
Transparent Replication Using Metaprogramming in

Cyan

Fellipe A. Ugliaraa, Gustavo M. D. Vieiraa,∗, José de O. Guimarãesa

aDComp – CCGT – UFSCar, Sorocaba, Brazil

Abstract

Replication can be used to increase the availability of a service by creating

many operational copies of its data called replicas. Active replication is a form

of replication that has strong consistency semantics, easier to reason about and

program. However, creating replicated services using active replication still

demands from the programmer the knowledge of subtleties of the replication

mechanism. In this paper we show how to use the metaprogramming infras-

tructure of the Cyan language to shield the application programmer from these

details, allowing easier creation of fault-tolerant replicated applications through

simple annotations.

Keywords: replication, metaprogramming, code generation

1. Introduction

Distributed computing offers the promise of increased reliability and perfor-

mance compared to traditional, centralized computing. In particular, greater

reliability can be achieved by replicating a service among many hosts to ensure

availability of a service even in the presence of faults. Each copy of the service

is called a replica and there are many strategies to create such replicated service

that usually offer a balance between consistency and scalability. More scalable

solutions tend to favor weak consistency guarantees, which makes reasoning

∗Corresponding author
Email addresses: fellipe.a.u@gmail.com (Fellipe A. Ugliara), gdvieira@ufscar.br

(Gustavo M. D. Vieira), jose@ufscar.br (José de O. Guimarães)

Preprint submitted to Science of Computer Programming December 13, 2019

about the correctness and programming such systems harder [1]. Solutions that

favor consistency bear more similarities to centralized systems and are easier to

reason about and program [2]. However, even in this case, the programming of

these applications still pose significant challenges [3].

Among the strong consistency techniques for replication, the more used and

straightforward is called active replication [2]. The basis of operation of this

technique is to consider the system being replicated as a deterministic state

machine, that has its state changed only by well defined transitions. Put in a

more object-oriented way, the system is modeled by a set of objects that only

change state deterministically by calling a known set of methods. To replicate

the service, we have to identify each transition before it happens, distribute the

information about the occurrence of this transition and its data to all replicas

and execute the transition in all of them. Based on our assumption that these

transitions are deterministic, if we are able to distribute these transition among

the replicas in a strict order, the replicas will progress along the exactly same

states. These identical replicas will be able to provide the required service in

an indistinguishable way from each other.

To make the task of creating a replicated service easier, frameworks such as

Treplica [4, 5] and OpenReplica [6] were created. These frameworks help create

a replicated system by taking care of the distribution, ordering and execution

of the transitions selected by the application programmer. The integration of

the application into these frameworks happens differently depending on the pro-

gramming language used. In procedural languages the integration happens by

function calls to the framework and callbacks from the framework placed by the

programmer. In object-oriented languages the integration happens by creating

the classes of the program by extending classes provided by the framework. Re-

gardless of the approach employed, the linking of application and framework

usually requires adding boilerplate code, intertwined with application code.

Current replication frameworks, albeit useful, only help with the commu-

nication and ordering of transitions required by active replication. Other re-

quirements of this replication technique, such as a well defined set of mutator

2

methods and the deterministic nature of these methods, are non trivial and

completely left to the application programmer. This happens because the tra-

ditional procedural and object-oriented languages in which these frameworks

are built are not suitable to enforce these non-functional requirements.

Traditional languages lack mechanisms to allow a program or framework to

change and validate its own code. Languages that support metaprogramming [7]

allow programs to inspect and modify their own code. Metaprogramming has

been used to translate domain specific languages [8], implement design pat-

terns [9], perform source code validations at compile time [10] and to detect

defects in object-oriented programs [11].

In this paper we show how to use the metaprogramming infrastructure of the

Cyan language [12] to transparently generate and validate integration code that

uses the Treplica replication framework [4]. We were able to use metaobjects

in a centralized object-oriented program to isolate the set of mutator methods

that change the state of a set of objects, and to generate the appropriate ex-

tended classes to integrate with Treplica. The approach is similar in essence to

OpenMP [13], OpenACC [14] and other systems that use compiler directives to

guide the automatic generation of parallel code. However, our approach is much

more direct to program and it is the first time metaobjects are used to create

distributed code. Moreover, we were able to validate the generated code with

respect to the presence of non-determinism in transitions by flagging mutator

methods that would violate this requirement. Our proposed set of metaobjects

is able to replace non-deterministic methods with deterministic versions and

alert the programmer if it still finds a call to a non-deterministic method inside

mutator methods.

This paper is structured as follows. In Section 2 we describe the Cyan

language and give an introduction to its metaprogramming features. Section 3

describes the organization of the Treplica framework. In Section 4 we describe

the proposed metaobjects, how to use them to turn a centralized Cyan program

into a replicated one and how they work. The paper ends with a review of

related work in Section 5 and some concluding remarks in Section 6.

3

2. The Cyan Language

2.1. Language Overview

The language used in this paper is Cyan [12], a prototype-based object-

oriented language. Unlike most prototype-based languages, Cyan is statically

typed as Omega [15], the language it was initially based on. That makes the

design of Cyan much closer to the design of class-based languages such as Java

[16], C++ [17], or C# [18] than to other prototype-based languages. Cyan

programs are compiled to produce Java code, to be run in a Java virtual machine.

Prototypes play a role similar to classes. Instead of using class to declare a

class, we use keyword object to declare a prototype, such as Building shown

in Figure 1. In this example, keyword var is used to declare a field (instance

variable) and func to declare a method. In a field declaration, the type comes

before the field name (String before address in Line 17). self refers to the

object that received the message. The same as self in Smalltalk [19] or this

in other languages.

Each prototype is in a file with its own name (and extension .cyan). The

package declaration should appear before the prototype (Figure 1, Line 1). In

this example prototype Building is in package main. For conciseness, for now

on we may show more than one prototype in the same figure and without the

package declaration.

A variable or field can be declared using keywords let and var. let is used

to declare a read-only field or local variable to which a value must be assigned.

For example, a variable of type Building can be initialized as:

let b = Building new: "Dahlia", "21 Drive";

The variable name is b and its type, Building, is deduced from the expression.

Variables and fields that can change their values should be declared with key-

word var (Figure 1, Line 17). Fields that are not preceded by var or let are

considered read-only (let) fields.

The syntax for message passing and method declaration is close to the

Smalltalk syntax. Unary methods are those that do not take parameters, as

4

1 package main

2 object Building

3 func init: String name ,

4 String address {

5 self.name = name;

6 self.address = address

7 }

8 func name: String name

9 address: String address {

10 self.name = name;

11 self.address = address

12 }

13 func getName -> String { return name }

14 func getAddress -> String {

15 return address

16 }

17 var String name

18 var String address

19 end

Figure 1: A prototype in Cyan

getName of Line 13 of Figure 1. Assuming aBuilding is a variable of type

Building,

aBuilding getName

is the sending of the unary message getName to object aBuilding.1 Messages

such as - in -count are also considered unary messages. In this example, mes-

sage - is being sent to object count.

A keyword method is declared with identifiers ending with : each of which

taking zero or more parameters as method name:address: of Lines 8-12 of

Figure 1. This method has two keywords. A keyword method may be called at

runtime by keyword message passing, as in this example:

1More specifically, it is the sending of message getName to the object referred to by

aBuilding.

5

aBuilding name: "Dahlia" address: "21 Drive";

In this code, message name: "Dahlia" address: "21 Drive" is sent to the

object aBuilding. If aBuilding refers to a Building object at runtime,2 the

method called would be that declared in Line 8 of Figure 1.

The name of a method may be an operator such as + or <. Method + should

take no parameters (for unary +) or two parameters (for binary +). These

methods are called as usual: 1 + 2 is the sending of message + 2 to object 1.

Cyan is a prototype-based language, which means each prototype such as

Building is also an object and can receive messages:

Building name: "Gerbera" address: "78 main"

As a consequence, prototypes play a dual role: 1) they are types as are classes

in Smalltalk, Java and C++, and 2) when used in expressions, they work like

variables that refer to a fixed object of themselves. Building, when used inside

an expression, refers to an object of prototype Building.

Object constructors are methods with names init or init: (if there are

parameters). They cannot be called directly by sending messages. For each

method init or init: found in a prototype, the compiler creates a method new

or new: in the same prototype with the same parameters as the original method.

This new method creates an object and sends to it the corresponding init or

init: message. For example, the compiler adds a method new: String name,

String address to prototype Building of Figure 1.3 This method can only be

called by sending a message to the prototype itself:

Building new: "Dahlia", "21 Drive"

This new: method creates a new object of Building and calls the appropriate

init: method (Figure 1, Line 3). It is a compile-time error to send a message

2Even if aBuilding has type Building, the object referenced by it may be a subprototype

of Building.
3These methods are added to the compiler internal representation, the original source code

is not changed.

6

new or new: to anything that is not a prototype.

Keyword extends allows inheritance of a superprototype by a subprototype.

Inherited methods can be overridden in the subprototype, as usual. Java-like

interfaces can be defined by using keyword “interface” instead of “object”

when defining a prototype.

2.2. The Cyan Metaobject Protocol

Metaprogramming is a paradigm that allows programs to manipulate other

programs and change themselves in compilation or in execution time [7]. Metapro-

gramming has a broad meaning. In this paper we will consider it is the transfor-

mations and checks made at compile time by a meta level on a base program.

The program that is changed or checked is called the base program or simply

program. The code that does the changes or checks is called the meta level or

simply metaprogram. The metaprogram may be just a set of classes or functions

and it acts as a plugin to the compiler, potentially changing how it parses, does

type checking, generates code, and so on. Since we will restrict ourselves to

compile time, runtime metaprogramming will not be discussed in this paper.

Xtend [8], Groovy [20], Nemerle [21] and Cyan [12] are examples of lan-

guages with compile-time metaprogramming features. These languages allow

to traverse the abstract syntax tree (AST) to gather information. In Cyan,

changes are introduced by supplying, to the compiler, source code as text. This

is immensely easier than to supply an object of the AST that corresponds to a

piece of source code. Since Cyan is used in this paper, we will describe metapro-

gramming in this language.

A metaobject protocol (MOP) is an interface between the metaprogram, the

program, and the compiler. It defines functions or methods of the metaprogram

that should be called when a prototype is inherited or a method is overridden

in a subprototype, when a field is accessed, a message is sent or when an anno-

tation is found in the program by the compiler. For example, the MOP defines

that a user-defined function should be called whenever a prototype is inher-

ited. Cyan supports a Metaobject Protocol, but not all languages that support

7

metaprogramming do.

In Cyan, the metaprogram consists of Java classes because the compiler is

made in this language. That makes it trivial for the metaprogram and the

compiler to communicate. During the compilation of a program, an annotation

in the source code makes the link between the program (base level), the compiler,

and the metaprogram. When the compiler finds an annotation in a certain

compiler phase, it calls some specific methods of a metaobject tailored to that

compiler phase. A metaobject is associated to each annotation and its Java

class is part of the metaprogram. Before defining the MOP, let us see some

examples of use of annotations and their associated metaobjects.

1 object Person

2 @init(name , age)

3 func getName -> String { return name }

4 func getAge -> Int { return age }

5 String name

6 Int age

7 end

8

9 object Program

10 func run {

11 let Person meg =

12 Person new: "Meg", 3;

13 let Person doki =

14 Person new: "Doki", 5;

15 meg getName println;

16 doki getAge println;

17 }

18

19 end

Figure 2: Metaobjects and anonymous functions in Cyan

In Line 2 of Figure 2 we can find a metaobject annotation or simply annota-

tion: @init(name, age). For each annotation, the compiler creates a metaob-

ject of a metaobject class. This class is made in Java, as the compiler is, and

8

is associated to a Cyan package. When the package is imported by a Cyan

program the metaobject class is imported too, and the annotations whose name

are equal to the string returned by method getName() of the metaobject class

can be used in the source code. To simplify, we will say “metaobject init”

and “class of init” for the metaobject associated to annotation init and the

metaobject class of metaobject init.

Package cyan.lang is imported automatically by every Cyan program and

this package keeps the metaobject class of init. Thus, this annotation can be

used in any Cyan source code without explicitly importing a package, as is done

in the example of Figure 2.

The Cyan compiler has several phases. For example, in Phase 2 it discovers

the types of instance variables (fields) of all prototypes. After this phase com-

pletes the compiler calls a specific method of all metaobjects used in the code.

In particular, it calls a method of metaobject init of Figure 2. This method

returns an object with the text to be added after the metaobject annotation

— it is a Java StringBuilder object. The text returned by the method of

metaobject init of this example is:

1 func init: String name ,

2 Int age {

3 self.name = name;

4 self.age = age;

5 }

This code is added after the annotation in an internal (to the compiler) repre-

sentation of the source code of Person (the original file with prototype Person

is not changed). Figure 3 shows the resulting Person prototype. As a con-

sequence, method run of Program can create an object of Person using the

constructor added to this prototype. Note that the Java class that represents

the metaobject init knows the types of instance variables name and age. These

types are necessary to generate the constructor.

In the remaining of this section we will give a simplified view of the MOP

of the Cyan language. A Java class has to obey some prerequisites to be

9

1 object Person

2 @init(name , age)#ati

3 func init: String name ,

4 Int age {

5 self.name = name;

6 self.age = age;

7 }

8 func getName -> String { return name }

9 func getAge -> Int { return age }

10 String name

11 Int age

12 end

Figure 3: Person generated during compilation

a metaobject class. It has to be compiled with the Java compiler and in-

herit from a class called CyanMetaobjectWithAt.4 Each of such classes is

called a “metaobject class” and it has to override some methods inherited from

CyanMetaobjectWithAt and implement some interfaces defined by the MOP.

Both the class CyanMetaobjectWithAt and these interfaces belong to the pack-

age meta of the compiler.

It is important to note that the metaobject class has to be compiled as

a class of the Cyan compiler, but after compiled it can be used with a Cyan

compiler that does not known the source code of this metaobject class. When

the package of the metaobject class is imported, the Java class is dynamically

loaded by the compiler and the metaobject becomes available in the source code

that imported the package.

The Cyan compiler has ten compilation phases. The first one is parsing

and it builds the Abstract Syntax Tree (AST) of the whole program. Phase 2 is

“type interfaces”, which associates types to prototype fields, method parameters

and return values, to anything that is outside a method body (its statements)

and has a type. Before that, the AST keeps only a string with the type name.

4Other kinds of metaobjects, not presented in this paper, should inherit from other classes.

10

After parsing the compiler knows all the program prototypes.

In Phase 3 of the compilation, called “ati actions”, the compiler calls some

methods of all metaobjects that implement interfaces IActionProgramUnit ati

and IActionNewPrototypes ati. These interfaces are in the Cyan compiler.

IActionProgramUnit ati declares methods

1 ati_codeToAdd

2 ati_codeToAddToPrototypes

3 ati_renameMethod

among others. The first one can return code that is added after the metaobject

annotation and do checks in the source code. The second method returns code

to be added to the prototype in which the annotation is.5 The added code

is in string format, a Java String or StringBuffer object. Since it is added

to a prototype, it should consist of field and method declarations. Method

ati renameMethod allows the metaobject to rename a method of the prototype

in which the annotation is. In Phase 3 only metaobjects associated to anno-

tations that are outside a method body are allowed to generated code using

method ati codeToAdd. Otherwise, statements or expressions could be added

to a method in this phase and this is not allowed.

All the methods of metaobject interfaces linked to phase “ati actions” re-

ceive as parameter an object of type ICompiler ati. Through this object the

metaobject can get information available in this phase, as the current proto-

type, the package name, the fields and methods of the prototype, and so on.

Information can also be obtained from methods of the metaobject class itself,

which should be, necessarily, CyanMetaobjectWithAt.

Metaobject init of Figure 2 generates the init: shown in Figure 3 in

Phase 3. Note that the annotation is not removed, it can act in the following

phases. String #ati is appended to the annotation to label it as used in this

phase. Through a method inherited from class CyanMetaobjectWithAt, the

5It can also add code to other prototypes of the same package, but this needs a special

compiler option and prevents separate compilation.

11

metaobject gets the object that represents the annotation and retrieves the

annotation parameters. It then uses methods of the object of ICompiler ati

to check if every parameter is a field of the current prototype. This object is

passed as parameter to all methods of all interfaces linked to Phase 3.

Fields and methods can be added to prototypes in the “ati actions” phase,

changing the text of the source code in memory (the files are not touched).

Because code could have been added, the program should be parsed again,

which is made in Phase 4. This next phase is “type interfaces” again, the same

as Phase 2. Phase 6 is the semantic analysis of methods, their statements and

expressions are checked. The name of this phase is “calculate internal types”.

Now types are assigned to every element that is associated to a type. Methods

of the following compiler Java interfaces are called in Phase 6.

1 IAction_dsa

2 IActionVariableDeclaration_dsa

Interface IAction dsa declares a method for adding code after the annotation

and performing checks in the source code. Annotations can be attached to

prototypes, methods, fields, and local variable declarations. The metaobject

associated to the annotation can get the AST of the element to which the anno-

tation is attached. For example, an annotation readOnly attached to a method

could check if any of the prototype fields receives a value in an assignment inside

the method, issuing an error if any does.

The Cyan compiler ensures that metaobjects implementing the Phase 6 in-

terface IActionVariableDeclaration dsa can only be associated to annota-

tions that are attached to a local variable declaration. Through this interface,

a metaobject can check the annotated declaration and add code after it. It has

access to the AST of the local variable and, if present, the expression assigned

to it in the declaration.

Phase 6 together with Phase 5 comprise the semantic analysis of the pro-

gram. Since statements and expressions can be added to the source code,

in memory only, the code has to be compiled again. Phases 7, 8, and 9 of

12

the compilation are equal to phases 4, 5, and 6 but with an important differ-

ence: the code cannot be changed anymore. However, the resulting source code

can still be checked by metaobjects. Interfaces ICheckDeclaration ati3 and

ICheckDeclaration dsa2 should be implemented by metaobject classes that

need to do checks in Phases 8 (ati actions) and 9 (calculate internal types). The

associated annotation should be attached to a declaration such as a method or

prototype. Finally, Phase 10 is code generation to Java.

3. Treplica

Treplica [4] is a framework written in Java that provides an active replica-

tion structure for the development of replicated distributed applications. In this

section we briefly describe how to program this framework through a binding

developed for the Cyan language6 with the purpose of characterizing the pro-

gramming effort required to program a replicated application using the frame-

work.

Active replication ensures that many copies of a single application known as

replicas keep their state up to date and consistent even as changes are made as

part of the application operation. It works by assuming the application behaves

like a deterministic state machine, that only changes its internal state by deter-

ministically executing transitions. If one is able to execute the same transitions

in the same order in all replicas, they will end up with the same resulting state

due to the deterministic nature of the transitions. As a consequence, an active

replication framework must provide a reliable way of disseminating transitions

in a ordered way among all replicas and it should provide a programming inter-

face that allows regular applications to behave like deterministic state machines

even if they are not programmed as such.

Treplica solves the problem of disseminating transitions by using the Paxos

algorithm to ensure the transitions reach all replicas in the same order, even in

6More information in the Java interface of Treplica can be found in [5].

13

the presence of failures [22]. Treplica solves the programming interface problem

by providing an object-oriented abstraction that defines the very simple notion

of a shared state and well defined changes to this state. The resulting program-

ming interface is as close as possible to conventional centralized applications [4],

making the replication mechanism transparent to the developers.

The shared state of an application is defined by its context, a single object

that stores the application data in its fields and references. In the Treplica

framework this object should extend the Context prototype and be serializable.

Serialization allows an object to be transformed to text, transmitted between

different hosts and transformed back to a clone of the original object. Figure 4

shows the prototype Info, an example of an application context. This prototype

contains two variables: an Int and a String, representing the state of this

application.

1 object Info extends Context {

2 var String text

3 var Int number

4

5 func setNumber: Int number {

6 self.number = number;

7 }

8

9 func setText: String text {

10 self.text = text;

11 }

12

13 func getText -> String {

14 return self.text;

15 }

16 }

Figure 4: Prototype to be replicated

The prototype Info has two set methods used to assign values to its private

variables. More importantly, these two methods allow changing the state of the

application context. The Treplica framework considers a message sent to an

14

object that calls one of these mutator methods to be equivalent to a transition

that changes the context state in a deterministic way. The framework then

defines a way to capture and represent this message as an action.

The prototypes that extend prototype Action implement these actions.

They contain as fields the parameters of the message to be sent and are se-

rializable, allowing the record of this message to be sent to other hosts. Also,

they must implement the method executeOn: that defines the keywords of the

message to be sent by encoding an actual message send operation using the

fields as parameters. The target object of the message sent by executeOn: is

defined by a parameter received by this method. Figure 5 shows the prototype

SetTextAction, which implements a transition that sends message setText:

to an Info object.

1 object SetTextAction extends Action {

2 var String updateText

3

4 func init: String text {

5 self.updateText = text;

6 }

7

8 func executeOn: Context context {

9 type context

10 case Info info {

11 info setText: self.updateText;

12 }

13 }

14 }

Figure 5: Prototype that implements a transition

The actual firing of a transition is implemented by Treplica. When the

application wants to change its state, it creates an appropriate action object

and passes it to Treplica in a execute: message sent to an object of prototype

Treplica. The framework then sends a copy of this object to the other replicas,

properly ordered, and all of them send the message executeOn: to the received

15

object, passing a local copy of the context as the parameter. Therefore, all the

copies will end up with contexts with the same values.

For this to work, no changes to the context can happen without being rep-

resented as actions and the actions passed to Treplica for execution. The ap-

plication places its state under care of the framework during the application

initialization, when a Treplica object is instantiated. In Cyan that is usually

done in a method called run: in a prototype called Program. Figure 6 shows

how a Treplica object is declared and initialized in each replica. This is also

an example of how an object of the prototype SetTextAction is passed as an

argument to the method execute: of the Treplica object.

1 object Program {

2 func run: Array <String > args {

3 let info = Info new;

4 let treplica = Treplica new;

5 treplica runMachine: info

6 numberProcess: 3

7 rtt: 200

8 path: "/var/tmp/magic" ++ args [1];

9

10 let action = SetTextAction new: "text";

11 treplica execute: action;

12 }

13 }

Figure 6: Treplica configuration and execution

The sequence diagram of Figure 7 shows the execution flow of the example

in Figure 6. Both Replicas A and B start execution in the run method of

prototype Program. The context of the application (Info) and the Treplica

object (Treplica) are initialized during the execution of this method. Replica

A wants to change the replicated state, so it creates an appropriate action object

(SetTextAction) and sends an execute: message to Treplica with the object as

parameter. Treplica will order and distribute the action object to both replicas

and it will execute the action on both, independently, by sending an executeOn:

16

message to the local action object.

Replica A Replica B

Program Info SetTextAction Treplica Treplica SetTextAction Info Program

Info new

info

Treplica new

treplica

runMachine:

Info new

info

Treplica new

treplica

runMachine:

execute:

executeOn:

setText:

<Paxos>

executeOn:

setText:

Figure 7: Treplica execution sequence diagram

The way Treplica encodes message passing is very simple and straightfor-

ward, but it requires the application programmer to create much boilerplate

code in the form of action objects. Moreover, isolating message passing isn’t

enough to achieve replication, it is necessary that the method activated by the

message doesn’t create external effects besides changing the context state and

that these changes are deterministic. It is the responsibility of the programmer

to be aware of these requirements and avoid breaking them.

For example, in Figure 8 we introduce a small change to the setText:

method of Info prototype to make it non-deterministic. The problem brought

by the change is that every time the setText: method is called the value set will

be different, even if the starting state of Info and the parameters of setText:

are the same. This will make the replicas diverge, as the deterministic behavior

of the transition will be violated.

17

1 ...

2 object Info extends Context {

3 ...

4 func setText: String text {

5 var date = System currentTime asString;

6 self.text = text ++ date;

7 }

8 ...

9 }

Figure 8: Non-deterministic setText: method

4. Metaobjects for Replication

4.1. Overview and Use

The creation of a replicated application using Treplica requires the construc-

tion of a prototype representing the application context and as many actions

as messages this context can receive. For each action it is necessary to define

a new prototype with the correct number and type of fields, besides sending

the correct message to application context when asked by Treplica. We have

shown in the last section this task isn’t hard, but it requires the tedious and

error-prone creation of a lot of boilerplate code. Now we are going to show

how programming of replicated application can be simplified by the use of Cyan

metaobjects treplicaAction and treplicaInit. We first describe how to use

the metaobjects and in the next section we describe how the metaobjects are

created and how they work.

A good programming practice when using Treplica is to create action proto-

types that do not have application functional behavior and limit themselves to

send a single message with the correct parameters. Figure 5 shows the action

SetTextAction that represents the sending of message setText: in the form of

a prototype. It is interesting to notice that this prototype also has a constructor

that initializes the fields of the created object with the same parameters used

afterwards to send the encoded message. The creation of these prototypes can

18

be standardized, and the metaobject treplicaAction will create an appropri-

ate action prototype when attached to a method declaration of the application

context.

For example, the Info prototype in Figure 9 is similar to the one depicted

in Figure 4, except that the treplicaAction metaobject is attached to the

method setText:. The metaobject associated with this annotation modifies

the prototype Info, adding a new method to it and creating a new prototype

that represents the sending of message setText: as a Treplica action. Proto-

type SetTextAction of Figure 5 is not necessary any more, since the metaobject

treplicaAction adds an equivalent prototype to the program during compila-

tion. Moreover, setText: messages sent directly to the application context will

be “intercepted” and replaced by the creation of an suitable action object and

the sending of this object to Treplica as an execute: message for replication

and execution by the framework.

1 package main

2 import treplica

3 object Info extends Context {

4 var String text

5 ...

6 @treplicaAction

7 func setText: String text {

8 self.text = text;

9 }

10 ...

11 }

Figure 9: Replicated prototype using metaobjects

Initialization of the application context and of the Treplica framework also

happen in a standardized way as shown in Figure 6. The treplicaInitmetaob-

ject can be attached to declarations of variables whose type is a sub-prototype of

Context. This metaobject has a double function: it marks a variable as holding

the application context and it initializes Treplica. The explicit indication of the

19

object holding the application context is important because only the methods

belonging to the context prototype can be marked with the treplicaAction

metaobject.

For example, in Figure 10 the treplicaInit metaobject is attached to vari-

able info, with the parameters of the desired Treplica instance. This metaob-

ject changes the method run during compilation to create a new instance of

Treplica and assign to it the object info, similar to the method run in Fig-

ure 6.

1 object Program {

2 func run: Array <String > args {

3 var local = "/var/tmp/magic" ++ args [1];

4 @treplicaInit(3, 200, local)

5 var info = Info new;

6 info setText: "text";

7 }

8 }

Figure 10: Treplica configuration using metaobjects

Using these two metaobjects only the code in Figures 9 and 10 need to be

written. This code is more compact, easier to read and is independent from any

replication concerns or implementation details. This way we can avoid some

of the pitfalls created by the programming interface of Treplica and create less

complex applications.

4.2. Implementation of the Metaobjects

This section shows how the metaobjects treplicaAction and treplicaInit

are implemented in Cyan. The compiled version of both classes, the “.class”

file, are put in directory “--meta” of package treplica. When this package is

imported, as in Figure 9, the associated annotations can be used.

CyanMetaobjectTreplicaAction is the Java class implementing the metaob-

ject treplicaAction. This association happens because its method getName()

20

1 object Info extends Context {

2 ...

3 func setText: String text {

4 var action = InfosetText new: text;

5 self getTreplica execute: action;

6 }

7

8 func setTextTreplicaAction:

9 String text {

10 self.text = text;

11 }

12 ...

13 }

Figure 11: Prototype Info modified

returns "treplicaAction". This class implements several interfaces, which are

described below together with their role in the metaobject.

(a) IActionProgramUnit ati from which methods ati codeToAddToPrototypes

and ati renameMethod are defined. The first one adds a new method with

the same name as the annotated method. In the example of Figure 11, the

metaobject of Figure 9 adds method setText:. Method ati renameMethod

of class CyanMetaobjectTreplicaAction renames the original annotated

method. In the example, setText: is renamed to setTextTreplicaAction:.

(b) IActionNewPrototypes ati from which method ati NewPrototypeList is

redefined for creating a new prototype implementing the Treplica action. In

the example, it is prototype InfosetText of Figure 12.

(c) IAction dsa from which method dsa codeToAdd replaces calls to non-deter-

ministic methods by calls to deterministic ones. The project directory and

the directory of each package may have a rule file called “deterministic”

that describes how the replacement should be made. We will describe this

non-determinism removal operation in more detail in the next section.

(d) ICheckDeclaration dsa2 from which method dsa2 checkDeclaration is

redefined to check if there are any calls to non-deterministic methods in the

21

1 object InfosetText extends Action {

2 var String textVar

3 func init: String text {

4 textVar = text;

5 }

6

7 override

8 func executeOn: Context context {

9 type context

10 case Info obj {

11 obj setTextTreplicaAction: textVar;

12 }

13 }

14 }

Figure 12: Prototype created by treplicaAction

final code. This should not be necessary since method dsa codeToAdd re-

places all possible calls to non-deterministic methods by calls to determinis-

tic ones. However, only unary methods are replaced and dsa2 checkDeclaration

checks keywords methods too. Besides that, other metaobjects may have

introduced non-deterministic method calls in Phase 6 (if they add code).

Class CyanMetaobjectTreplicaInit is the Java class implementing metaob-

ject treplicaInit. This class implements interface IActionVariableDeclaration dsa

and redefines its method dsa codeToAddAfter. This method adds code after

the variable declaration to create and initialize the Treplica object. For ex-

ample, this metaobject takes the annotated code in Figure 10 and adds the

initialization code in Lines 5–10 of Figure 13. The newly added code makes

info reference treplicainfo, the treplica object, and vice-versa.

To further illustrate the transformations and code generated by metaobject

treplicaAction, we will use an annotated method with a single keyword, shown

in Figure 14. The code in this figure isn’t valid Cyan code, but it is useful to

show how the tokens of the method declaration are used by the metaobject to

create new code.

22

1 object Program {

2 func run: Array <String > args {

3 var local = "/var/tmp/magic" ++ args [1];

4 var info = Info new;

5 var treplicainfo = Treplica new;

6 treplicainfo runMachine: info

7 numberProcess: 3

8 rtt: 200

9 path: local;

10 info setTreplica: treplicainfo;

11 info setText: "text";

12 }

13 }

Figure 13: Prototype Program modified

From the method in Figure 14, treplicaAction creates a prototype that

represents the Treplica action shown in Figure 15. UniqueId is a unique tempo-

rary name that is different from every other identifier. In the original prototype

(Proto), the method annotated with treplicaAction is renamed and a new

method is created as shown in Figure 16.

From a declaration

1 @treplicaInit(processes , rtt , local)

2 var varName = ContextType new;

metaobject treplicaInit produces the code shown in Figure 17

4.3. Non-determinism Detection

Besides removing boilerplate code from a program, the proposed metaob-

jects offer an initial support for validating if the resulting code is indeed able to

be replicated. As we have shown in Section 3, methods that change the state of

the context must be deterministic and should not create external effects. In this

work, we considered only the question of identifying non-deterministic methods

and optionally replacing them with deterministic versions. In the previous sec-

tion we have briefly described these tests and substitutions and now we describe

23

1 object Proto

2 @treplicaAction

3 func s1: T1 p1 , T2 p2 , ... Tn pn { ... }

4 ... // other methods

5 end

Figure 14: treplicaAction attached to a generic method

1 object Protos1 extends Action

2 var T1 p1Var

3 var T2 p2Var

4 ...

5 var Tn pnVar

6

7 func init: T1 p1 , T2 p2 , ... Tn pn {

8 p1Var = p1;

9 p2Var = p2;

10 ...

11 pnVar = pn;

12 }

13

14 override

15 func executeOn: Context context {

16 type context

17 case Proto obj {

18 obj s1TreplicaAction_UniqueId: p1Var , p2Var ,

... pnVar;

19 }

20 }

21 end

Figure 15: New prototype that represents the action of calling a method

24

1 object Proto extends Context

2

3 @treplicaAction

4 func s1: T1 p1 , T2 p2 , ... Tn pn {

5 var action = Protos1 new: p1 , p2 , ... pn;

6 self getTreplica execute: action;

7 }

8

9 func s1TreplicaAction_UniqueId: T1 p1 , T2 p2 , ... Tn pn

{

10 // original method s1:

11 }

12 end

Figure 16: Modified prototype Proto

1 var varName = ContextType new;

2 var treplicaVarName = Treplica new;

3 treplicaVarName runMachine: varName

4 numberProcess: processes

5 rtt: rtt

6 path: local;

7 varName setTreplica: treplicaVarName;

Figure 17: The new declaration of a context

25

them in a bit more depth.

Identifying deterministic methods is complex and this work does not of-

fer comprehensive solutions to this problem. Instead, root non-deterministic

methods are defined by the developer in a rule file. These methods are usually

operating system services that aren’t deterministic by nature, such as reading

the time or receiving a packet from the network. Once these root methods are

defined as non-deterministic, any other method that uses a non-deterministic

method is also flagged as non-deterministic.

Besides identifying a non-deterministic method, the rule file defines a re-

placement method. This method can be implemented by the application of by

a supporting library and should provide a deterministic version of the indicated

method. For example, it is possible to define a method that returns not the

current time, but a timestamp prerecorded in the action object.

In the rule file, each rule is defined in a line and its format is shown in

Figure 18. The rules are split in two parts by the symbol -. The first part

defines the non-deterministic method, the prototype that defines this method

and the package where it can be found. The second part defines a deterministic

method that will replace the non-deterministic one, the prototype that defines

this method and the package where it can be found. During compilation, the

metaobject treplicaAction will replace methodA with a call to methodB, with

the parameters of the original call used as parameters of this new call. The

prototype that defines methodB is not instantiated, it is used in static form.

1 packageA ,PrototypeA ,methodA -packageB ,PrototypeB ,methodB

Figure 18: Example of non-determinism rule

The replacement of methods does not cover all possibilities of non-determinism

removal in a program. Thus, after the initial identification and replacement that

happens in Phase 6 of the compiler, another round of checking happens in Phase

9. In this final check, remaining non-deterministic methods will cause a compi-

lation error. This procedure is a first tentative step in the direction of isolating

26

replication related inconsistencies, but it shows it is possible to verify the source

code based on the restrictions imposed by the programming environment.

As an example, consider the prototype Info defined in Figure 19. This

prototype implements an application context and has a method set: marked

as an action. During compilation, if the developer creates the rule file shown in

Figure 20 the method ageInSecNd, that has non-deterministic behavior, will be

replaced by the deterministic ageInSec method.

1 package main

2 ...

3 object Info extends Context {

4 var String text

5

6 // non -deterministic behavior

7 func ageInSecNd -> Long {...}

8

9 func ageInSec -> Long {...}

10

11 @treplicaAction

12 func set: String text {

13 self.text = text ++ " age: "

14 ++ ageInSecNd;

15 }

16 ...

17 }

Figure 19: Example of non-determinism removal

1 main ,Info ,ageInSecNd -main ,Info ,ageInSec

Figure 20: Non-determinism rule for Info prototype

The class that defines the metaobject treplicaAction implements the inter-

face ICheckDeclaration dsa2 and defines the method dsa2 checkDeclaration.

This method performs a depth-first search starting from the method annotated

with @treplicaAction, and passes through the methods calls recursively. All

27

called methods are verified based on the rules file. The depth-first search returns

when there are no more methods to be visited. In the example of Figure 19,

treplicaAction looks for non-deterministic method calls in set: and in any

other method set: may call. In this case, ageInSecNd and in any other meth-

ods that ageInSecNd may call. The method dsa2 checkDeclaration checks

which calls are considered as non-deterministic based on the rules file.

5. Related Work

OpenReplica [6] is a framework to implement replicated services similar to

Treplica [4]. Along with Treplica, OpenReplica represents the state of the art

for easily creating replicated applications and both use a similar object-oriented

approach that suffers from the same transparency and code verification prob-

lems. Both frameworks require an interface layer to encapsulate the methods

implementing changes to the replicated state and neither allows code inspec-

tions that search for inconsistencies in the implementation of the interface. In

this paper we use metaprogramming to tackle these challenges, similarly to the

way metaprogramming has been used to attack similar problems.

Rentschler et al. [8] argues the use of domain specific languages (DSLs) to

increase programmer productivity and quality and proposes the use of metapro-

gramming to translate these DSLs in other languages. They use the Xtend

language [8] to transform a DSL using active annotations. We use a similar

approach of automatic code transformation. However, starting from central-

ized code written in a general purpose language, we arrive in distributed code

written in the same language. Moreover, the metaprogramming infrastructure

provided by Cyan allows for a more elegant implementation than the one ob-

tained by using Xtend. Another similar work is the one by Blewitt et al. [9]

that proposes the use of metaprogramming to automatically create components

that implement design patterns.

Groovy [20], Xtend [8], and Nemerle [21] support compile-time metapro-

gramming through annotations in the source code. The annotations are called

28

macros in Nemerle and active annotations in Xtend. We will use the Cyan

terms for all of them. In these languages, metaobjects can act in several compi-

lation phases and they can add code, create new classes, do checks. Annotations

can be attached to declarations such as classes and methods. Then metaobject

treplicaAction could be implemented in Groovy, Xtend, and Nemerle except

for one point: the checks related to non-deterministic methods. These checks

are made in Phase 9 of the Cyan compiler, after every possible code change has

already been made.7 To our knowledge, these languages do not have a com-

pilation phase in which all code changes are prohibited. It may be possible to

implement non-deterministim checks using some clever compiler trick, but we

are not aware of that.

Groovy, Xtend, and Nemerle do not allow an annotation to be attached to a

local variable declaration. Then metaobject treplicaInit cannot be directly

implemented in these languages. It could, probably, be implemented by indirect

means: the annotation would be attached to a method and it would take a local

variable name as parameter. Then the metaobject would walk in the method

AST and add the code as the Cyan metaobject does.

Chlipala [10] shows a proposal for using metaprogramming to perform source

code validations at compile time using macros. Inspecting the source code for

problems during compilation increases the application performance, because it is

unhindered by run-time validations. Mekruksavanich [11] proposes similar vali-

dations in which metaprogramming is used to detect defects in object-oriented

programs by the use of software components capable of describing and identi-

fying such defects. Both these works tackle different problems from the ones

described in this paper, but both show the benefits of the use of metaprogram-

ming as an aid in the development of correct programs.

Compiler directives, have been successfully used to accelerate the creation

of parallel programs. OpenMP [13] aims to ease the conversion of legacy cen-

tralized C++ and Fortran code into portable shared-memory parallel code.

7The code can be modified only until Phase 6.

29

OpenACC [14] uses the same approach of compiler directive annotated code

to offload some compute intensive tasks to accelerator devices such as general-

purpose graphic processing units (GPGPUs). Both approaches simplify the task

of producing parallel code, but still require a considerable knowledge of the pro-

grammer about how parallel programs work. We use metaobjects in a simpler

way and aim to completely shield the programmer from details about the dis-

tributed programming model that is used. Currently we block the occurrence

of invalid non-deterministic method calls and intend in the future to extend

detection to other types of consistency violations.

Regarding the problem of separating the nonfunctional requirements from

the functional ones, there are works on aspect orientation that try to solve the

same problem. AspectJ [23] is a Java extension that supports aspects, which are

composed by advices, ordinary Java code, and pointcuts. Advices can change the

behavior of points of the user source code specified by pointcuts. For example,

it can change instance variable access and method calls. Aspects are a kind of

metaprogramming that is less general than that of Cyan, in which code can be

inserted in several compiler phases and in many places that are out of reach of

aspects. Besides that, Cyan metaobjects have access to most of the information

the compiler has at a specific point of the compilation, which aspects do not.

Probably aspects can be implemented in Cyan just by creating new metaobjects,

without any language modifications.

6. Conclusion

We have shown how to use the metaprogramming infrastructure of the Cyan

language to transparently generate and validate integration code that uses the

Treplica replication framework. This way, programs written in Cyan can easily

be converted from a centralized architecture to a replicated one by attaching

metaobjects to mutator methods. The set of metaobjects created showed for

the first time that it possible to automatically create replicated code using

metaprogramming.

30

We also demonstrated the power and simplicity of the MOP of the Cyan

language to create useful metaobjects in a very direct way. The programmer

of a metaobject in Cyan does not have to deal with the AST to generate code,

she only needs to insert textual source code directly to the original source code.

However, the programmer can use the AST if necessary to know what the com-

piler knows about the code being compiled.

Moreover, we demonstrated the potential of using metaobjects to validate

the generated code with respect to the presence of non-determinism, by replac-

ing the non-deterministic operations with equivalent deterministic operations.

We believe the technique presented to detect non-determinism can be extended

to other types of violations of replication integrity, such as calling static methods

outside the application context. In the future, we envision an application envi-

ronment where distributed programming errors, one of the main factors limiting

the use of this programming paradigm, can be directly found by the compiler.

Also, the ability to create isolated, deterministic operations seems to be very

useful in the creation of tests suites.

Acknowledgments

This work was supported by the São Paulo Research Foundation (FAPESP)

under grant #2014/01817-3 and by FIT - Instituto de Tecnologia.

References

References

[1] W. Vogels, Eventually consistent, Commun. ACM 52 (1) (2009) 40–44.

doi:10.1145/1435417.1435432.

[2] F. B. Schneider, Implementing fault-tolerant services using the state ma-

chine approach: A tutorial, ACM Computing Surveys (CSUR) 22 (4) (1990)

299–319.

31

https://doi.org/10.1145/1435417.1435432

[3] M. Burrows, The Chubby lock service for loosely-coupled distributed sys-

tems, in: Proceedings of the 7th symposium on Operating systems design

and implementation, USENIX Association, 2006, pp. 335–350.

[4] G. M. D. Vieira, L. E. Buzato, Treplica: Ubiquitous replication, in: SBRC

’08: Proc. of the 26th Brazilian Symposium on Computer Networks and

Distributed Systems, Rio de Janeiro, Brasil, 2008.

[5] G. M. D. Vieira, L. E. Buzato, Implementation of an object-oriented specifi-

cation for active replication using consensus, Tech. Rep. IC-10-26, Institute

of Computing, University of Campinas (Aug. 2010).

[6] D. Altınbüken, E. G. Sirer, Commodifying replicated state machines with

OpenReplica, Tech. rep., Cornell University, Technical Report (2012).

[7] R. Damaševičius, V. Štuikys, Taxonomy of the fundamental concepts of

metaprogramming, Information Technology and Control 37 (2) (2015).

[8] A. Rentschler, D. Werle, Q. Noorshams, L. Happe, R. Reussner, Designing

information hiding modularity for model transformation languages, in: Pro-

ceedings of the 13th international conference on Modularity, ACM, 2014,

pp. 217–228.

[9] A. Blewitt, A. Bundy, I. Stark, Automatic verification of design patterns

in Java, in: Proceedings of the 20th IEEE/ACM international Conference

on Automated software engineering, ACM, 2005, pp. 224–232.

[10] A. Chlipala, The bedrock structured programming system: Combining gen-

erative metaprogramming and Hoare logic in an extensible program verifier,

in: ACM SIGPLAN Notices, Vol. 48, ACM, 2013, pp. 391–402.

[11] S. Mekruksavanich, P. P. Yupapin, P. Muenchaisri, Analytical learning

based on a meta-programming approach for the detection of object-oriented

design defects, Information Technology Journal 11 (12) (2012) 1677.

32

[12] J. d. O. Guimaraes, The Cyan language, Tech. rep., Campus de Sorocaba

da UFSCar (2008).

URL http://www.cyan-lang.org

[13] L. Dagum, R. Menon, OpenMP: an industry standard API for shared-

memory programming, IEEE computational science and engineering 5 (1)

(1998) 46–55.

[14] S. Wienke, P. Springer, C. Terboven, D. an Mey, OpenACC—first expe-

riences with real-world applications, in: European Conference on Parallel

Processing, Springer, 2012, pp. 859–870.

[15] G. Blaschek, Object-oriented programming with prototypes, Springer,

1994.

[16] J. Gosling, B. Joy, G. L. Steele, G. Bracha, A. Buckley, The Java Language

Specification, Java SE 8 Edition, 1st Edition, Addison-Wesley Professional,

2014.

[17] B. Stroustrup, The C++ Programming Language, 4th Edition, Addison-

Wesley Professional, 2013.

[18] C# language specification (Sep. 2014).

URL http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-334.pdf

[19] A. Goldberg, D. Robson, Smalltalk-80: The Language and Its Implemen-

tation, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

1983.

[20] The Groovy language (2017).

URL http://groovy-lang.org

[21] K. Skalski, Syntax-extending and type-reflecting macros in an object-

oriented language, Master’s thesis, University of Wroclaw, Poland (2005).

[22] L. Lamport, Fast Paxos, Distributed Computing 19 (2) (2006) 79–103.

33

http://www.cyan-lang.org
http://www.cyan-lang.org
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-334.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-334.pdf
http://groovy-lang.org
http://groovy-lang.org

[23] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G. Griswold,

An overview of AspectJ, Lecture Notes in Computer Science 2072 (2001)

327–355.

34

	Introduction
	The Cyan Language
	Language Overview
	The Cyan Metaobject Protocol

	Treplica
	Metaobjects for Replication
	Overview and Use
	Implementation of the Metaobjects
	Non-determinism Detection

	Related Work
	Conclusion

