject view the same code. Therefore, there
cannot be any circular dependency in this phase.

4.4 Shortcomings of the Cyan MOP

A metaobject may generate code containing annotations. But the annotations’ associated metaobjects
will only be activated in the next compilation phase. Therefore, neither in phase afterResTypes
nor in semAn, a metaobject can use other metaobjects for generating code at this same phase. To
exemplify this limitation, let us suppose a metaobject propertyAll takes pairs (name, Type) as
arguments and generates fields with that name and type and get and set methods for them. This
metaobject cannot generate

@property var Type name

for each pair, in phase afterResTypes, because metaobject property would be used only in the next
phase, semAn (when it does nothing). However, the generation of get and set methods can be put in
a library and imported by both metaobjects. This is how metaobjects can be composed.

Some MOP features are missing in Cyan, such as intercepting compiler error messages and
code generation. These features are planned to be added to the language soon. Currently, there is no
interface for adding code to a subprototype whenever the current prototype is inherited. Although
this would be an intrusive feature, it may be added to the Cyan MOP. Metaobjects, in phase semAn,
cannot view the code generated by others, which could prevent the building of some metaobjects.
However, we analyzed metacode of all the languages cited in this paper and we could not find any
metacode that needs this feature.

5 Comparison with Related Work

This section presents some metaprogramming systems and how they are related to Cyan. The first
subsection describes mechanisms for code generation, the benefits and drawbacks of each one.
Subsections 5.2 and 5.3 compare Cyan with runtime metaprogramming and static analysis tools,
respectively. Languages and systems supporting compile-time metaprogramming are presented in
subsection 5.4. They are analyzed, in relation to the problems of section 2, in subsection 5.5. The
last subsection presents some problems with the Cyan MOP.
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5.1 How Code is Generated and Represented

Metaprograms generate code in many representations using several mechanisms [SBF15], described
next.

As text. Code is generated in string format. Metaobject mypropery of Appendix A exem-
plifies how this works. There is no guarantee that the generated code is error-free. This is the
mechanism used by Cyan which will be compared to the following ones.

Handling of the program Abstract Syntax Tree. Code is generated by creating AST
objects that represent it, if the compiler is implemented in an object-oriented language. The
developer has to know a large number of classes (more than one hundred in Cyan). Code generation
is difficult because it demands the mapping, by the metaprogrammer, of human legible source code
into AST objects. AST handling has the advantage that the metaprogram compiler usually catches
all syntactic errors of the generated code. The remainding errors, if any, are caught by the base
compiler. If the metacode inserts the generated objects directly into the AST, the base compiler
will not be able to point out the metacode that generated the offending code. In Cyan, metaobjects
generate code as strings that are inserted in the source code with markings that reveal the origin of
the inserted code. If the compiler discovers any errors in this final code, it points out exactly which
annotation is associated with the metaobject that produced the offending code.

Quoting. A special language syntax transforms text into AST objects. Therefore, the metapro-
gram handles text that is converted into AST objects. The quoting mechanism will be presented using
examples in Converge [Tra08], a Python-based language. A quasi-quoted expression [| code |]

builds the AST of the text code. Inside code, there may appear annotation ${ code2 } meaning
that code2 is to be inserted into code. The AST produced by a quasi-quote can be either evaluated
at compile-time or used to produce code inserted in the base program.

In Cyan, quasi-quote-like substitution is done with string handling, which is much simpler
for two reasons. First, because it uses operations known by every programmer (string handling).
Second, there is no confusion between metacode with base code, the base code is wrapped in strings
and it is not an AST object. The downside of the Cyan approach is that any checkings are delayed
until the code produced by the metaobject is compiled. Code within quasi-quotes is checked at
compile-time, although usually only for syntactical errors.

Macros. Macros in high-level languages were first introduced in Lisp [Har63]. In this language,
a macro is a function called at compile-time12 to produce code that replaces the macro call. This
is the definition of “macro” used in this paper. Currently, there are more sophisticated versions
such as that of languages Nemerle [SMO05], Rust [KN22], and Scala [Bur13]. Macros are used for
local changes only, a macro call is replaced by code. They are not capable of other types of code
modifications and checks allowed by Cyan: add fields and methods to prototypes, intercept several
operations, and check the final prototype code.

Generic classes, functions, and prototypes. This encompasses C++ class templates
[Str13] in which a new class is created for each new instantiation of the class. That is, for each
new set of class parameters, a new class is created. This is also what Cyan does with generic

12At compile-time means “when the code is compiled”, which may be at runtime of a previously existing program.
That is, a macro may be created at runtime and called using the Lisp function eval.
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prototypes. This mechanism is different from generic classes of languages such as Java in which
all generic instantiations share the same binary class code. The C++ template mechanism offers
a compile-time Turing-complete functional language for template generation [Vel03]. In Cyan,
metaobjects can be used for generating base code for generic prototypes as in prototype Tuple of
Listing 2. The most powerful of such metaobjects is insertCode of Appendix B. This metaobject
takes an interpreted Cyan code as an attached DSL text, interprets it, and adds the code it produces
to the current prototype.

Specialized languages. Domain Specific Languages are used for generating code. AspectJ
[KHH+01] [Asp23] is a Java extension for Aspect-Oriented Programming (AOP) [KLM+97]. In
this paradigm, code for an aspect of a program, like error handling and logging, is grouped together
and put in just one place instead of being scattered around in the program. In AspectJ, several
operations can be intercepted like method calls, field access, and creation of objects. This is
specified through an aspect language, a DSL, resembling Java. The AspectJ compiler, directed
by user-code, can add methods, fields, and constructors to classes and change inheritance and
implemented interfaces.

Genoupe [DLW05b] [DLW05a] is a C♯ extension whose generic classes can make use of a
language for creating new classes (existing classes cannot be changed). There are a foreach

and if statements used for generating code. Although Genoupe offers a high degree of type
safety at compile-time, this language does not guarantee that the generated code is well-typed.
Generators written in SafeGen [HZS05], a metalanguage for Java, produce only well-formed Java
code. SafeGen uses a theorem prover fed with first-order logical sentences representing properties
of the generated code. If the prover cannot assure that the generated code is well-formed Java code,
an error is issued. SafeGen statements #foreach and #when are used for repetition and decision,
much like the equivalent statements of Genoupe. CTR [FCL06] extends C♯ with transformers which
are constructs combining patterns and generation templates. Whenever a transformer matches a
code, like a class, the generation template is applied. It can, for example, add a method to the class
or create new classes. The well-formedness of the generated code is checked both by CTR and the
compiler. In Cyan, just the compiler checks the generated code.

Generic classes in MorphJ [HS11] specify how to build other classes based on the fields and
methods of their type parameters. This technique is called morphing. The classes instantiated
from the same generic class may have different structures. MorphJ generic classes are checked
without the knowledge of their real parameters. Hence, malformed code is detected at an early
stage. The language offers positive and negative patterns for code generation. Trait functions in
the model MTJ [RT07] take parameters and are composed of requires and provides clauses. A
trait function contained in a class is called when real arguments are supplied. Then, the fields and
methods of the provides clause are added to the class. The requires clause imposes constraints
on the real arguments. The calling of a trait function works similarly to an annotation in Cyan
whose metaobject adds fields and methods to the current prototype. PTFJ [MS12] extends MTJ with
patterns borrowed from MorphJ. Miao and Siek [MS14] extend PTFJ introducing pattern-based
code generation at the statement level. That is, method statements can be generated based on pattern
matching. For example, a statement is generated only if a class has a given method. cJ [HZS07]
is a Java extension with predicates on the type parameters of generic classes. A predicate works
as a static if for code generation. For example, a method is added to the generic class only if the
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parameter X is a subclass of class Y. The type-checking of a generic class is modular. It can be made
before any instantiations.

Cyan has none of the safety guarantees of Genoupe, SafeGen, CTR, MorphJ, MTJ, or cJ.
Metaobjects can generate code with not only type errors but also with lexical and syntactical errors.
However, the creation of new classes in these languages can be emulated in Cyan using generic
prototypes. Metaobjects have access to the parameters of a generic prototype and can use them to
generate code as in prototype Tuple of Listing 2. Some safety guarantees would result from the use
of metaobject concept of subsection B.3. This metaobject can be used to check if the arguments to
a generic prototype obey predicates, thus preventing future compilation errors.

Other Mechanisms. MetaFJig⋆ [SZ13] allows the combination of classes by a set of composi-
tion operators to support active libraries. A customized version of a class is created by composing
other classes and by calling methods that return classes. Since a class may have nested classes, a
customized version of a library can be created. MetaFJig⋆ ensures that errors are never caused by al-
ready compiled metacode. The MOP of Cyan has the power to generate prototypes at compile-time.
Thus, it has the power of creating customized libraries of prototypes. However, there are neither
static guarantees nor a DSL to help with this job.

5.2 Runtime Metaprogramming

Iguana/J [RC02] supports dynamic adaptation of behavior of classes and objects through protocols.
The operations that can be intercepted are object creation and deletion, method call, method
dispatch, method execution, and field access. Reflex [TNCC03] is a Java extension that also
supports behavioral reflection by modification of classes at loading time. Unlike Cyan, Iguana/J and
Reflex support only runtime metaprogramming and they do not support structural changes like the
addition of methods to classes.

The Smalltalk MOP is fundamentally different from that of Cyan because it cannot change
the program. However, a Smalltalk program can change itself at runtime using methods inherited
from fundamental classes such as Behavior. In Python 3 [Ram15], metaclasses are used to change
classes, including adding code to them. Each class has a single metaclass, a limitation that drastically
reduces the complexity of metaprogramming in Python and, at the same time, limits its usefulness.
A metaclass does not have access to the AST of its class and it cannot intercept class inheritance and
method override in a subclass. There are no compile-time guarantees with respect to metaclasses
because classes are created only at runtime.

5.3 Static Analysis Tools

Static analysis tools, such as Spotbugs [Spo20] for Java and PMD [PMD20] for multiple languages,
work by traversing the AST of a program. They use rules and patterns to detect performance
problems, errors, vulnerabilities, code style, and code quality issues. The functionality of static
analysis tools that depend on the AST of a single source file can be implemented by metaobjects in
Cyan that act in phase afterSemAn. However, the Cyan MOP does not support any mechanism for
metaobjects associated with annotations of different source files to share information. That would
be unsafe since the order of compilation of source files is not fixed.
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STLLint [GS06] is a static checker for C++ software libraries. It considers the semantics of the
library instead of the semantics of the language. STLLint can detect that, in a method call, a wrong
parameter will cause a runtime error. An example of error detection, detected by STLLint, is an
attempt to dereference a past-the-end iterator. A metaobject whose prototype implements interface
ICheckMessageSend_afterSemAn intercepts message passings and can check its arguments. The
metaobject has access to the AST of the method with the message passing even when the metaobject
annotation is in a different source file. Therefore, the Cyan MOP can do some of the checkings of
STLLint.

5.4 Compile-Time Metaprogramming

The prime example of a Metaobject Protocol is that of CLOS [KdRB91] [KAR+93] [Pae93]
[BGW93] [DG87], an extension of Common Lisp [Ste90] with features for object-oriented pro-
gramming. The CLOS MOP acts at runtime, allowing the interception of several operations: object
creation, allocation of memory, calculus of superclass precedence,13 method calls, field access,
and many more. The MOP of this language uses metaclasses which are the classes of classes and
methods,14 which are objects too. By using a user-made metaclass for a class we change its expected
behavior. For example, a metaclass can introduce a field into a class that keeps how many objects
were created. The method that creates instances of the class may increment this field every time it is
called.

OpenC++ [Chi95] is a C++ extension in which metaclasses for classes and methods are given
the opportunity of changing the AST after parsing. The metaclass of a class C may intercept method
calls whose receivers have type C. The method call may, after the interception, be changed or
replaced. The MOP of OpenC++ also allows interception of variable declarations, creation of
objects, and reading and writing of fields. OJ [TCIK00] [Tat99] is a Java extension in which a class
may be associated with a user-defined metaclass. Methods of the metaclass have the opportunity
of changing the AST. For example, a method called translateDefinition of a metaclass may
add methods to the class. expandFieldRead can change reading of a class field. The user-defined
metaclass can also define methods for intercepting object creation, array allocation, writing to fields,
method calls, and casts to the class.

Languages Xtend [Xte20], Groovy [K0̈7], and Nemerle [Nem18] [Ska05] support compile-time
metaprogramming without a Cyan-like Metaobject Protocol. We will say that these languages
support metaprogramming features. They share many similar characteristics, described below, and
therefore will be considered together.

(a) Annotations are attached to classes, methods, and other declarations.

(b) An annotation is linked to a Processor Class (PC) that can implement interfaces and define
methods that change the compilation.

(c) Methods of the PC are invoked during several compilation moments which occur before, during,
and after the traditional compilation phases; e.g. before, during, and after parsing.

13The superclasses have to be ordered because the language supports multiple inheritance.
14CLOS have both methods and generic methods. To our goals, it is not necessary to distinguish them.
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(d) Methods of the Processor Class have parameters that represent language elements that can be
changed at compile-time. For example, the AST object of the annotated class or method is
passed as an argument. Methods of the PC can, using these AST objects, add methods to an
annotated class, change inheritance, add statements to an annotated method, change method
statements, and so on. Any AST object reachable from the method arguments can be changed.
Therefore, a method can be added to a class that is not annotated or directly related to the
annotated class. The class may, for example, be just the type of a parameter of a method
accessible to the PC method.

(e) A method of the Processor Class that overrides an interface method is used in the compilation
phase associated with that interface (much like Cyan). However, there is no order among the
classes or the annotations of a class. Consequently, the view of a class by methods of a PC is
not well-defined.

A compiler plugin is composed of metacode called in hooks of a language’s compiler. These
plugins change the compilation process and, therefore, add compile-time metaprogramming features
to the language. The difference, in usage, between the terms compiler plugin and metaprogramming
is the emphasis in the implementation aspects of the former and conceptual aspects of the latter.
Languages Scala [ST20], Java [Ora23], X10 [NS07], Kotlin [Kot20], TypeScript [typ20], and
Rust [Rus20] support compiler plugins. Java annotation processors [Dar06] are compiler plugins
that allow checkings but not code modifications. They are used, for example, for implementing
pluggable types [che18]. Project Lombok [Kim10] is a Java annotation processor whose supported
annotations can add code to classes because it uses non-supported downcasts. Compiler plugins
will not be discussed in depth in this paper because there is a shortage of good documentation about
them. However, languages whose compilers accept plugins have all of the main characteristics of
languages supporting compile-time metaprogramming without a Metaobject Protocol, discussed
above.

BSJ [PS11] (Backstage Java) supports metaprogramming without a Cyan-like MOP. Like Xtend,
Groovy, and Nemerle, the AST is handled directly. Unlike these languages, BSJ was created to
prevent some common problems with metaprogramming. Therefore,

1. the language prohibits non-local changes. A metacode associated with a class can only
change the class. A metacode inside a method can only change the method;

2. the compiler detects conflicts between different parts of the metaprogram, like two metacodes
trying to add code to the start of a method. Depending on the order of insertion, the results
would be different;

3. there is a mechanism to give the order of execution of the metacodes. The compiler creates a
dependency graph based on directives #target and #depends of metacodes. The metacode
of a target is executed before its dependents and it can view the changes made to the AST
by them. This is complex because a metacode can create metacode itself.
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5.5 Metaprogramming Systems and their Problems

This subsection discusses the metaprogramming problems of section 2 that occur in languages
with metaprogramming powers similar to Cyan. Occasionally, other languages may be cited too.
Languages with more limited capabilities have, due to their lack of power, fewer problems:

(a) if the language generates code using class patterns, it cannot have any of these problems.
Usually, a language uses patterns and some other forms of code generation. Therefore, it may
have some of these problems;

(b) languages supporting a single metaclass for each class cannot have the WhoDidWhat, Order-
Matters, InfiniteMetaLoop, and CircularDependency problems because they only exist if there
is more than one metacode acting on the same code;

(c) runtime metaprogramming cannot have the problems associated with compilation like WhoDe-
pendsOnWho, Compiler-Interactions, and CircularDependency;

(d) some languages allow the interception of operations like object creation and message passing
but not the addition of code. Problems MessWithOthers and OrderMatters cannot occur with
them.

The problem name is in boldface and a short description of which is in italics.

MessWithOthers A metacode in a file changes another source file.

Languages OJ, Xtend, Groovy, and Nemerle allow non-local changes by AST handling. CLOS,
OpenC++, and BSJ limit the changes to the scope of the metaclass or metacode. In Cyan, a
metaobject can change a prototype different from the current prototype only if the change is
expected. Hence, the language addresses this problem.

In AspectJ, cross-cutting concerns of a program are coded in one or more aspect language
source files. Therefore, these files may change several other files. This is the expected behavior
because, by definition, some program features are grouped into aspect language files. Conversely,
annotations of languages supporting metaprogramming are inside regular source files. If they are
allowed to change other source files, the developer may not be aware which files will be changed.
And which annotations of other files will change a given source file. Unlike AOP, which uses a
static aspect language, the metacode associated with an annotation decides the source file it will
change at runtime (runtime for the metaobject, compile-time for the base program). The source files
changed could even vary from compilation to compilation. We conclude that non-local changes,
made by metacode, are justified for AOP but not for metaprogramming with annotations.

WhoDependsOnWho Metacode are not taken into account when the compiler builds the depen-
dency graph of source files.

In OpenC++, metacode associated with a class does not have any information about other classes.
In all other languages with metaprogramming features, the dependencies caused by metacode are
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not computed by the compiler. Cyan stores the dependencies in a table and, therefore, addresses
this problem.

KnowsFriendsSecrets Metacode in one source file is aware of private information of another file.

We are unaware of any language, other than Cyan, that: (a) supplies AST objects to metacode
and (b) uses security checks for preventing a prototype from accessing private information of another
prototype. The latter needs an explanation. Private source code information is only represented
using AST objects. A metaobject mo whose current prototype is P may have a reference to an AST
object obj of another prototype Q. If mo calls a method of obj for retrieving private information
about Q, this method will throw an exception. Every AST method that return private information
verifies if the caller has permission to call it.

Compiler-Interactions Metacode interact with compiler low-level structures.

Compiler plugins and languages with metaprogramming features strongly depend on internal
compiler details and, therefore, they have all of the Compiler-Interactions problems. The OJ MOP
permits direct changes in the AST although it supplies a simplified version of the AST classes to
the metacode. Cyan addresses this problem since its metaobjects view read-only and simplified
compiler data structures.

WhoDidWhat The compiler does not link an inserted code to the metacode that performed the
insertion.

Cyan keeps track of which metaobjects change the base code. Converge [Tra08] tracks down
who produced which code to issue precise error messages. It goes beyond Cyan in two aspects: (a)
every bytecode15 knows its origin, which can be used in runtime error messages, and (b) an AST
node can be associated with more than one location (an error may be associated with more than one
source). To our knowledge, no other language solves problem WhoDidWhat.

OrderMatters The order in which metacode are called inside a source file changes metacode
behavior.

This problem occurs in all languages that allow direct handling of the AST because a metacode
views the changes made by metacode executed before. If the metacode call order is changed, the
view changes too. Usually, there is no way of specifying that, after a certain compilation phase, the
AST is read-only. Therefore, checkings made by a metacode may be invalidated by code added
by other metacode. In AspectJ, a keyword may declare the execution order of the metacode. In
BSJ, metacode may declare its dependencies. A metacode with clause #depends label is only
executed after a metacode with a #target label clause. The latter metacode can view changes
made by the previous one. Cyan addresses this problem except in two cases: (a) code addition
at the start of base methods (the addition is made in annotation order) and (b) in phase semAn,

15Source code is translated into bytecodes of the Converge VM.
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metaobjects whose annotations come later view a more detailed AST of the statements that come
before (types are resolved).

InfiniteMetaLoop Metacode can generate metacode that, in its turn, generate metacode, and so on.

Any sufficient powerful metaprogramming system, such as CLOS and OpenC++, faces this
problem. If metacode can generate metacode to be processed in the same compilation phase, then
infinite loops may arise. Cyan addresses this problem because annotations inside code that was
generated by metaobjects are only active in the next compilation phase.

Nontermination Metacode may not finish its computation.

SafeGen, MorphJ, and Meta-traits ensure termination of code generation [SZ13]. In general,
the termination of code generation is guaranteed only if the generated code is composed of code
patterns or the metacode is limited to a few kinds of statements. Cyan does address this problem
by issuing an error if a metaobject method does not end its execution after a time limit. No other
language with metaprogramming powers similar to Cyan addresses problem Nontermination.

Nondeterminism Metacode is nondeterministic.

Every metaprogramming system that allows the use of external code is nondeterministic because
this code can, for example, access files. Therefore, only very limited systems, such as C++ templates,
are deterministic. Genoupe [DLW05b] uses memoization to evaluate expressions at compile-time in
a class generator. Thus, two identical expressions always return the same value, even if they return a
random number. However, this does not prevent nondeterminism because a class generator may call
code that returns a different value in each compilation, even with the same arguments to the class.

NoGeneratedCodeGuarantees Metacode may generate defective code.

Only a few languages offer a high degree of safety for code that is generated at compile-time:
Genoupe, SafeGen, CTR, and MorphJ. They generate code based in patterns. DynJava [OMY01] is
a Java extension that supports quasi-quotes with information on the context in which they can be
used. The context includes name of base class, local variables, fields and methods, and so on. These
typed quasi-quotes and rules of the language assure that code produced at runtime is type-safe.
Cyan offers no guarantee in relation to the generated code.

NoContracts The contract between the metacode and the base code is explicitly stated.

SafeGen arguments to metacode may be restricted by predicates. For example, a metacode
can accept only non-abstract classes as arguments. The pattern in a transformer of CTR limits
the classes it can match. Therefore, the pattern works as a contract between meta and base code.
The requires clause of a trait function of model MTJ imposes constraints on real arguments and
the provides clause supplies the code that will be added to a class. MTJ has the best solution to
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the NoContracts problem. Metaobject concept of subsection B.3 can specify a contract between
metacode and the base code. Since its use is optional, Cyan does not enforce this contract.

CircularDependency Metacode may depend on information produced or changed by other meta-
code. This dependency relation may be circular.

Circular dependency occurs in compiler plugins and language with metaprogramming features.
In BSJ, the execution order of metacode may be specified. This does not solve the problem because
there may be no correct order of execution — remember example with metaobject addFieldInfo
in subsubsection 4.2.2. Cyan addresses this problem in all but one case: metaobjects associated
with several prototypes in phase afterResTypes. A solution to this case would demand the extension
of algorithm FixMeta of subsection 4.2.2 to several prototypes, a complex solution for a not-too-
common problem.

6 Conclusion

The Cyan MOP combines a full MOP, like that of CLOS, with metaprogramming features of recent
languages such as Groovy and BSJ. It addresses completely or partially the metaprogramming
problems MessWithOthers, WhoDependsOnWho, KnowsFriendsSecrets, Compiler-Interactions,
WhoDidWhat, OrderMatters, InfiniteMetaLoop, Nontermination, and CircularDependency. The
Cyan MOP fails in Nondeterminism, NoGeneratedCodeGuarantees, and NoContracts. These
problems are not addressed by any metaprogramming system that use an irrestrict metalanguage.
The more freedom for generating code, the more difficult it is to solve these problems.

The design of a metaobject class or prototype in Cyan starts by choosing the interfaces it
should implement. The interfaces are chosen to match the goals of the metaobject. Therefore, the
metaprogrammer, guided by these goals, make the most important decisions before starting to code.
In each compilation phase, metaobject methods ask the compiler to add code. As a result, the
metaprogram acts passively in relation to the compiler, which is in control of the execution flow
of the metaprogram. This architecture makes it relatively easy to build metacode compared with
other metaprogramming systems with the same power. In other systems, the decisions are taken at
metacode runtime with the help of the original compiler data structures.

The Cyan MOP supports six kinds of metaobject annotations. Only the most important of
them was described in this paper. Other kinds of annotation are: (a) literal numbers ended
by an identifier (like 101bin or 0AH2_Hex), (b) literal strings starting with an identifier (like
xml"<s>XML code</s>"), (c) macros (each start with an identifier after which any syntax is al-
lowed), (d) annotations to types that implement pluggable types [Bra04] [che18] [PAC+08] (like
String@regex("a*[A-Z]") or Char@letter), and (e) Codegs (code + eggs), visual metaobjects
that demand a plugin to an IDE16 (an annotation @color(red) allows one to choose a color using a
menu, during editing time). The metaobject classes or prototypes of all kinds of metaobject can
implement most interfaces of subsection 4.2. For example, the metaobject of a number annotation,
like 101bin, could add fields and methods to the current prototype (but it does not). It certainly
generates number 5 as code in phase semAn.

16Integrated Development Environment
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There are several future works for the Cyan MOP. One is to allow metaobjects to change the
original source files, whenever necessary. Other future work is to support variable ownership like
in language Rust [KN22]. The Cyan compiler is available for download at cyan-lang.org. In
this site, one can find the language manual, a complete description of the Cyan MOP, and a list of
approximately one hundred metaobjects with examples.
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A Metaobject myproperty Implemented in Cyan

package main

import meta, import java.lang, import java.util

object CyanMetaobjectMyProperty

extends cyan.reflect.CyanMetaobjectAtAnnot

implements cyan.reflect.IAction_afterResTypes

// Cyan do not support enum types yet. Strings are used instead

func init {

super init: "myproperty", "ZeroParameters", [ "field" ]

}

override

func afterResTypes_codeToAdd:

ICompiler_afterResTypes compiler,

Array<Tuple< WrAnnotation,

Array<ISlotSignature>>> infoList

-> Tuple<String, String> {

// cast a Java value of class IDeclaration to

// the Java class WrFieldDec

var WrFieldDec field = JavaCast<WrFieldDec>

asReceiver: getAnnotation getDeclaration;

var String fieldName = field getName;

var nameUpper = (fieldName[0] toUpperCase) ++

(fieldName substring: 1);

var String ivTypeName = field getType getFullName;

var String methodGet = " func get$nameUpper -> $ivTypeName ";

var String methodSet = " func set$nameUpper: $ivTypeName other ";

var methodsSignature = "$methodGet;\n $methodSet; ";

var methodsCode = "$methodGet = $fieldName;\n" ++

"$methodSet { self.$fieldName = other; }\n";

return [. methodsCode, methodsSignature .];

}

override

func runUntilFixedPoint -> java.lang.Boolean = false;

// methods that override methods of interface IAction_afterResTypes

// go here. These methods do nothing

end
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B Metaobjects in Action

Cyan metaobjects are used in several areas with an enormous diversity of objectives. More than one
hundred metaobject classes and prototypes were created for a variety of goals. To show the power
of the Cyan MOP, we will present some of the most important metaobjects in the next subsections.

B.1 Metaobjects in Interpreted Cyan

A metaobject prototype, after successfully compiled, should be put in a special directory of any
package. To use the metaobject, a compilation unit imports this package. To streamline this process,
package cyan.lang supplies some metaobjects that accept attached DSL code in interpreted
Cyan. For example, annotation onOverride takes an attached DSL code that is run whenever the
associated method is overridden in a subprototype.

@onOverride{*

if (method getStatementList: env) getStatementList size < 10 {

metaobject addError: (method getFirstSymbol: env),

"method test should have at least 10 statements"

}

*}

func test { }

In this case, the interpreted Cyan code demands that the overridden method has at least ten statements.
Each metaobject of cyan.lang accepting interpreted Cyan code, as an attached code, has pre-
defined variables like method, env, and metaobject in this example. There are variables for each
parameter of the metamethod used (as method) and for the current metaobject (metaobject) and
compilation environment (env).

Package cyan.lang has more complex metaobjects whose attached interpreted Cyan code can
do multiple tasks like adding fields and methods to the current prototype, communicating with
other metaobjects, creating new prototypes, checking during phase afterSemAn, and so on. The
interpreted Cyan code can be put in files and loaded by metaobjects, thus reusing them. As one
last example, Listing 5 shows an annotation that inserts nine methods in the current prototype
whose names vary from power_2 to power_10. The insert: method accepts two arguments: the
signature of a method and its full definition.

B.2 Metaobject grammarMethod

This metaobject simulates the existence of a method whose keywords are given by a regular
expression specified in an annotation attached to a method. The metaobject creates all virtual
methods that match the regular expression; i.e. methods whose keywords match those of the
regular expression. Calls to these methods are redirected to the annotated method. In the next
example, annotation grammarMethod is attached to method meet of Schedule. Its attached DSL
specifies a keyword pattern using a regular expression. Symbols ?, *, and + mean that the preceding
expression is optional, can be repeated zero or more times, and can be repeated one or more times,
respectively.
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Listing 5: Annotation insertCode adds methods to the current prototype
1 @insertCode{*

2 // adds to the prototype methods like

3 // func power_num: Int n -> Int = n*n ... *n;

4 // "= $s;" is equal to "= " ++ s ++ ";"

5 for num in 2..10 {

6 var sig = "func power_$num: Int n -> Int ";

7 var s = "n";

8 // ++ is concatenation of strings

9 for p in 2..num {

10 s = s ++ "*n"

11 }

12 insert: sig,

13 sig ++ "= $s;"

14 }

15 *}

object Schedule

@grammarMethod{*

(name: String (at: String)? (with: String)* )+

*}

func meet: Array<Tuple<String,

Union<some, String, none, Any>,

Array<String>>> p {

// elided

}

end

Message passings to expressions of type Schedule that do not match any methods are matched
against the regular expression. If there is a match, method meet: is called passing the arguments
packed as a single parameter. The following example is a single message passing intercepted by
metaobject grammarMethod, which replaces it by an expression that packs the arguments and calls
method meet:. Since the language is prototype-based, prototypes are objects that can receive
messages.

Schedule name: "Kandinsky" at: "Garden" with: "Matisse"

name: "Frida" with: "Picasso" with: "Mondrian"

name: "Leonardo";

The arguments are packed into an array of tuples, in this example. There are rules for building the
type of the annotated method parameter, which depends on the regular expression.
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B.3 Metaobject concept

Concepts were devised to help the compiler issue clearer error messages in the instantiation of a
template class in C++. Gregor et al. [GJS+06] proposed this feature for the language C++, although
it has not been accepted yet.17 Concepts are predicates on template/generic parameters. They are
implemented in Cyan using metaobject concept, without any help from the language itself. The
DSL code attached to the annotation specifies the restrictions that the generic parameters should
obey. In the example that follows, T is required to define three methods: unit, *, and inverse,
with the given signatures.

@concept{*

T has [ func unit -> T func * T -> T func inverse -> T ]

*}

object GroupList<T> ... end

The DSL of the code attached to the concept annotation has statements for requiring that a
prototype inherits another one, a prototype implements an interface, a parameter is an interface,
a prototype declares a set of methods (used in the above example), a prototype belongs to a set
of prototypes, and the negation of each of these statements. There are two statements that are not
restrictions on parameter types: one loads a statement list from a file and executes them and the
other one creates test files. Both use special package directories managed by the Cyan MOP. The
environment object and the restricted compiler object, passed as parameters to interface methods
described in subsection 4.2, have methods to read and write to files of these special directories. Each
Cyan package can have the directories --data (for DSL code like those of metaobject concept),
--test (for tests), and others not described in this paper.

B.4 Metaobject in the Cyan Libraries

Package cyan.lang is imported by every Cyan source file and defines prototype Any, the top-level
prototype, generic prototypes for tuples, unions, and anonymous functions, the Array<T> prototype,
and all basic prototypes such as Int, Char, and String. Metaobjects are used extensively in this
package. Since there is a large interaction between it and the Cyan language, we can assure that
not only package cyan.lang but also the Cyan language would be very different without the Cyan
MOP. A small list of metaobject used by this package follows.

Metaobjects check that methods eq: and neq:, for testing object references, are only defined
in Any and basic types. Metaobjects create fields and methods for instantiations of the generic
prototypes Function and Tuple, with any number of parameters. The generated code by the
metaobject varies depending on the number of parameters and methods, such as ==, are added to
the code of an instantiation of Tuple based on the tuple elements. Method sort is inserted in an
instantiation Array<P> of Array if P defines a method <=>. Prototypes of basic types inject code
into their Array instantiations. As a result, there is a method sum that returns the sum of all elements
of an object of Array<Int>. Method isA: tests if the receiver object is an instance of the parameter.
A metaobject tests whether the argument is really a prototype. Metaobjects of annotations attached
to method == of Any check whether the argument is compatible with the receiver. For example, it is

17Concepts may be added to the upcoming language version.

43



A PREPRINT - AUGUST 10, 2023

a compile-time error to compare an Int with a Char because the result will always be false. Another
metaobject demands that, if == is overridden in a subprototype, hashCode has to be overridden too.
And yet another metaobject generates code for testing the overridden method. This code is put in a
special directory of the package.

44


	Introduction
	Motivation
	The Cyan Language
	 Types and Prototypes
	Methods and Message Passings
	Interfaces
	Generic Prototypes
	Other Features

	The Cyan Metaobject Protocol
	A Complete Example Explained
	The Interfaces of the MOP Library
	Interfaces of Phase parsing
	Interfaces of Phase afterResTypes
	Interfaces of Phase semAn
	Interfaces of Phase afterSemAn

	The Cyan MOP and the Problems with Metaprogramming
	Shortcomings of the Cyan MOP

	Comparison with Related Work
	How Code is Generated and Represented
	Runtime Metaprogramming
	Static Analysis Tools
	Compile-Time Metaprogramming
	Metaprogramming Systems and their Problems

	Conclusion
	Metaobject myproperty Implemented in Cyan
	Metaobjects in Action
	Metaobjects in Interpreted Cyan
	Metaobject grammarMethod
	Metaobject concept
	Metaobject in the Cyan Libraries


