
The Cyan Language

José de Oliveira Guimarães

Campus de Sorocaba da UFSCar

Sorocaba, SP

Brasil

jose@ufscar.br

josedeoliveiraguimaraes@gmail.com

June 30, 2025

mailto:jose@ufscar.br
josedeoliveiraguimaraes@gmail.com

Contents

1 An Overview of Cyan 5

2 The Compiler, Packages, and File organization 32

2.1 Future Enhancements . 36

3 Basic Elements 38

3.1 Identi�ers . 38
3.2 Comments . 39
3.3 Keywords . 39
3.4 Assignments . 40
3.5 Basic Types . 40
3.6 Operator and Keyword Precedence . 47
3.7 Loops, Ifs, and other Statements . 48
3.8 Arrays . 55
3.9 Maps . 56

4 Main Cyan Constructs 57

4.1 self . 62
4.2 clone Methods . 62
4.3 init and new Methods . 63
4.4 Limitations on the Use of Prototypes as Objects . 69
4.5 Shared Variables and Method initShared . 71
4.6 Shared Methods . 73
4.7 Keyword Methods and Selectors . 74
4.8 Operator Methods . 75
4.9 On Names and Scope . 76
4.10 Operator [] . 77
4.11 Inheritance . 78
4.12 Downcasting with type-case and cast statements . 82
4.13 Interfaces . 83
4.14 Method Overloading . 86
4.15 Nil and Any, the superprototype of Everybody . 91
4.16 Abstract Prototypes . 96
4.17 Types and Subtypes . 98
4.18 Union Types . 99
4.19 Tagged Unions . 100
4.20 Interoperability with Java . 101
4.21 Future Enhancements . 108

1

5 Dynamic Typing 111

6 Generic Prototypes 116

6.1 Generic Prototypes with real arguments . 124
6.2 Generic Prototype with a Varying Number of Parameters 126
6.3 Multiple Parameter Lists . 126
6.4 Source File Names . 127
6.5 Combining Generic Prototypes . 128
6.6 Concepts . 129
6.7 Message Sends To Generic Prototype Instantiations . 138
6.8 Future Enhancements . 138

7 Important Library Objects 140

7.1 System . 140
7.2 Input and Output . 140
7.3 Tuples . 141

7.3.1 Future Enhancements . 142
7.4 Dynamic Tuples . 144
7.5 Intervals . 145

8 Grammar Methods 148

8.1 Matching Message Sends with Methods . 152
8.2 Unions and Optional Keywords . 154
8.3 Re�ning the De�nition of Grammar Methods . 159
8.4 Domain Speci�c Languages . 162

9 Functions 165

9.1 Problems with Anonymous Functions . 167
9.2 Functions with Multiple Keywords . 170
9.3 Methods as Functions . 171
9.4 Methods of Functions for Decision and Repetition . 174
9.5 Future Enhancements . 175

9.5.1 Type Checking Functions . 183
9.5.2 Examples . 184
9.5.3 Why Functions are Statically-Typed in Cyan . 185
9.5.4 Adding Methods to Objects . 186

10 Context Objects 195

10.1 Passing Parameters by Copy . 197
10.2 Passing Parameters by Reference . 197
10.3 Should Context Objects be User-De�ned? . 199
10.4 More Examples . 199
10.5 Future Enhancements . 201

10.5.1 Type Checking Context Objects . 201
10.5.2 Adding Context Objects to Prototypes . 203

2

11 The Exception Handling System 205

11.1 Using Regular Objects to Treat Exceptions . 207
11.2 Selecting an eval Method for Exception Treatment . 208
11.3 Other Methods and Keywords for Exception Treatment 211
11.4 Why Cyan Does Not Support Checked Exceptions? . 215
11.5 Synergy between the EHS and Generic Prototypes . 217
11.6 More Examples of Exception Handling . 219

12 The Cyan Language Grammar 223

13 Opportunities for Collaboration 228

14 Future Enhancements 229

14.1 Runtime Metaobjects or Dynamic Mixins . 230
14.2 Multiple Assignments . 232

A The Compiler 234

Index 238

A.1 Separate Compilation . 242
A.2 Known Compiler Errors . 242

3

Foreword

This is the manual of Cyan, a prototype-based statically-typed object-oriented language. The language
introduces several novelties that make it easy to implement domain speci�c languages, blend dynamic and
static code, reuse exception treatment, and do several other common tasks. Although Cyan is an academic
language, its design was made for programmers. Every aspect of it was designed to make programming
fun.

The main novelties of Cyan are, in order of importance:

(a) the metaobject protocol, see the Thesis �The Cyan Language Metaobject Protocol� in the Cyan site,
http://www.cyan-lang.org;

(b) generic objects with variable number of parameters, Chapter 6;

(c) an object-oriented exception handling system, Chapter 11;

(d) context objects, Chapter 10;

(e) static typing with optional dynamic typing, Chapter 5;

(f) clearly designed overloaded methods which are a restricted form of multi-methods, Section 4.14;

The address of the Cyan home page is http://www.cyan-lang.org. Go to it for research articles and
up-to-date changes in the language.

4

http://www.cyan-lang.org
http://www.cyan-lang.org

Chapter 1

An Overview of Cyan

Cyan is a statically-typed prototyped-based object-oriented language. As such, there is no class declara-
tion. Objects play the role of classes and the cloning and new operations are used to create new objects.
Although there is no class, objects do have types which are used to check the correctness of message
sending. Cyan supports single inheritance, interfaces, generic prototypes, a completely object-oriented
exception system, statically-typed anonymous functions, context objects (which are a generalization of
anonymous functions), non-nullable types, optional dynamic typing, and a powerful metaobject protocol
(MOP).

The Cyan MOP allows the control of the compilation process in many di�erent ways making it
relatively easy to produce and change code during the compilation. It is the biggest innotation of the
language. The MOP is implemented through metaobject classes or prototypes. Only the main language
package, cyan.lang, has around 80 of such classes (and growing). These metaobject classes are used,
for example, to produce code for generic prototypes and to check arguments to methods. In particular,
through a metaobject called grammarMethod one can easily de�ne Domain Speci�c Languages inside
the Cyan code. And Concepts [GJS+06] for generic programming can be de�ned without any language
support.

Although the language is based in prototypes, it is closer in many aspects to class-based languages
like C++ [Str13] and Java [GJS+14] than some prototype-based languages such as Self [US87] or Omega
[Bla94]. For example, there is no workspace which survives program execution, objects have a new method
that creates a new object similar to another one (but without cloning it), and a Cyan program is given
textually. In Omega, for example, a method is added to a class through the IDE. Cyan is close to
Java and C++ in another undesirable way: its size is closer to these languages than to other prototype-
based languages (which are usually small). However, several concepts were uni�ed in Cyan therefore
reducing the amount of constructs in relation to the amount of features. In particular, many constructs of
other languages are implemented by methods in Cyan. For example, to throw an exception, to catch an
exception, and to test if an object is of a certain prototype are all made through methods. We consider
that Cyan, without the MOP, is not a big language. Since the MOP is not to be used extensively by
regular programmers, we believe that learning the language will not be a problem.

In this Chapter we give an overview of the language highlighting some of its features. An example
of a program in Cyan is shown in Figures 1.1 and 1.2. The corresponding Java program is shown in
Figure 1.3. It is assumed that there are classes In and Out in Java that do input and output (assume
they are in package inOut). The Cyan program declares objects Person and Program (they should start
with an upper-case letter). These objects are called prototypes to di�erentiate them from objects created
during runtime. Object Person declares a variable name and methods getName and setName. Keywords
var and func are used before a �eld (instance variable) and a method declaration. Method getName of
Person takes no argument and returns a String. The return type appears after �->". Inside a method,

5

package program

object Person

private var String name = ""

public func getName -> String {

return self.name

}

public func setName: String name {

self.name = name

}

end

Figure 1.1: A Cyan program: Person

package program

object Program

public func run {

var p = Person clone;

var String name;

name = In readLine;

p setName: name;

Out println: (p getName);

}

end

Figure 1.2: A Cyan program: Program

self refers to the object that received the message that caused the execution of the method (same as
self of Smalltalk and this of Java). The value returned by a method should appear after the keyword
return. A package is a collection of prototypes (objects) and interfaces � it is the same concept of Java
packages and modules of other languages. All the public identi�ers of a package become available after a
�import" declaration.

Prototype Program declares a run method. Assume that this will be the �rst method of the program
to be executed. The �rst statement of run is

var p = Person clone;

�Person clone" is the sending of message clone to prototype Person. �clone" is called the �selector"
of the message. All objects have a clone method. This statement declares a variable called p and assigns
to it a copy of object Person. The code

var variableName = expr

declares a variable with the same compile-time type as expr and assigns the result of expr to the variable.
The type of expr should have been determined by the compiler using information of previous lines of
code.

The next line,
var String name;

declares name as a variable of type String. This is also considered a statement. In

6

package program;

import inOut;

private class Person {

private String name;

public String getName() {

return this.name;

}

public void setName(String name) {

this.name = name;

}

}

public class Program {

public void run() {

Person p;

String name;

p = new Person();

name = In.readLine();

p.setName(name);

Out.println(p.getName());

}

}

Figure 1.3: A Java program

7

name = In readLine;

there is the sending of message readLine to prototype In, which is an object used for input. Statement
p setName: name;

is the sending of message �setName: name" to the object referenced to by p. The message selector is
�setName:" and �name" is the argument. Finally

Out println: (p getName);

is the sending of message �println: (p getName)" to prototype Out. The message selector is �println:"
and the argument is the object returned by �p getName".

The parameters1 that follow a selector in a method declaration may be surrounded by (and). So
method setName: could have been declared as

public func setName: (String name) { self.name = name }

This is allowed to increase the legibility of the code.

De�nition and Declaration of Variables

Statement
var p = Person clone;

could have been de�ned as
var Person p;

p = Person clone;

Variable p is declared in the �rst line and its type is the prototype Person. When an object is used
where a type is expected, as in a variable or parameter declaration, it means �the type of the object". By
the type rules of Cyan, explained latter, p can receive in assignments objects whose types are Person or
subprototypes of Person (objects that inherit from Person, a concept equivalent to inheritance of classes).

Inheritance

The type system of Cyan is close to that of Java although the �rst language does not support classes.
There are interfaces, single inheritance, and implementation of interfaces. The inheritance of prototype
Person from Worker is made with the following syntax:

object Worker extends Person

private String company

// other fields (instance variables) and methods

end

If a method is rede�ned in a subprototype (be it public or protected), keyword �override" should
appear just after �public" or �protected". Methods of the subprototype may call methods of the super-
prototype using keyword super as the message receiver:

super name: "anonymous"

In order to a prototype to be inherited, its declaration must be preceded by identi�er �open� as in

open

object Person

// elided

end

1In this manual, we will use parameter and argument as synonymous.

8

Cyan has runtime objects, created with new and clonemethods, and objects such as Person, Program,
and Worker, which are created before the program execution. To di�erentiate them, most of the time the
last objects will be called prototypes. However, when no confusion can arise, we may call them objects

too.
It is important to bear in mind the dual role of a prototype in Cyan: it is a regular object when it

appears in an expression and it is a type when it appears as the type of a variable, parameter, or return
value of methods.

Interfaces

Interfaces are similar to those of Java. One can write

interface Savable

func save

end

open

object Person

func init: String name, Int age {

self.name = name;

self.age = age

}

func getName -> String = name;

func setName: String name { self.name = name }

func getAge -> Int = age;

func setAge: Int age { self.age = age }

var String name

var Int age

end

object Worker extends Person implements Savable

private String company

func save {

// save to a file

}

... // elided

end

Here prototype Worker should implement method save. Otherwise the compiler would sign an error.
Unlike Java, interfaces in Cyan are objects too. They can be passed as parameters, assigned to objects,
and receive messages.

Values

The term �variable" in Cyan is used for local variable, �eld (instance variable or attribute), and parameter.
A variable in Cyan is a reference to an object. The declaration of the variable does not guarantee that an
object was created. To initialize the variable one has to use a literal object such as 1, 3.1415, "Hello",
or to created an object with clone or new.

9

Object String is a pre-de�ned object for storing sequences of characters. A literal string can be given
enclosed by " as usual: "Hi, this is a string", "um", "ended by newline\n".

Any

All prototypes in Cyan but Nil inherit from prototype Any which has some basic methods such as eq:
(reference comparison), == (is the content equal?), asString, and methods for computational re�ection
(get object information, get metadata). Method

func eq: Any other -> Boolean

tests whether self and other reference the same object. Method == is equal to eq: by default but
it should be rede�ned by the user.2 Method eq: cannot be rede�ned in subprototypes. Method neq:

retorns the opposite truth value of eq:

Basic Types

Cyan has the following basic types: Byte, Short, Int, Long, Float, Double, Char, Boolean, Nil, and
String (no Void prototype). Since Cyan will be targetted to the Java Virtual Machine, the language has
one type for each of the basic types of Java except for void. Unlike Java, all basic types in Cyan but Nil
inherit from prototype Any. Therefore there are not two separate hierarchies for basic types, that obey
value semantics,3 and all other types, which obey reference semantics.

Methods eq: and == of all basic types have the same semantics: they return true if the contents of
the objects are equal:

var Int I = 1;

var Int J = 1;

if I == J && I eq: J {

Out println: "This will be printed"

}

Since the basic prototypes cannot be inherited, the compiler is free to implement basic types as if they
obey value semantics. That is, a basic type Int could be translated to int of Java.4 There are cases in
which this should not be done:

(a) when a basic type variable is passed as parameter to a method that accepts type Any:

object IntHashTable

func key: String aKey value: Any aValue { ... }

...

end

...

IntHashTable key: "one" value: 1;

In this case the compiler will create a dynamic object of prototype Int for the 1 literal;

(b) when a basic type variable receives a message that correspond to a method of Any such as prototypeName:

2For union types, == has a di�erent behavior than eq:.
3The declaration of a variable allocates memory for the �object". Variables really contains the object, it is stack allocated.

In reference semantics, variables are pointers. Objects are dynamically allocated.
4The compiler being built translates Cyan to Java.

10

// prints "Int"

Out println: (1 prototypeName);

But even in this case the compiler will be able to optimize the code since it knows which method
should be called.

In practice, the compiler could implement basic types as the basic types of Java almost all of the time.
The overhead should be minimal.

Nil and Union types

There is a special type in the language, the union type. The type A|B is considered, in assignments and
parameter passing, as a supertype of both A and B.

var Int|String x;

x = 0; // ok

x = "Cyan"; // ok

The compiler automatically casts objects of Int and String to x. To retrive the object stored in x it is
necessary to use the type command:

type x

case Int n {

Out println: "twice is " ++ 2*n

}

case String s {

Out println: "first char is" ++ s[0]

}

Inside �rst case clause, �case Int n", n has type Int and the value of x. The same applies to the second
case and s.

There is a special object called Nil which is not subtype or supertype of anything. It somehow plays
the role of nil of Smalltalk, NULL of C++, and null of Java/C#. As in Smalltalk, Nil knows how to
answer some messages � it is an object. However, Nil can only be assigned to a variable of type Nil.

Nil cannot be assigned to a variable whose type is a prototype that is not Nil or an union.

var String s;

var Person p;

s = Nil; // compile-time error

p = Nil; // compile-time error

To allow Nil values in variables it is necessary to declare an union of Nil with at least a regular prototype.

var Nil|String s;

s = Nil; // ok

s = In readLine; // readLine returns a String

type s

case Nil {

// in case s is Nil

}

case String s2 {

// s2 is a String here

}

11

Then the runtime error �message send to Nil" does not happens in Cyan. Caveat: the compiler currently
does not check if a variable is initialized or not before used. Then the Java compiler may signal a compile-
time error �variable was not initialized" or there may be a run-time error �Null pointer exception". But
this is a �aw of the compiler, not of the language.

A method that does not return anything can be declared as returning Nil. It is equivalent to declare
Nil as the return value and do not declare a return value.

Constructors and Inheritance

Constructors have the name init or init: and may have any number of parameters. The return value
should not be supplied (not even Nil). For each method named init or init: the compiler adds to
the prototype a method named new or new: with the same parameter types. Each new or new: method
creates an object and calls the corresponding init or init: method. If the prototype does not de�ne
any init or init: methods, the compiler supplies an empty init method that does not take parameters
and calls the superprototype init method (if any. If this method does not exist, a compiler error occurs).
Consequently, a new method is created too.

A subprototype should call one of the init methods of the superprototype (if one was de�ned by the
user) using keyword super. This call should be the �rst statement of the method:

open

object Person

func init: String name { self.name = name }

private String name

...

end

object Worker extends Person

func init: String name, String job {

// this line is demanded

super init: name;

self.job = job;

}

private String job

...

end

All new methods return an object of the prototype. Therefore, Person has a method
Person new: String name

and Worker has a method
Worker new: String name, String job

To make it easy to create objects, there is an alternative way of calling methods new and new:.
P(p1, p2, ..., pn) is a short form for
(P new: p1, p2, ..., pn)

Therefore we can write either
var prof = Worker("John", "Professor")

or
var prof = Worker new: "John", "Professor"

Of course, if a prototype P has a new method that does not take parameters we can write just �P()" to
create an object.

12

Keyword Messages and Methods

Cyan was initially based on Smalltalk. As a result, it supports keyword messages, a message with multiple
keywords as in

var p = Point dist: 100.0 angle: 20.0;

Like Smalltalk, Cyan calls dist: and angle: keywords. Following Smalltalk terminology, dist:angle:
is called a �selector�.

Method calls become documented without further e�ort. Prototype Point should have been declared
as

object Point

func dist: (Float newDist) angle: (Float newAngle) -> Point {

var p = self clone;

p dist: newDist;

p angle: newAngle;

return p

}

public Float dist

public Float angle

end

Unlike Smalltalk, after a single keyword there may be multiple parameters:

object Quadrilateral

func p1: (Int x1, Int y1)

p2: (Int x2, Int y2)

p3: Int x3, Int y3

p4: Int x4, Int y4 {

self.x = x1;

...

self.y4 = y4

}

...

private Int x1, y1, x2, y2, x3, y3, x4, y4

end

...

var r = Quadrilateral p1: 0, 0 p2: 100, 10

p3: 20, 50 p4: 120, 70;

This example declares the parameters after the keywords in all possible ways. By �keyword� we mean
method keywords, not Cyan reserved keywords.

We call the �name of a method" the concatenation of all of its keywords, each one followed by its
number of parameters and a white space. The trailing white space should be removed. For example,
methods

func key: (String aKey) value: (Int aValue) -> String

func name: (String first, String last)

age: (Int aAge)

salary: (aSalary Float) -> Worker

have names "key:1 value:1" and "name:2 age:1 salary:1".

13

Abstract Prototypes

An abstract prototype should be declared with keyword abstract and it may have zero or more public
abstract methods:

public abstract object Shape

public abstract func draw

end

An abstract prototype does not have any new methods even if it declares init methods. Abstract methods
can only be declared in abstract objects. A subprototype of an abstract object may be declared abstract
or not. However, if it does not de�ne the inherited abstract methods, it must be declared as abstract too.

To call an object �abstract" seem to be a contradiction in terms since �objects" in prototype-based
languages are concrete entities. However, this is no more strange than to have �abstract" classes in class-
based languages: classes are already an abstraction. To say �abstract class" is to refer to an abstraction
of an abstraction.

Final Prototypes and Methods

A prototype whose declaration is not preceded by �open� cannot be inherited. It is a final prototype.

object Int

...

end

...

object MyInt extends Int

...

end

There would be a compile-time error in the inheritance of the �nal prototype Int by MyInt.
A �nal method cannot be rede�ned. This allows the compiler to optimize code generation for these

methods.

open

object Person

final func name -> String { return _name }

final func name: String newName { _name = newName }

...

end

...

var Person p;

...

p name: "Peter"; // static call

Decision and Loop Methods and Statements

The if statement takes a boolean expression and is always followed by a sequence of statements between
{ and }. It is not necessary to put parentheses around the boolean expression. The else part is optional.
The while statement also takes a boolean expression and a sequence of statements between { and }.

14

if n%2 == 0 {

s = "even"

}

else { // the else part is optional

s = "odd"

};

var i = 0;

while i < 5 {

Out println: i;

++i

}

The repeat-until command executes its statements until the expression is true:

var Int sum = 0;

var Int n = 1;

repeat

sum = sum + n;

++n;

until n >= 4;

assert sum == 6;

Cascaded if�s are possible:

if age < 3 {

s = "baby"

}

else if age <= 12 {

s = "child"

}

else if age <= 19 {

s = "teenager"

}

else {

s = "adult"

};

Cyan Symbols

There is a special form of literal strings that start with # called simply �symbol�. A symbol one starts by
a # followed, without spaces, by letters, dot, digits, underscores, and �:�, starting with a letter or digit.
These are valid symbols in Cyan:

#name

#name:

#at:put:

#1

#711

The type of a symbol is String.

15

var String s;

s = #at:put:;

// prints at:put:

Out println: s;

s = #7;

assert s == "7" && #at:put: == "at:put:";

Overloading

There may be methods with the same method keywords but with di�erent number of parameters and
parameter types. For example, one can declare

object Printer

func print: Document d { ... }

func print: String s, String form -> Boolean { ... }

func print: Float s, Int beforeDot, Int afterDot { ... }

end

All of these methods are considered di�erent. They can have di�erent return value types, they have in
fact di�erent names. This is not true overloading.

True method overloading happens when the method keywords and the number of parameters are equal
but the parameter types are di�erent:

object MyBlackBoard

overload // keyword that prefixes an overloaded method

func draw: Square f { ... }

func draw: Triangle f { ... }

func draw: Circle f { ... }

func draw: Shape f { ... }

private String name

end

There are four draw methods that are considered di�erent by the compiler. In a message send
MyBlackBoard draw: fig

the runtime system searchs for a draw method in prototype MyBlackBoard in the textual order in which
the methods were declared. It �rst checks whether fig references a prototype which is a subprototype
from Square (that is, whether the prototype extends Square, assuming Square is a prototype and not an
interface). If it is not, the searches continues in the second method,

draw: Triangle f

and so on. If an adequate method were not found in this prototype, the search would continue in the
superprototype. Since all draw: methods have the same number of parameters, it is necessary to pre�x
the �rst method with the keyword �overload". This will be explained later.

Subtyping and Method Search

The de�nition of subtyping in Cyan considers that prototype S is a subtype of T if S inherits from T (in
this case T is a prototype) or if S implements interface T. An interface S is a subtype of interface T if S
extends T. This is a pretty usual de�nition of subtyping.

16

In the general case, in a message send
p draw: fig

the algorithm searches for an adequate method in the object the variable p refer to and then, if this search
fails, proceeds up in the inheritance hierarchy. Suppose C inherits from B that inherits from A. Variable x
is declared with type B and refers to a C object at runtime. Consider the message send

x first: expr1 second: expr2

At runtime a search is made for a method of object C such that:

(a) the method has keywords first: and second: and;

(b) keyword first: of the method takes a single parameter of type T and the runtime type of expr1 is
subtype of T. The same applies to keyword second: and expr2;

The methods are searched for in object C in the textually declared order. The return value type is not
considered in this search. If no adequate method is found in object C, the search continues at object B. If
again no method is found, the search continues at object A.

The compiler makes almost exactly this search with just one di�erence: the search for the method
starts at the declared type of x, B.

This unusual runtime search for a method is used for two reasons:

(a) it can be employed in dynamically-typed languages. Cyan was designed to allow a smooth transition
between dynamic and static typing. Cyan will not demand the declaration of types for variables
(including parameters and excluding �elds). After the program is working, types can be added. The
algorithm that searches for a method described above can be used in dynamically and statically-typed
languages;

(b) it is used in the Cyan exception system. When looking for an exception treatment, the textual order
is the correct order to follow. Just like in Java/C++/etc in which the catch clauses after a try block
are checked in the order in which they were declared after an exception is thrown in the try block.

The programmer should be aware that to declare two methods such that:

(a) they have the same keywords and;

(b) for each keyword, the number of parameters is the same.

will make message send much slower than the normal.
Methods that di�er only in the return value type cannot belong to the same prototype. Then it is

illegal to declare methods id -> Int and id -> String in the same prototype (even if one of them is
inherited).

In the rede�nition of a method in a subprototype, one can change the return value type of the
subprototype method. This type can be a subprototype of the type of the return value of the method of
the superprototype:

open

object Animal

func matchWhat -> Animal { ... }

end

object Cow extends Animal

// ok, Cow is subprototype of Animal

func matchWhat -> Cow { ... }

end

17

The search for a method in Cyan makes the language supports a kind of multi-methods. The linking
�message"-�method" considers not only the message receiver but also other parameters of the message
(if they exist). Unlike many object-oriented languages, the parameter types are inspected at runtime in
order to discover which method should be called.

Arrays and Maps

Array prototypes are declared using the syntax: Array<A> in which A is the array element type. Only
one-dimensional arrays are supported. A literal array object is created using [element list], as in
the example:

var n = 5;

var anIntArray = [1, 2, (Math sqr: n)];

var Array<String> aStringArray;

aStringArray = ["one", "t" ++ "wo"];

This code creates two literal arrays. anIntArray will have elements 1, 2, and 25, assuming the existence
of a Math prototype with a sqr method (square the argument). And aStringArray will have elements
"one" and "two". The array objects are always created at runtime. So a loop

1..10 foreach: { (: Int i :)

Out println: [i-1, i, i + 1]

}

Creates ten di�erent literal arrays at runtime. The type of a literal array is Array<A> in which A is the
type of the �rst element of the literal array. Therefore

var fa = [1.0, 2, 3];

declares fa as a Array<Double>. Since there is no automatic convertion of values, this results in a
compile-time error: the compiler will not cast 2 to Double.

Literal maps are de�ned in the following way:

let IMap<Int, String> map = [0 -> "zero", 1 -> "one", 2 -> "two"];

cast elem = map[0] {

assert elem == "zero";

}

map[0] returns the element associated with 0. Its type is a union of String and Nil. Statement cast
should be used to access the result. In the example, elem has type String and the assert is only executed
if map[0] is a String. It would be Nil if map did not associate a string to 0.

Dynamic Typing

Although Cyan is statically-typed, it supports some features of dynamically-typed languages. A message
send whose keywords are preceded by ? is not checked at compile-time. That is, the compiler does not
check whether the static type of the expression receiving that message declares a method with those
keywords. For example, in the code below, the compiler does not check whether prototype Person de�nes
a method with keywords name: and age: that accepts as parameters a String and an Int.

var p Person;

...

p ?name: "Peter" ?age: 31;

18

This non-checked message send is useful when the exact type of the receiver is not known:

func printArray: Array<Any> anArray {

anArray foreach: { (: elem Any :)

elem ?printObj

}

}

The array could have objects of any type. At runtime, a message printObj is sent to all of them. If all
objects of the array implemented a Printable interface, then we could declare parameter anArray with
type Array<Printable>. However, this may not be the case and the above code would be the only way
of sending message printObj to all array objects.

The compiler does not do any type checking using the returned value of a dynamic method. That is,
the compiler considers that

if obj ?get { ... }

is type correct, even though it does not know at compile-time if obj ?get returns a boolean value.
Dynamic checking with ? plus the re�ective facilities of Cyan can be used to create objects with

dynamic �elds. Object DTuple of the language library allows one to add �elds dynamically:

var t = DTuple new;

// add field "name" to t

t ?name: "Carolina";

// prints "Carolina"

Out println: (t ?name);

// if uncommented the line below would produce a runtime error

//Out println: (t ?age);

t ?age: 1;

// prints 1

Out println: (t ?age);

// if uncommented the line below would produce a

// **compile-time** error because DTuple does not

// have an "age" method

Out println: (t age);

Here �elds name and age were dynamically added to object t.
Type Dyn is a virtual type used for dynamic typing. A variable of type Dyn can receive in assignments

an expression of any type. And an expression of type Dyn can be assigned to a variable of any type. All
message sends to an expression of type Dyn is considered correct by the compiler.

Expressions in Strings

In a string, a $ not preceded by a \ should be followed by a valid identi�er. The identi�er should be
a parameter, local variable, or �eld of the current object. The result is that the identi�er is converted
at runtime to a string (through the asString method) and concatenated to the string. Let us see an
example:

var name = "Johnson";

var n = 3;

var Float johnsonSalary = 7000.0F;

Out println: "Person name = $name, n = $n, salary = $johnsonSalary";

19

This code prints
Person name = Johnson, n = 3, salary = 7000.0

The last line is completely equivalent to

Out println: "Person name = " ++ name ++ ", n = " ++ n ++

", salary = " ++ johnsonSalary;

Generic Prototypes

Cyan also supports generic prototypes in a form similar to other languages but with some important
di�erences. First, a family of generic prototypes may share a single name but di�erent parameters. For
example, there is a single name Tuple that is used for tuples of any number of parameters (as many as
there are in the library):

var Tuple<String> aName;

var Tuple<String, Int> p;

aName f1: "Lívia"

// prints Lívia

Out println: (aName f1);

p f1: "Carol"

p f2: 1

// prints "name: Carol age: 1". Here + concatenates strings

Out println: "name: " ++ p f1 ++ " age: " ++ p f2;

Second, it is possible to used �eld names as parameters:

var Tuple<name, String> aName;

var Tuple<name, String, age, Int> p;

aName name: "Lívia"

// prints Lívia

Out println: (aName name);

p name: "Carol"

p age: 1

// prints "name: Carol age: 1"

Out println: "name: " ++ p name ++ " age: " ++ p age;

A generic prototype is considered di�erent from the prototype without parameters too:

object Box

public Any value

end

object Box<T>

public T value

end

...

var giftBox = Box new;

var intBox = Box<Int> new;

A unnamed literal tuple is de�ned between [. and .] as in

20

var p = [. "Lívia", 4 .];

Out println: (p f1), " age ", (p f2);

// or

var Tuple<String, Int> q;

q = [. "Lívia", 4 .];

A named literal tuple demands the name of the �elds:

var p = [. name = "Lívia", age = 4 .];

Out println: p name ++ " age " ++ p age;

// or

var Tuple<name, String, age, Int> q;

Anonymous Functions

Cyan supports statically-typed anonymous functions, which are called blocks in Smalltalk. An anonymous
function is a literal object that can access local variables and �elds. It is delimited by { and } and can
have parameters which should be put between (: and :) as in:

var b = { (: Int x :) ^x*x };

// prints 25

Out println: (b eval: 5);

Here { (: Int x:) ^x*x } is a function with one Int parameter, x. The return value of the function is
the expression following the symbol �^". The return value type may be omitted in the declaration � it
will be deduced by the compiler. This function takes a parameter and returns the square of it. A function
is an literal object with a method eval or eval: (if it has parameters as the one above). The statements
given in the function can be called by sending message eval or eval: to it, as in �b eval: 5".

A function can also access a local variable:

var y = 2;

var b = { (: Int x :) ^ x + y };

// prints 7

Out println: (b eval: 5);

As full objects, functions can be passed as parameters:

object Loop

func until: (Function<Boolean> test) do: (Function<Nil> b) {

b eval;

(test eval) ifTrue: { until: test do: b }

}

end

...

// prints "i = 0", "i = 1", ... without the "s

var i = 0;

Loop until: { ^ i < 10 } do: {

Out println: "i = $i";

++i

}

21

Here prototype Loop de�nes a method until:do: which takes as parameters a function that returns a
Boolean value (Function<Boolean>) and a function that returns nothing (Function<Nil>). The second
function is evaluated until the �rst function evaluated to false (and at least one time). Notation "i = $i"

is equivalent to ("i = " ++ i). Note that both functions passed as parameters to method until:do:

use the local variable i, which is a local variable.
Functions are useful to iterate over collections. For example,

var v = [1, 2, 3, 4, 5, 6];

// sum all elements of vector v

var sum = 0;

v foreach: { (: Int x :) sum = sum + x };

Method foreach: of the array v calls the function (as in �b eval: 5") for each of the array elements.
The sum of all elements is then put in variable sum.

Sometimes we do not want to change the value of a local variable in a function. In these cases, we
should use a constant instead of a variable or make a copy of the variable in the function.

var y = 2;

var b = { (: Int x :)

// make a copy of z

var z = y;

var sum = 0;

while z > 0 {

sum = sum + z;

--z;

};

^ x + sum;

};

(v eval: 5) println;

// make sure k is not changed

let k = 0;

var f = { (: Int n :)

var sum = 0;

var i = 0;

while i < k {

sum = sum + i;

++i;

};

^ n + sum;

};

There are methods that can play the role of statements if and while.

(n%2 == 0) ifTrue: { s = "even" } ifFalse: { s = "odd" };

var i = 0;

{^ i < 5 } whileTrue: {

Out println: i;

++i

}

22

Anonymous functions in Cyan cannot have return statements. Then the functions that are parameters to
methods ifTrue:ifFalse: and whileTrue: cannot have return statements.

Context Objects

Context objects are a generalization of functions and internal (or inner) classes. Besides that, they allow
a form of language-C-like safe pointers. The variables external to the function are made explicit in a
context object, freeing it from the context in which it is used. For example, consider the function

{ (: Int x :) sum = sum + x }

It cannot be reused because it uses external (to the function) variable sum and because it is a literal
object. Using context objects, the dependence of the function to this variable is made explicit:

// Function<Int, Nil> is a function that takes an Int

// as parameter and does not return anything

object Sum(Int &sum) extends Function<Int, Nil>

func eval: Int x {

sum = sum + x

}

end

...

// sum the elements of array v

var s = 0;

v foreach: Sum(s)

Context objects may have one or more parameters given between (and) after the object name. These
correspond to the variables that are external to the function (sum in this case). This context object
implements interface Function<Int, Nil> which represents functions that take an Int as a parameter
and returns nothing. Method eval: contains the same code as the original function. In line

v foreach: Sum(s)

expression �Sum(s)" creates at runtime an object of Sum in which sum represents the same variable as s.
When another object is assigned to sum in the context object, this same object is assigned to s. It is as
if sum and s were exactly the same variable.

Prototype Sum can be used in other methods making the code of eval: reusable. Reuse is not possible
with functions because they are literals. Context objects can be generic, making them even more useful:

object Sum<T>(T &sum) extends Function<T, Nil>

func eval: T x {

sum = sum + x

}

end

...

// sum the elements of array v

var v = [3.14, 2.71, 1.557];

var String s;

v foreach: Sum<String>(s);

Now context object Sum is used to sum the Double elements of vector v.

23

A context-object parameter not preceded by & mean that it is a copy parameter. That means changes
in the context-object parameter are not propagated to the real argument:

object Sum(Int sum) extends Function<Int, Nil>

func eval: Int x {

sum = sum + x

}

end

...

// do not sum the elements of array v

var s = 0;

v foreach: Sum(s);

assert s == 0;

Macro assert checks whether its argument returns true. It issues a warning if not. In this example, the
�nal value of s will be 0.

Parameters whose types are preceded by & are called reference parameters (see �rst example).
Context objects are a generalization of both functions and nested objects, a concept similar to nested

or inner classes. That is, a class declared inside other class that can access the �elds and method of it.
However, class B declared inside class A is not reusable with other classes. Class B will always be attached
to A. In Cyan, B may be implemented as a context object that may be attached to an object A (that play
the role of class A) or to any other prototype that has �elds of the types of the parameters of B. Besides
that, both referenced parameters and �eld parameters implement a kind of language-C like pointers. In
fact, it is as if the context-object parameter were a pointer to the real argument:

// C

int *sum;

int s = 0;

sum = &s;

*sum = *sum + 1;

// value of s was changed

printf("%d\n", s);

Grammar Methods

A method declared with selector s1:s2: can only be called through a message send s1: e1 s2: e2 in
which e1 and e2 are expressions. Grammar methods do not �x the selector of the message send. Using
operators of regular expressions a grammar method may specify that some keywords can be repeated, some
are optional, there can be one or more parameters to a given keyword, there are alternative keywords and
just one of them can be used.

Two methods that take a variable number of Int arguments are declared in prototype IntSet. Each
method is preceded by a metaobject annotation grammarMethod (to be seen later). This annotation has
a code of a Domain Speci�c Language between {* and *}.

package grammar

object IntSet

@grammarMethod{*

(add: (Int)+)

24

*}

func addMany: Array<Int> array {

for elem in array {

set add: elem

}

}

@grammarMethod{*

(addEach: Int)+

*}

func addManyKeywords: Array<Int> array {

for elem in array {

set add: elem

}

}

override

func asString -> String = set asArray asString;

let Set<Int> set = Set<Int>();

end

In the code of the �rst annotation, the + after (Int) indicates that after add: there may be one or more
Int arguments:

IntSet add: 0, 2, 4;

var odd = IntSet new;

odd add: 1, 3;

In the second method, addManyKeywords, the code in the annotation grammarMethod is di�erent. The
+ appears after the keyword addEach: with the Int parameter type. That means the keyword may be
repeated:

IntSet addEach: 0 addEach: 2 addEach: 4;

var odd = IntSet new;

odd addEach: 1 addEach: 3;

The annotated method, addMany and addManyKeywords in the example, should have a single parameter
that matches the code of the DSL of the annotation grammarMethod. The rules for calculating the type
of this parameter are given in Chapter 8.

A grammar method may use all of the regular expression operators: A+ matches one or more A�s, A*
matches zero or more A�s, A? matches A or nothing (A is optional), A | B matches A or B (but not both),
and A B matches A followed by B. The | operator may be used with types:

@grammarMethod{*

(add: (Int|String)+)

*}

func addUnion: Array<Int|String> array {

for elem in array {

set add: elem

25

}

}

Method addUnion: may receive as parameters a list of Ints and Strings.
Grammar methods are useful for implementing Domain Speci�c Languages (DSL). In fact, every

grammar method can be considered as implementing a DSL. The advantages of using grammar methods
for DSL are that the lexical and syntactical analysis and the building of the Abstract Syntax Tree are
automatically made by the compiler. The parsing is based on the grammar method. The AST of the
grammar message is referenced by the single parameter of the grammar method.

There is one problem left: grammar methods are de�ned using regular expression operators. Therefore
they can only parse regular languages. Some languages that are not regular can be de�ned by using more
than one grammar method.

Another example is a domain speci�c language for commanding a car.

package grammar

object Car

@grammarMethod{*

(do:

(on: | off: | left: | right: | move: Int)+

)

*}

func carPlay: Tuple< Any,

Array< Union<f1, Any, f2, Any, f3, Any, f4, Any, f5, Int> >

> t -> String {

var s = "";

for elem in t f2 {

type elem

case Any f1 { s = s ++ "car on " }

case Any f2 { s = s ++ "car off " }

case Any f3 { s = s ++ "car left " }

case Any f4 { s = s ++ "car right " }

case Int f5 { s = s ++ "car move($f5) " }

}

return s

}

end

The car obeys commands related to movement such as to turn left, turn right, move n centimeters, turn
on, and o�. The method does nothing but in a real setting it could, for example, send commands to a
real remote controlled car:

Car on:

left:

move: 100

right:;

Car on:

26

move: 200

left:

move: 50

off;

These two message would cause the call of the same grammar method, carPlay.
The uses of grammar methods are endless. They can de�ne optional parameters, methods with variable

number of parameters, and mainly DSL�s. One could de�ne methods for SQL, XML (at least part of
it!), parallel programming, graphical user interfaces, any small language. It takes minutes to implement
a small DSL, not hours.

Methods as Objects

Method functionForMethod: of prototype Any allows one to consider methods as objects.

object MySet

func add: String elem { }

...

end

Method functionForMethod: takes the name of a method and returns a anonymous function that rep-
resents the method. That is, when message eval or eval: is sent to the function, the method is called.

let Array<String> strArray = Array<String>();

let Function<String, Nil> addMethod = strArray functionForMethod: "add:1";

addMethod eval: "A";

addMethod eval: "B";

assert strArray size == 2;

Of course, addMethod could be passed as a parameter. That simulates the passing of a method as
parameter.

The ability of referring to a method is very useful in graphical user interfaces as the example below
shows.

object MenuItem

func onMouseClick: Function<Nil> b {

...

}

end

object Help

func show { ... }

...

end

object FileMenu

func open { ... }

end

var helpItem = MenuItem new;

helpItem onMouseClick: (Help functionForMethod: "show");

27

var openItem = MenuItem new;

openItem onMouseClick: (FileMenu functionForMethod: "open");

...

There may even exist a table containing methods as functions. Assume Test declares methods add10:,
twice:, and cube:, each one taking an Int and returning an Int.

let Test t = Test();

let IMap<String, Function<Int, Int>> methodMap = [

"add10" -> (t functionForMethod: "add10:1"),

"twice" -> (t functionForMethod: "twice:1"),

"cube" -> (t functionForMethod: "cube:1")

];

cast f = methodMap["twice"] {

assert f eval: 3 == 6;

}

cast f = methodMap["add10"] {

assert f eval: 3 == 13;

}

cast f = methodMap["cube"] {

assert f eval: 3 == 27;

}

The Exception Handling System

The exception handling system of Cyan was based on that of language Green [Gui13] [Gui06]. However,
it has important improvements when compared with the EHS of this last language. Both are completely
object-oriented, contrary to all systems of languages we know of. An exception is thrown by using
statement throw that takes an exception object as parameter. The type of the exception object should
be subprototype of CyException.

An exception is caught using a try-catch-finally statement.

var age Int;

try

age = In readInt;

if age < 0 {

throw ExceptionNegAge(age)

}

catch { (: ExceptionNegAge e :)

Out println: "Age ", e age, " is negative"

};

Here exception ExceptionNegAge is thrown by
throw ExceptionNegAge(age)

in which �ExceptionNegAge(age)" is a short form of �(ExceptionNegAge new: age)".
After a catch clause there should be an expression whose type declares at least one eval: method

that takes a parameter whose type is subprototype of CyException. In this example, the anonymous
function de�nes a method

func eval: ExceptionNegAge

28

Assume ExceptionNegAge inherits from CyException.

// '@init(age)' creates a constructor with

// parameter age

@init(age)

open

object ExceptionNegAge extends CyException

@property Int age

end

In this speci�c case, when the exception is thrown, the control is transferred to the function given
after catch. The error message is then printed.

This example in Java would be

int age;

try {

age = In.readInt();

if (age < 0)

throw new ExceptionNegAge(age);

} catch (ExceptionNegAge e) {

System.out.println("Age " + e.getAge() + " is negative");

}

There may be as many catch clauses as necessary, each one taking a single expression.

var Int age;

try

age = In readInt;

if age < 0 {

throw ExceptionNegAge(age);

}

else if age > 127 {

throw ExceptionTooOldAge(age)

}

catch { (: ExceptionNegAge e :)

Out println: "Age ", e age, " is negative"

}

catch { (: ExceptionTooOldAge e :)

Out println: "Age ", e age, " is out of limits"

};

The catch expression may result in an object with more than one eval: method, each of them
accepting one parameter whose type is subprototype of CyException. So the following code is legal.

var Int age;

try

age = In readInt;

if age < 0 {

throw ExceptionNegAge(age)

}

else if age > 127 {

throw ExceptionTooOldAge(age)

29

}

catch ExceptionCatchAge;

Consider that ExceptionCatchAge is

object ExceptionCatchAge

overload

func eval: ExceptionNegAge e {

Out println: "Age ", e age, " is negative"

}

func eval: ExceptionTooOldAge e {

Out println: "Age ", e age, " is out of limits"

}

end

This new implementation produces the same results as the previous one. When an exception E is thrown
in the function that reads the age, the runtime system starts a search in the object of the catch clause,
which is ExceptionCatchAge. It searches for an eval: method that can accept E as parameter in the
textual order in which the methods are declared. This is exactly as the search made after a message send.
The result is exactly the same as the code with two functions passed as parameters to two catch clauses.

The exception handling system of Cyan has several advantages over the traditional approach: exception
treatment can be reused, ExceptionCatchAge can be used in many places, exception treatment can
be organized in a hierarchy (ExceptionCatchAge can be inherited and some eval: methods can be
overridden. Other methods can be added), the EHS is integrated in the language (it is also object-
oriented), one can use metaobjects with the EHS, and there can be libraries of treatment code. For short,
all the power of object-oriented programming is brought to exception handling and treatment. Since the
Cyan EHS has all of the advantages of the EHS of Green, the reader can know more about its features in
an article by Guimarães [Gui04].

Metaobjects

Compile-time metaobjects are objects that can change the behavior of the program, add information to
it, or inspect the source code. A compile-time metaobject is activated by a metaobject annotation that
may appear before a prototype, a method, a �eld, a local variable, as a statement of a method, as an
expression, etc.

A metaobject annotation starts with @ followed by the metaobject name:

@checkStyle

object University

@log

func name -> String { return uName }

...

end

Metaobject checkStyle is activated at compile-time in the �rst line of this example. It is attached to
speci�c points of the compiler controlling the compilation of prototype University. It could check whether
the prototype name, the method names, the �eld names, and local variables follow some conventions for
identi�ers (prototype in lower case except the �rst letter, method keywords in lower case). The compiler
calls methods of the metaobject at some points of the compilation. It is as if the metaobject was added
to the compiler. Which method is called at which point is de�ned by the Meta-Object Protocol (MOP).

30

Metaobject log would add code to the start of the method to log how many times it was called. This
information would be available to other parts of the code. Again, a metaobject does not return anything.
It is an object. What happens is that a method of the metaobject, not speci�ed in the code, is called and
it returns something.

31

Chapter 2

The Compiler, Packages, and File

organization

This Chapter describes how the Cyan source �les of a program are organized and how the compiler should
be called. To explain that we need to de�ne some terms. We will call �program unit" a prototype decla-
ration or interface. Every source �le is a �compilation unit" and may contain one prototype declaration.
Then a compilation unit is a �source �le" containing one prototype.

A Cyan program is divided in compilation units, program units, and packages that keep the following
relationship:

(a) Keyword public may precede the program unit to indicate that it is public . A �public" program unit
of a package pp is visible in all compilation units that import pp. Future versions of the language will
allow visibility �package". A �package" program unit of a package pp is only visible in the compilation
units of pp. Every �le, with extension .cyan, declare exactly one program unit. Private program units
are not currently supported by Cyan.

object Person

String name

... // methods

end

If no quali�er is used before �object", then it is considered public.

The prototypes (which includes interfaces) de�ned in a source �le hide any prototypes imported in
the source �le. So it is legal to de�ne a prototype Test in a source �le and import another prototype
Test from a package.

(b) every �le should begin with a package declaration as �package ast" in

package ast

object Variable

var String name

var Type type

... // methods

end

The prototype declared in that �le will belong to the package �ast";

32

(c) a package is composed by program units spread in one or more source �les. The name of a package
can be composed by identi�ers separated by �.". All the source �les of a package should be in the
same directory. The source �les of a package id1.id2. ... idn should be in a directory idn which is
a sub-directory of id(n-1), and so on. There may be packages id1.id2 and id1.id3 that share a
directory id1. Although a directory is shared, the packages are unrelated to each other. In a package
id1.id2. ... idn, each idi should start with a lower-case letter.

In the directory of a package the compiler and metaobjects may store �les used by the compiler, the
Cyan Metaobject Prototocol, and possibly some tools such as the IDE. These �les may keep information
on the source �les and they link past and future compilations. This mechanism is called �link past-future
(LPF)�. See Section �Special Package Directories� in the Thesis �The Cyan Language Metaobject Protocol�
available in www.cyan-lang.org.

The information stored in the LPF �les can be used to catch errors at compile time that would
otherwise go undetected or to improve current error messages. Based on the information, the compiler
could check:

(a) if the textual order of declaration of overloaded methods1 was changed;

(b) if methods were added to an overloaded method;

(c) if a compilation unit (source code) changed between compilations in such a way that the changes were
prohibit by a metaobject used in the previous version of the compilation unit. This is a research topic
(await!);

(d) the introduction of a new local variable may change the semantics of a method that accessed a �eld
with that same name.

The �info �les" could also store information collected at runtime. The compiler could insert code that
checks, for example, if the numbers stored in Int variables are dangerously near the limits allowed by this
type. In the next compilation the programmer would receive a warning that Int should be changed to a
library prototype �BigInt" or long.

A package is a collection of prototype declarations and interfaces. Every Cyan prototype declared
as object ObjectName ... end must be in a �le called �ObjectName.cyan". Preceding the object
declaration there must appear a package declaration of the form package packageName as in the example
given above.

Program units de�ned in a package packB can be used in a source �le of a package packA using the
import declaration:

package packA

import packB

object Program

func run {

...

}

end

The public program units of package packB are visible in the whole source �le. A program unit declared
in this source �le may have the same name as an imported program unit. The local one takes precedence.
';' is optional after the package name and the import list.

1Methods with the same name but di�erent parameter types in each keyword.

33

More than one package may be imported; that is, the word import may be followed by a list of package
names separated by commas. It is legal to import two packages that de�ne two resources (currently, only
prototypes) with the same name. However, to use one identi�er (program unit) imported from two or
more packages it is necessary to pre�x it with the package name. See the example below.

package pA

import pB, pC, pD

object Main

func doSomething {

var pB.Person p1; // Person is an object in both packages

var pD.Person p2;

...

}

end

This same rule applies when package pA and pB de�ne resources with the same name.
An object or interface can be used in a �le without importing the package in which it was de�ned.

But in this case the identi�er should be pre�xed by the package name:
var v = ast.Variable;

var gui.Window window;

There is a package called cyan.lang which is imported automatically by every �le. This package
de�nes all the basic types, arrays, prototype System, function objects, tuples, unions, etc. See Chapter 7.

A program is described by a �le with extension �pyan". This �le contains code of a Domain Speci�c
Language called Pyan (Project cYAN) whose grammar follows.

Program ::= { ImportList } [CTMOCallList] �program� [AtFolder]
[�main� QualifId]
{ { ImportList } CTMOCallList Package }

ImportList ::= �import� QualifId AtFolder
Package ::= �package� QualifId [AtFolder]
AtFolder ::= �at� FileName
CTMOCallList ::= { CTMOCall }
CTMOCall ::= �@� Id

[�(� ExprLiteral [�,� ExprLiteral] �)�]
[LeftCharString TEXT RightCharString]

QualifId ::= { Id �.� } Id

Some itens are not described in the grammar: LeftCharString, QualifId, RightCharString, TEXT,
and FileName. LeftCharString is any sequence of the symbols

= ! ? $ % & * - + ^ ~ / : . \ | ([{ <

Note that >,),], and } are missing from this list. RightCharString is any sequence of the same symbols
of LeftCharString but with >,),], and } replacing <, (, [, and {, respectively. The compiler will check
if the closing RightCharString of a LeftCharString is the inverse of it.

34

QualifId is a sequence of one or more Cyan identi�ers separated by �.�. An identi�er is a sequence of
letters, digits, underscore starting with a letter or underscore. The underscore alone is not considered an
identi�er. An identi�er ending with two or more underscores is illegal ("name__" is not valid). TEXT
is any text. It may include any character but end-of-�le. FileName is a string with a �le name. The
character �\� or �/� is used to separate directories (folders). Any one of these characters may be used.
�\x� is not considered a escape character for any x. Then a FileName can be

"C:\Cyan Material\lib\cyan\lang"

As an example, a program in Pyan could be2

import styles.default at "C:\Cyan\my"

@checkStyle

@option(addQualifier)

program at "C:\Cyan\example01"

main main.Program

package main at "C:\Dropbox\Cyan\cyanTests\general-0002\main"

@option(no_dynamic)

package bank at "C:\Cyan\tests\bank"

package cyan.util at "C:\Cyan\cyan\util"

package account

package database at "database\util"

Keyword program starts the project. Optionally �at� speci�es the path of the program. If not speci�ed,
the default project directory is that in which the project �le is. After it keyword main may appear. It
speci�es the full path of the main prototype; that is, its package �.� its name. The execution starts in
method run of this prototype. If not speci�ed, execution will start at prototype Program of package main.
After program or main (if present), there should appear one or more packages descriptions.

A package description is keyword package, the package name, and optionally �at� followed by a string
with the package directory. If this directory is not absolute, it is considered to be relative to the project
directory. All source �les of a package should be in the same directory. In the above example, package
database should be in directory

C:\Cyan\example01\database

The compiler considers that the package is in a sub-directory whose name is the package name with �.�
replaced by / or \ (it depends on the separator the operating system uses). In Windows, a package
cyan.util should be in a directory (folder) �cyan\util�. This directory is the one speci�ed by �at�

As an example, package cyan.util is in directory
C:\Cyan\cyan\util

In the above Pyan �le, no directory is speci�ed for package account. Therefore it is in the directory of
the program in a sub-directory with the name of the package: C:\Cyan\example01\account

The program and the packages may be preceded by zero or more metaobject annotations. These are
of the for @meta in which meta is the metaobject name. These calls may have parameters and an attached
text (as @meta(param){* text *}). See the thesis on the Cyan MOP in the Cyan site for more details.
In particular, the compiler options should be parameters of a metaobject options.

ImportList is a list of packages whose metaobjects are imported by this project �le. The package
should be in the directory that follows �at�. For example, package �styles.default� should be in
directory

C:\Cyan\my\styles\default

2This could be a program in Pyan. But since metaobject option is not yet implemented, it is not.

35

Only the metaobjects are imported. These metaobjects may be used in this �le. Then checkStyle could
be in package �styles.default�. Or it could be in the cyan.lang directory, which is always imported.

In a project �le, the compiler considers that every directory of the program directory corresponds to a
package, including sub-directories. The project �le may use the package keyword to include one package
of the program directory, but that is optional. As an example, suppose �le �p.pyan� is in directory

C:\Dropbox\Cyan\cyanTests\master

which has the following directory tree:

C:\Dropbox\Cyan\cyanTests\master

C:\Dropbox\Cyan\cyanTests\master\generic

C:\Dropbox\Cyan\cyanTests\master\generic\ga

C:\Dropbox\Cyan\cyanTests\master\main

C:\Dropbox\Cyan\cyanTests\master\shape

File �p.pyan� has the contents

program

@checkStyle

package shape

Since there is no �at� after �program�, the compiler considers that the program directory is
C:\Dropbox\Cyan\cyanTests\master

The compiler consider that the program has the packages generic, generic.ga, main, and shape. It
was necessary to declare explicitly package shape in �p.pyan� because there is a metaobject annotation
preceding it.

Appendix A shows how the compiler should be called, the compiler options, etc.

2.1 Future Enhancements

In the directory of a package there should be zero or more Cyan source �les or source �les of Domain
Speci�c Languages. A �le name �Name.cyan� should contain a public or package prototype Name. There
are special rules for names of source �les with generic prototypes � see Chapter 6. A �le with extension
�.syan� is a script �le of a language called ScriptCyan. This language has a slightly di�erent grammar
from Cyan. The source �le does not start with the package declaration. It may start with import
declarations. After that there are two options:

(a) statements that usually are inside a method;

(b) methods, shared �elds, and �elds that usually are inside a prototype declaration. In this case there
should be at least one method and the �rst statement after the import declarations (if any) should be
a method. Since there is no �object� keyword in the source, the user will have the impression that
the methods are procedures and functions (not related to a prototype).

In case (a) the compiler will add a prototype declaration, import package script, and will insert the
statements in a method run: Array<String> args. Of course, parameter args can be used inside
the statements. As an example, suppose the code below is in a �le called �PrintArgs.syan� of a
directory �C:\Cyan\tests\myTest\argsTest�. The project �le informs that the program directory is
�C:\Cyan\tests�. Therefore the compiler deduces that the package name is �myTest.argsTest�. The
compiler will transform code

36

args foreach: { (: String s :)

s println

};

into the code

package myTest.argsTest

import script;

open

object PrintArgs extends ScriptCyan

func run: Array<String> args {

args foreach: { (: String s :)

s println

};

}

end

Package script will contain several prototypes for scripting. It has not been de�ned yet.
In case (b), the compiler will insert the methods, shared �elds, and �elds into a prototype that has

the same name and package as in case (a).
It is expected that prototype ScriptCyan declares several methods to make it easy to build script

�les. These methods are not yet de�ned.
The �le name of a ScriptCyan source �le may contain a symbol �-� followed by �s� and a prototype

name possibly preceded by a package:
PrintArgs-s-mypack-MyScript.syan

In this case prototype PrintArgs will have �mypack.MyScript� as superprototype. mypack should be a
package of the project. Language ScriptCyan is not supported by the current Cyan compiler yet.

37

Chapter 3

Basic Elements

This chapter describes some basic facts on Cyan such as identi�ers, number literals, strings, operators,
and statements (assignment, loops, etc). First of all, the program execution starts in a method called run

(without parameters or return value) or
run: Array<String>

of a prototype speci�ed at compile-time through the �.pyan� �le (the project �le). Method run cannot
be a true overloaded method (Section 4.14) or be inherited. Type Array<String> is an array of strings.
The arguments to run are those passed to the program when it is called. In this text (all of it) we usually
call Program the prototype in which the program execution starts. But the name can be anyone. The
program that follows prints all arguments passed to it when it is called.

package main

object Program

func run: Array<String> args {

args foreach: { (: String elem :)

Out println: elem

}

}

end

3.1 Identi�ers

Identi�ers should be composed by letters, numbers, and underscore and they should start with a letter
or underscore. However, an identi�er without letters or numbers, only with underscores, is not valid. An
identi�er cannot end with two underscores too (like �one__� or �one___�). Upper and lower case letters
are considered di�erent.

var Int _one;

var Long one000;

var Float ___0;

It is expected that the compiler issues a warning if two identi�ers visible in the same scope di�er only in
the case of the letters as �one� and �One�.

There is a restriction on identi�ers in Cyan: prototype names should start with an upper-case letter
and variables (local variables, parameters, and �elds) names should start with a lower-case letter or
underscore. For parameters, both the name and its type (but not both) are optional:

38

func with: Int do: action { ... }

The parameter of with: does not have a name and therefore it cannot be referenced inside this method.
Usually parameters of interfaces (Section 4.13) do not have names. The parameter of do: has name
action but it does not have a type. It is assumed its type is Dyn, the dynamic type. No message sends to
expressions that have type Dyn are checked by the compiler. And all assignments to and from expressions
of this type are not checked too.

3.2 Comments

Comments are parts of the text ignored by the compiler. Cyan supports two kinds of comments:

� anything between /* and */. Nested comments are allowed. That is, the comment below ends at
line 3.

1 /* this is a /* nested

2 comment */

3 that ends here */

� anything after // till the end of the line;

A comment may appear anywhere (maybe this will change). A comment is replaced by the compiler by
a single space.

var value = 1/* does value holds 10? */0;

This code is the same as var value = 1 0 and therefore it causes a compile-time error instead of being
an assignment of 10 to value.

3.3 Keywords

Cyan uses the following keywords:

abstract char enum implements long override void

Any const extends import macro package stackalloc volatile

Array default false in match private String when

Boolean delegate final Int protected switch where

boolean Double Float int mixin public true while

break double float interface mutable return type with

Byte Dyn for it Nil self val

byte each func let null shared var

case else heapalloc local object Short virtual

Char end if Long of short Void

Each of them should be preceded by space, the beginning of a line, or '(' except Nil, Boolean, Char, Byte,
Int, Short, Long, Float, Double, String, self, true, and false. Each of them should be followed by
space, end of line, end of �le, or ')'. A space is a character that makes method Character.isWhiteSpace(char
ch) of Java return true.

Note that a lot of reserved words are not currently used in the language.

39

3.4 Assignments

An assignment is made with �=� as in
x = expr;

After this statement is executed, variable x refer to the object that resulted in the evaluation of expr
at runtime. The compile-time type of expr should be a subtype of the compile-time type of x. See
Section 4.17 for a de�nition of subtype.

A variable may be declared and assigned a value:
var x = expr;

The type of x will be the compile-time type of expr. Both the type of the variable and the expression
can be supplied:

var Int x = 100;

3.5 Basic Types

Cyan has one basic type, starting with an upper case letter, for each of the basic types of Java: Byte,
Short, Int, Long, Float, Double, Char, and Boolean. Besides that, there are prototypes Nil and String,
also considered basic types.

Unless said otherwise, Cyan literals of the basic types are de�ned as those of Java. In particular,
the numeric types have the same ranges as the corresponding Java types. Byte, Short, and Long literals
should end with B or Byte, S or Short, and L or Long, respectively as in

var aByte = 7B;

var aShort = 29Short;

var aLong = 1234567L;

var bLong = 37Long;

var anInt = 223Int;

Int literals may optionally end with I or Int. All basic types but Nil inherit from Any. Therefore
there are not two separate hierarchies for basic and regular types. All types obey �reference� semantics.
Conceptually, every object is allocated in the heap. However, objects of basic types such as 1, 3.1415,
and true may be allocated in the stack.

Integral literal numbers without a post�xed letter are considered as having type Int. Numbers with
a dot such as 10.0 as considered as Double�s. Float literals can end with F or Float. Double literals
should end with D or Double. There is no automatic conversion between types:

var Int age;

var Byte byte0;

var Float height;

var Double width;

// ok

age = 21;

// compile-time error, 0 is Int

byte0 = 0;

// ok

byte0 = 0B;

// ok

height = 1.65F;

40

// compile-time error

height = 1;

// compile-time error, 1.65 is Double

height = 1.65;

// ok

height = 1F;

width = 1.65;

width = 1.65Double;

Underscores can be used to separate long numbers as in
1_000_000

Two or more underscores cannot appear together as in
1__0

The �rst symbol cannot be an underscore: _1_000 would be considered an identi�er by the compiler.
The Boolean type has two enumerated constants, false and true, with false < true. When false

is cast to an Int, the value returned is 0. true is cast to 1. Char literals are given between ' as in
'A' '#' '\n'

Prototype Nil has a special status in the language. It is the only prototype that does not inherit
from Any, the superprototype of anyone (this will be explained latter). Nil is not supertype or subtype of
anything. Then to a variable of type Nil can only be assigned prototype Nil and it can only be assigned
to a variable or parameter of type Nil or Dyn. Of course, Nil cannot be inherited from a prototype.

Methods that do not declare a return type, as
func set: Int newValue { ... }

in fact return a value of type Nil. Therefore this declaration is equivalent to
func set: Int newValue -> Nil { ... }

Any method that has Nil as the return type always return Nil at the end of its execution. The return

statement (explained later) is required in methods that return anything other than Nil.
Since Nil does not have subtypes, a method returning Nil can be implemented as not returning a

value. After all, it always return the same value.
Prototype String represents a immutable string. It has several methods such as at: [] (for indexing)

and == (equality). String literals can be expressed in three forms: enclosed by " as in C/C++/Java,
enclosed by """, and starting with #.

A literal string delimited by " has the same syntax as in C/C++/Java: "Hi, this is a string",
"um", "ended by newline\n". Cyan strings and literal characters support the same escape characters as
Java. There is a literal string that spans throught multiple lines. It starts with three characters " as in
the example:

var s = """

This is a text

that uses

more than one

line""";

s println;

A special multi-line literal string starts with |""", the | character before the quotes. Both | and all
characters before it are eliminated. Every | should be in a di�erent line, although there may be empty
lines between two lines. All | characters should be in the same column. All white spaces before the closing
""" are removed.1 The result is a multi-line string in which | delimited the start of each line.

1ch is a white space if the Java method Character.isWhitespace(ch) returns true.

41

var String s;

s = |"""

|first5

|second5

""";

s = |""" |first3

|second3

""";

s = |"""

|first2

|second2

""";

s = |"""

|first4

|second4

""";

s = |"""

|first12

|second12

""";

s = |"""|first13

|second13""";

A literal string can also be represented by �symbols�. A symbol starts with # followed, without spaces,
by letters, dot, digits, underscore, and any number of :�s, as in these examples:

#f #age #age:

#123 #_0 #field001

#foreach:do: #main.package

A single-quote literal string may start with n" or N" to disable any escape character inside the string:
var fileName = n"D:\User\Carol\My Texts\text01"

In this case �\t� do not mean the tab character. Of course, this kind of string cannot contain the character
'"'. Three quoted literal strings disable escape characters by default. Then """\n""" has two characters.

The value of a variable can be inserted in a literal string at runtime by preceding its name, inside the
literal string, by $. This does not work with symbols because they cannot contain $.

var n = 5, k = n*n;

assert "n = $n, k = $k" == "n = 5, k = 25";

42

var s = """

The values of n and k are

$n

$k

""";

s println;

Method eq: of String returns true if the argument and self have the same contents. It always give
the same result as method ==.

var s = "cyan";

var p = s;

assert p == s;

assert "cyan" == """cyan""";

assert #cyan == "cyan" && """cyan""" == #cyan;

assert s == "cyan" && #cyan == s && "cyan" == s;

assert p == s && p eq: s;

assert "\\n" == """\n""";

assert p eq: s;

assert "cyan" eq: """cyan""";

assert #cyan eq: "cyan" && """cyan""" eq: #cyan;

assert s eq: "cyan" && #cyan eq: s && "cyan" eq: s;

assert p eq: s && s eq: p;

Method neq: returns the negation of the result of eq:. For basic type objects, it always return the
same value as !=.

assert "cyan" != #green;

assert """Cyan""" != "green";

assert ("cyan" != #green) == ("""Cyan""" != "green");

assert (#green != """cyan""") == (#green eq: """cyan""");

Types Byte, Short, Int, Long, Float, and Double support almost the same set of arithmetical and
logical operators as the corresponding types of Java. The binary or operator in Cyan is ||| instead of |
because the later is used exclusively for union types.

We show just the interface of Int. Types Float and Double do not support methods &, |, ~|, and
!. All basic types are automatically included in every Cyan source code because they belong to package
cyan.lang.

package cyan.lang

// method bodies elided

final object Int

func eq: (Dyn other) -> Boolean

func neq: (Dyn other) -> Boolean

func + (Int other) -> Int

func - (Int other) -> Int

func * (Int other) -> Int

func / (Int other) -> Int

43

func % (Int other) -> Int

func < (Int other) -> Boolean

func <= (Int other) -> Boolean

func > (Int other) -> Boolean

func >= (Int other) -> Boolean

func pred -> Int

func succ -> Int

func odd -> Boolean

func even -> Boolean

func prime -> Boolean

func isMultiple: Int n -> Boolean

func maxValue -> Int

func minValue -> Int

func == (Dyn other) -> Boolean

func != (Dyn other) -> Boolean

func <=> (Int other) -> Int

func .. (Int theEnd) -> Interval<Int>

func ..< (Int theEnd) -> Interval<Int>

func - -> Int

func + -> Int

func & (Int other) -> Int

func ||| (Int other) -> Int

func ~| (Int other) -> Int

func ~ -> Int

func <.< (Int other) -> Int

func >.> (Int other) -> Int

func >.>> (Int other) -> Int

func |> Function<Int, Int> f -> Int

func asByte -> Byte

func asShort -> Short

func asLong -> Long

func asFloat -> Float

func asDouble -> Double

func asChar -> Char

func asBoolean -> Boolean

func asInt -> Int

func asString -> String

func to: (Int max) do: (Function<Int, Nil> b)

func to: (Int max) into: (InjectObject<Int> injectTo)

func times: Function<Nil> b

func repeat: Function<Int, Nil> b

func to: (Int max)

func in: (Iterable<Int> container) -> Boolean

func between: Interval<Int> inter -> Boolean

func hashCode -> Int

func defaultValue -> Int

end

44

...

abstract object InjectObject<T> extends Function<T, Nil>

override

abstract func eval: T

abstract func result -> T

end

interface Iterator<T>

func hasNext -> Boolean

func next -> T

end

Some of the basic types have have methods to simulate pipes:

(5 |> Sqr |> { (: Int elem :) ^2*elem }) print;

Assuming that Sqr extends Function<Int, Int> and calculates the square of its parameter, this command
will print 50. It is equivalent to:

({ (: Int elem :) ^2*elem } eval: (Sqr eval: 5)) print;

Prototype Boolean uses => as an if command:

i < 3 => { "baby" println };

i > 19 => { "adult" println };

This method takes a literal function as argument.
Variables of types Byte, Char, Short, Int, and Long may be preceded by ++ or �. When v is a private

�eld or a local variable, the compiler will replace ++v by
(v = v + 1)

Idem for �.
A prototype may declare an operator [] and use it just like an array (see Section 4.10).
Each basic prototype T but Float, Double, and Nil has an in: method that accepts an object that

implements Iterable<T> as parameter. This call method foreach: of this parameter comparing each
element with self. It returns true if there is an element equal to self. It can be used as in

var Char ch;

ch = In readChar;

(ch in: ['a', 'e', 'i', 'o', 'u']) ifTrue: {

Out println: "$ch is a vowel"

};

var Array<Int> intArray = [0, 1, 2, 3];

var List<Int> intList = List<Int> new;

intList add: 0;

intList add: 1;

var Int n = In readInt;

if n in: intArray || n in: intList {

Out println: "$n is already in the lists"

}

45

The parameter to in: can be any object that implements Iterable of the correct type. In particular, all
arrays whose elements implement this interface.

Intervals implement the Iterable<T> interface. Then we can write

var Char ch;

ch = In readChar;

(ch in: 'a'..'z') ifTrue: {

Out println: "$ch is a lower case letter"

};

var age = In readInt;

if age in: 0..2 { Out println: "baby" }

else if age in: 3..12 {

Out println: "child"

}

else if age in: 13..19 {

Out println: "teenager"

}

else {

Out println: "adult"

}

&& and || are not methods of prototype Boolean. They are instead operators of the language and use
the regular short-circuit evaluation. That is, aa && bb is false if aa is false. In this case bb is not even
evaluated. So the if statement below is safe.

if index < array size && array[index] == x {

Out println: "found $x"

}

Prototype Boolean has a logical not, !.

if ! ok { Out println: "fail" }

if age < 0 || age > 127 { Out println: "out of limits" }

Method ++ de�ned in Any, the superprototype of every one but Nil, concatenate the string of the
receiver plus the string of the argument:

assert 1 ++ 2 == "12" &&

1 ++ 'A' == "1A" &&

0 ++ "1" == "0" ++ 1;

Prototype String support the in: method:

func daysMonth: (String month, Int year) -> Int {

if month in: ["jan", "mar", "may", "jul", "aug", "oct", "dec"] {

return 31

}

else if month in: ["apr", "jun", "sep", "nov"] {

return 30

}

else if month == "fev" {

if leapYear: year { return 29 } else { return 28 }

}

46

||

~||

&&

=> ==>

!

== <= < > >= != === !== <=> ~=

non-unary message send

|>

++ -- (binary)

.. ..<

+ -

/ * %

||| ~| &

<.< >.> >.>>

.* .+ .%

unary message send

+ - ! ~ (unary)

Figure 3.1: Precedence order from the lower (top) to the higher (bottom)

else {

return -1

}

}

3.6 Operator and Keyword Precedence

Cyan has special precedence rules for methods and operators whose names are the symbols given in
Figure 3.1. The precedence is applied to every message send that uses some of these symbols. So a
message send

x + 1 < y + 2 will be considered as if it was
(x + 1) < (y + 2)

Then when we write

if age < 0 || age > 127 { Out println: "out of limits" }

if index < array size && array[index] == x {

Out println: "found $x"

}

the compiler interprets this as

if (age < 0) || (age > 127) { Out println: "out of limits" }

if (index < array size) && (array[index] == x) {

Out println: "found #x"

}

In a message send, unary selectors have precedence over multiple keywords. Then
obj a: array size

is the same as

47

obj a: (array size)

Every operator but +, -, *, /, %, ~, !, .., and ..< should be preceded and followed by a white space.
That is, all binary operators but the arithmetical ones (+, -, *, /, %) should be surrounded by white
spaces. Note that not all operators are used by the Cyan basic types (.*, for example).

Unary methods associate from left to right. Then
var String name = club members first name;

is the same as:
var String name = ((club members) first) name;

The method names of the last line of the Figure 3.1 are unary. All other methods and operators are
binary and left associative. That means a code

ok = i >= 0 && i < size && v[i] == x;

is interpreted as
(ok = i >= 0 && i < size) && v[i] == x;

This is true even when Boolean is not the type of the receiver.
The compiler does not check the type of the receiver in order to discover how many parameters each

keyword should use. When the compiler �nds something like

obj s1: 1 s2: 1, 2 s3: 1, 2, 3

it considers that the method name is s1:s2:s3 and that si takes i parameters. This conclusion is taken
without consulting the type of obj. Therefore, code

// get: takes two parameters

var k = matrix get: (anArray at: 0), 1;

cannot be written

var k = matrix get: anArray at: 0, 1;

This would mean that the method to be called is named get:at: and that get: receives one parameter,
anArray, and at: receives two arguments, 0 and 1. To know the reason of this rule, see Chapter 5.

3.7 Loops, Ifs, and other Statements

Currently each message send, assignment, and local variable declaration should end with a semicolon
(�;�). However we expect to make the semicolon optional as soon as possible, at least in some cases. The
semicolon is optional for all statements such as if, while, for, and type-case.

Decision and loop statements that not use the return statement can be implemented using message
sends to Boolean objects and to function objects. There are four methods of prototype Boolean used as
decision statements: ifTrue:, ifFalse:, ifTrue:ifFalse:, and ifFalse:ifTrue:.

(n%2 == 0) ifTrue: { s = "even" };

(n%2 != 0) ifFalse: { s = "even" };

(n%2 == 0) ifTrue: { s = "even" } ifFalse: { s = "odd" } ;

(n%2 != 0) ifFalse: { s = "even" } ifTrue: { s = "odd" } ;

They are self explanatory. Besides that, there are methods t:f: and f:t: in Boolean that return an
expression or another according to the receiver:

var String s;

var Any any = (n%2 == 0) t: "even" f: "odd";

48

type any

case String s2 {

s = s2

}

any = (n%2 != 0) f: "even" t: "odd";

type any

case String s2 {

s = s2

}

If the expression is true, the expression that is parameter to t: is returned. Otherwise it is returned the
parameter to f:. Since the return type of methods t:f: and f:t: is Any, the example uses command
type-case to cast any to String.

As a future improvement, a metaobject checkTF will check whether the arguments of both keywords
have the same type2 (both are strings in this case). This metaobject will also cast the value returned
to the correct type, String in the example. The return type is Any. That is why it is necessary to use
command type-case in the example.

Note that an if statement that needs a return cannot be implemented using message sends:

(i == 0) ifTrue: {

return false; // compile-time error.

};

The return statement cannot appear inside a function.
Function objects that return a Boolean value have a whileTrue: and a whileFalse: methods.

var i = 0;

{^ i < 5 } whileTrue: {

Out println: i;

++i

}

var i = 0;

{^ i >= 5 } whileFalse: {

Out println: i;

++i

}

Of course, whileTrue calls the function passed as parameter while the function that receives the message
is true. whileFalse calls while the receiver is false.

The if and the while statements were added to the language to make programming easier. The
syntax of these statements are shown in this example:

if n%2 == 0 {

s = "even"

}

else { // the else part is optional

s = "odd"

}

var i = 0;

while i < 5 {

2For the time being, one cannot be subtype of another.

49

Out println: i;

++i

}

The } that closes a while statement should be either in the same line as keyword while or in the same
column as it. There should be no semicolon after the closing }.

There is a repeat-until statement that executes its statements until the until expression evaluates
to true.

var Int sum = 0;

var Int n = 1;

repeat

sum = sum + n;

++n;

until n >= 4;

assert sum == 6;

Cascaded if�s are possible:

if age < 3 {

s = "baby"

}

else if age <= 12 {

s = "child"

}

else if age <= 19 {

s = "teenager"

}

else {

s = "adult"

}

Unlike the languages of the C family, the parentheses around the boolean expression are not necessary
and the { and } are required. The ';' after if and while statements are not necessary. There are several
restriction on the formatting of if statements:

(a) the column of the { that follows keyword if should be in a column greater or equal than the column
of the if keyword;

(b) the column of the �rst symbol of the Boolean if expression should be in a column greater or equal
than the column of the if keyword;

(c) if the } that closes the statement list that follows an if is in line lineR and column columnR, than
lineR should be equal to the line of the if or the line of the previous else or columnR should be
equal to the column of the if or the column of the previous else;

(d) else should be in the same line or column of the previous else or if keywords;

(e) the } that closes the else statements should be in the same line as the else or in the same column;

(f) the } that closes an if or else may be in the same line as the next else:

50

if 0 < 1 {

"ok" println;

} else if 1 < 2 {

"ok" println;

} else {

"not ok" println;

}

In this case, the } that closes the next else or if should be in the same column as the previous }.

These rules assert that if statements are almost always clearly formatted. See the examples with
formatting errors.

if 0 < 1 { }

else if 0 < 4 {

}

else if 0 < 1 {

} // '}' is not in the same column or line as 'else'

if 0 < 1 { }

else if 0 < 4 {

}

else if 0 < 1 {

} // '}' should be in the same line or column as 'if'

if 0 < 1 { } else

if 0 < 5 { }

else

if 0 < 4 { } else if

// if expression in a column smaller than the if column

0 < 1 { }

else {

};

if 0 < 1 { } else

if 0 < 5 { }

else

if 0 < 4 { } else if

0 < 1 {

}

// 'else' must be in the same line or column

// as the previous 'if'

else {

};

51

if 0 < 1 { } else

if 0 < 5 { }

else

if 0 < 4 { } else if

0 < 1 {

}

else {

// this '{' closes an 'else' statement and should be

// in the same line or column as it

};

if 0 < 1 { } else

if 0 < 5 {

// the '}' that closes an 'if' should be in the same

// line or column as it

}

else { }

if 0 < 5 { 0 println }

// 'else' must be in the same line or column as the previous 'if'

else { 1 println }

if 0 < 5 { 0 println

}

// else should be in the same column as '{'

else { 1 println }

These examples have no errors:

if 0 < 6 { } else { }

if 0 < 1 { }

else if 0 < 4 {

}

else if 0 < 1 {

}

if 0 < 1 { }

else

if 0 < 4

{

}

else if 0 < 1 {

}

52

if 0 < 1 { } else

if 0 < 5 { }

else { }

if 0 < 1 { } else

if 0 < 5 { }

else

if 0 < 4 { } else if

0 < 1 {

}

else {

};

if 0 < 1 { } else

if 0 < 5 { }

else { }

if 0 < 5 { 0 println }

else { 1 println }

if 0 < 1 { } else if 0 < 5 { }

else { }

if 0 < 1 {

} else if 1 < 2 {

} else {

}

Statement for can be used to iterate over any object that implements a method

iterator -> Iterator<T>

Its syntax is

for [Type] elem in list {

// statements

}

The Type of elem is optional. elem will assume the elements given by method next of the iterator returned
by method iterator of list. When method hasNext of the iterator returns false the loop ends. The
Type should be exactly the type of the elements returned by the iterator. It cannot be a supertype of
that type.

This command can be used as in

for elem in [2, 3, 5, 7] {

"$elem is prime" println

}

for ch in 'a'..'z' {

("letter " ++ ch) println;

}

53

var sum = 0;

for i in 0..< 10 {

sum = sum + i

}

sum println;

sum = 0;

for i in 1..10 {

for j in 1..10 {

sum = sum + i*j;

}

}

The } that closes a for statement should be either in the same line as keyword for or in the same
column as it. There should be no semicolon after the closing }.

elem should not have been previously declared as a local variable or parameter. elem is alive only
inside the statements of this for. Its type is deduced by the compiler if it is not given.

Since variable elem is only alive inside the for command, it can be reused:

for elem in [2, 3, 5, 7] {

"$elem is prime" println

}

for elem in 0..< 10 {

elem println;

}

There are other kinds of loop statements, which are supplied as message sends:

i = 0;

// the function is called forever, it "never" stops

{

++i;

Out println: i

} loop;

Prototype Int also de�nes some methods that act like loop statements:

// this code prints numbers 0 1 2

var sum = 0;

var i = 0;

3 repeat: { (: Int n :)

sum = sum + n

};

assert sum == 3;

// this code prints numbers 0 1 2

3 repeat: { (: Int j :)

Out println: j

};

var aFunction = { (: Int j :) Out println: j };

// this code prints numbers 0 1 2

3 repeat: aFunction;

// prints 0 1 2

54

i = 0;

1 to: 3 do: { (: Int n :)

n println;

};

// prints 0 1 2

0 to: 2 do: { (: Int j :)

Out println: j

};

Prototype Char also has equivalent repeat: and to:do: methods:

'a' to: 'z' do: { (: Char ch :)

Out println: ch

};

3.8 Arrays

Array is a generic prototype that cannot be inherited for sake of e�ciency. It has methods that mirror
those of class ArrayList of Java:

package cyan.lang

final object Array<T> implements Iterable<T>

func == (Dyn other) -> Boolean

func != (Dyn other) -> Boolean

func add: (T elem)

func add: (Int i, T elem)

func clear

func isEmpty -> Boolean

func remove: (Int i)

func [] at: Int index -> T

func [] at: Int index put: (T elem)

func last -> T

func asString: (Int ident) -> String

func slice: (Interval<Int> interval) -> Array<T>

func concat: Array<T> other -> Array<T>

func size -> Int

func foreach: Function<T, Nil> b

func filter: Function<T, Boolean> f -> Array<T>

func filter: Function<T, Boolean> f foreach: Function<T, Nil> b

func map: Function<T, T> f -> Array<T>

func iterator -> Iterator<T>

func contains: T elem -> Boolean

func indexOf: T elem -> Int

func apply: (String message)

func apply: (String message) select: (String slot) -> Dyn

func .* (String message)

func .+ (String message) -> Dyn

end

55

Arrays supports some interesting methods: apply:, .*, and .+. The �rst two ones applies an operation
given as string to all array elements. Method .+ sums all array elements or return the �rst element if the
array has just one element. It is assumed that the type of the array element supports a binary operation
"+".

var Array<Int> v = [2, 3, 5, 7, 11];

v apply: #print; // print all array elements

v .* #print; // print all array elements

(v .+ "+") print; // print the sum of all array elements

(v .+ "*") print; // print the multiplication of all array elements

Intervals can be arguments to slice: which allows the slicing of arrays:

var letters = ['b', 'a', 'e', 'i', 'o', 'u', 'c', 'd'];

var vowels = letters slice: 1..5;

// print a e i o u

Out println: vowels;

3.9 Maps

A literal map is delimited by [and] as an array and uses -> for mapping a key to value.

let IMap<String, Int> map = ["Newton" -> 1642, "Gauss" -> 1777];

// method asArray return an array with tuple elements

for elem in map asArray {

Out println: elem key, " was born in the year ", elem value;

}

cast year = map["Newton"] {

"Newton was born in $year" println;

}

The type of the literal map is IMap<K, V> in which K is the type of the key (appears before ->) and V is
the type of the values (after ->). The expression map[key] returns a value of type NilV| and, therefore, a
cast statement (Section 4.12) is need for retrieving the value. All the keys should have the same type and
all the values should have the same type. IMap is an interface. The literal object will have a prototype
that implements IMap.

let errorMap = [Any -> "Any", Int -> "Int"];

Although Int is a subprototype of Any, the compiler will sign an error in this code.
Method asArray of IMap<K,V> returns an array with all elements of the map. Each element is a tuple

Tuple<key, K, value, V>

The �rst example of this section iterates over the map elements using a for. A single element can be got
using indexing or the get method of IMap. The element returned has type V|Nil. If the key passed as
parameter is in the map, the value returned is the value associated to it. If the key is not in the map, Nil
is returned.

56

Chapter 4

Main Cyan Constructs

A prototype may declare zero or more slots, which can be variables (called �elds) shared �eld variables
(to be seen later), and methods (called instance methods). In Figure 4.1, there is one �eld, name, and
two methods, getName and setName. Keywords public, private, package, and protected can precede
a method declaration. Currently only keyword private (or none) can precede a �eld declaration. A
public method can be accessed anywhere the prototype can. A private method and �eld can only be used
inside the prototype declaration. Protected methods can be accessed in the prototype, its subprototypes,
sub-subprototypes, and so on. A subprototype inherits from a prototype � that will soon be explained.

In the declaration of a �eld, there are four optional parts:

1. the visibility (only private);

2. keywords �var� or �let� that may precede the type;

3. �;�, that may follow the declaration;

4. and � = expr;�, that may follow the variable name.

The only non-optional parts are the type and the name. There are restriction on the expression expr.
See Section 4.3.

A read-only �eld is declared with the word let ou without any keyword:

object Person

let String name

Int age

...

end

Both name and age are read-only. A read-only variable can receive a value in its declaration and it can
receive a value in the constructor (to be seen). But a regular method cannot assign a value to it. This is
the default, used if no keyword precedes the �eld declaration. If a variable should change its value after
the object is created, declare it with var as in

object Person

func init: String name, Int age {

self.name = name;

self.age = age

}

var String name

57

var Int age

func getName -> String = name;

func setName: String other { self.name = other }

func getAge -> Int = age;

func setAge: Int other { self.age = other }

end

A single type can be used for more than one �eld:

object Rectangle

...

Int x1, y1, x2, y2

end

But we can only assign a value to a declaration with a single value:

object Rectangle

...

Int x1 = 0; // ok

Int y1 = 0, x2, y2 // compile-time error

end

package bank

object Client

func getName -> String {

return self.name

}

func setName: String name {

self.name = name

}

func print {

Out println: name

}

private var String name = "";

end

Figure 4.1: An object in Cyan

Package cyan.lang supplies a metaobject property that creates methods for getting and setting the
value of a �eld.

package people

object Person

func init: String p_name, Int p_age {

_name = p_name;

age = p_age;

}

@property var String _name

58

@property var Int age

end

The name of the methods created depend on whether the variable name starts with underscore or not.
If it does, as _name, the methods created do not start with get and set. Otherwise methods starting
with get and set are created. In this example, the methods would be

func name -> String = _name;

func name: String other { self._name = other }

func getAge -> Int = age;

func setAge: Int other { self.age = other }

property used with a read-only variable causes the creation of a get method only:

package people

object Person

func init: String p_name, Int p_age {

_name = p_name;

age = p_age;

}

@property String _name // only get is created

@property let Int age // only get is created

end

A method declared without a quali�er is considered public. A prototype declared without a quali�er
is considered public (currently prototypes are always public). A �eld without a quali�er is considered
private (currently they are always private). Then, a declaration

package Bank

object Account

// constructor, to be seen later

func init: Client client { self.client = client }

func set: Client client {

self.client = client

}

func print {

Out println: (client getName)

}

var Client client

end

is equivalent to

package Bank

public object Account

// constructor, to be seen later

public

59

func init: Client client { self.client = client }

public

func set: Client client {

self.client = client

}

public

func print {

Out println: (client getName)

}

private Client client

end

The declaration of local variables is made with the syntax:

var String name;

var Int x1, y1, x2, y2;

The last line declares four variables of type Int. Keyword var or let is demanded in the declaration
of local variables. Variables declared with let are read-only and should receive an expression in the
declaration:

let Double pi = 3.1415;

let Int maxSize = 100;

let Char endLine; // compile-time error

Further assignments to the variable are forbidden.
A declaration can have a single type and several variables as that of x1, y1, x2, and y2 above. But a

variable that receives an expression should be in its own declaration:

var String name;

var Int x1 = 0;

var Int y1, x2 = 0, y2; // compile-time error

We will call block a sequence of statements delimited by { and } that appear in a command like
while, if, and type-case. A anonymous function is not a block. The scope of a local variable is from
where it was declared to the end of the function or block in which it was declared:

1 func p: Int x {

2 var String iLiveHere;

3 if x > 0 {

4 var Int iLiveInsideThenPart;

5 doSomething: {

6 var String iLiveOnlyInThisFunction;

7 ...

8 }

9 ...

10 }

11 }

Then iLiveHere is accessible from line 2 to line 11 (before the }). Variable iLiveInsideThenPart is live
from line 4 to 10 (before the }). The scope of iLiveOnlyInThisFunction is the function that in between
lines 6 and 8 (after the declaration and before the }).

For short, you cannot declare a variable if there is another visible at that point:

60

1 func nothing: Int p -> Int {

2 var Int n = 0;

3 if 0 < p {

4 var Int k = n;

5 var Int n = 2; // redeclaration

6 return k + n

7 }

8 else {

9 var Int k = n + 1; // ok

10 return k

11 }

12 }

The two declarations of k are correct because the scope of the �rst k ends in line 7. The scope of n ends
in the closing } of the method. Therefore the declaration of n in line 5 is illegal.

The type of a variable should be a prototype or an interface (explained later). In the declaration
var String name;

prototype �String� plays the role of a type. Then a prototype name can play two roles: objects and
types. If it appear in an expression, it is an object, as �String� in:

anObj = String;

If it appears as the type of a variable or return value type of a method, it is a type. Here �variable� means
local variable, parameter, or �eld.

A local variable can be declared and assigned a value:
var Int n = 0;

Both the type and the assigned value can be omitted, but not at the same time. If the type is omitted,
it is deduced from the expression at compile-time. If the expression is omitted, to the variable should be
assigned a value before it is used. When the type is omitted, the syntax

var variableName = expr

should be used to de�ne the variable as in:
var n = 0;

Variable variableName cannot be used inside expr. It it could, the compiler would not be able to deduce
the type of expr in some situations such as

var n = n;

In an assignment �var n = expr�, the type of the expression is deduced by the compiler using infor-
mation collected in the previous lines of code. The Hindley-Milner inference algorithm is not used.

All prototypes, including the basic types, are objects in Cyan. Then Int is an object which happens
to be an ... integer! And which integer is Int? It is the default value of type Int. So the code below will
print 0 at the output:

Out println: Int;

A method is declared with keyword func followed by the method keywords and parameters, as shown
in Figure 4.1. Following Smalltalk, there are two kinds of methods in Cyan: unary and keyword methods.
A unary method does not take any parameters and may return a value. Its name should be an identi�er
not followed by a �:�. For example, print in Figure 4.1 is a unary method.

When a method takes parameters it should have one or more keywords, each one ending with �:� as
in

func at: Int n { ... }

61

func at: Int n put: String s { ... }

func with: Int n

with: Int another

concat: String s -> String { ... }

This kind of method is called a keyword method or a method with keywords.
There may be a method that is not unary but that does not take parameters:

func open: String

read: { ... }

Smalltalk does not allow that. However, it is illegal to declare a method without parameters that is a
keyword method:

// compile error

func read: -> String { ... }

An optional return value type can be given after keyword func. The return value should be given by
the return command. The return expression should be subtype (Section 4.17) of the return value type
of the method. Using Nil as the return value type is the same as to omit the return type.

Methods without return type or declaring Nil always return Nil. Therefore one can write

(0 println) println

�0 println� returns Nil. Message println is therefore sent to Nil. It will be printed
0Nil

Objects are used through methods and only through methods. A method is called when a message
is sent to an object. A message has the same shape as a method declaration but with the parameters
replaced by real arguments. Then method setName: of the example of Figure 4.1 is called by

Client setName: "John";

This statement causes method setName: of Client to be called at runtime.

4.1 self

Inside a method of a prototype, pseudo-variable self can be used to refer to the object that received the
message that caused the execution of the method. This is the same concept as self of Smalltalk and
this of C++/Java. A �eld age can be accessed in a method of a prototype by its name or by the name
preceded by �self.� as in

func getAge -> Int {

return self.age

}

Then we could have used just �age� in place of �self.age�.

4.2 clone Methods

A copy of an object is made with the clone method. Every prototype P has a method
func clone -> P

that returns a shallow copy of the current object. In the shallow copy of the original to the cloned object,
every �eld of the original object is assigned to the corresponding variable of the cloned object.

62

In the message send
Client setName: "John";

method setName of Client is called. Inside this method, any references to self is a reference to the
object that received the message, Client. In the last statement of

var Client c;

c = Client clone;

c setName: "Peter";

method setName declared in Client is called because c refer to a Client object (a copy of the original
Client object, the prototype). Now the reference to self inside setName refers to the object referenced to
by c, which is di�erent from Client.

The clone method of an object can be rede�ned to provide a more meaningful clone operation. For
example, this method can be rede�ned to return self in an Earth prototype (since there is just one earth)
or to make a deep copy of the self object.

In language Omega [Bla94], the pseudo-type Same means the type of self, which may vary at runtime.
Method clone declared in the Object prototype returns a value of type Same. That means that in object
Object, the value returned is of type Object and that in a prototype P the return value type of clone is
P. In Cyan the compiler adds a new clone method for every prototype P. This is necessary because there
is nothing similar to Same in the language.

4.3 init and new Methods

A prototype may declare one or more methods named init or init:. All of them have special meaning:
they are used for initializing the object. For each method named init the compiler adds to the prototype
a method named new. For each method named init: the compiler adds to the prototype a method
named new: with the same parameter types. Each new method creates an object without initializing any
of its slots and calls the corresponding init method (idem for init: and new:). If the prototype does
not de�ne any init or init: method, the compiler supplies an empty init method that does not take
parameters and calls the superprototype init method (if there is one. If not, an error occurs).

Some rules apply to the init and init: methods. They:

(a) should be declared with no return type (it cannot be Nil);

(b) cannot be called using re�ection at runtime. These methods are used to create new and new: method
and them discarded. They do not exist at runtime. However, new and new: can be called using
re�ection. The do exist at runtime;

(c) should not be preceded by keyword override;

(d) should not be abstract or �nal;

(e) should not be indexing methods (See Section 4.10);

(f) an init: method should take at least one parameter;

(g) cannot be declared in interfaces;

(h) two init: methods can have the same number of parameters. However, there should be at least a
number n such that the nth parameter type in one method is not subtype or supertype of the nth

parameter type of the other method. If this were allowed, there would be an ambiguity when calling
method new:

63

object Pet

func init: Animal animal { ... }

func init: Dog dog { ... }

...

end

// in other prototype:

let Dog meg = Dog("Meg");

let Pet myPet = Pet new: meg;

In the creation of object Pet, both the �rst and second init: methods could be called (if the compiler
did not signal an error in this code � but it does).

To solve this problem, one can use unions:

object Pet

func init: Dog|Animal animal { ... }

...

end

The following declaration is illegal because Wrong(0, 0, 0) would be ambiguous.

object Wrong

func init: Any a, Int b, Any c { ... }

func init: Any a, Any b, Any c { ... }

...

end

The following declaration is legal because the third parameter allows the compiler to di�erentiate
between the two constructors.

object Fine

func init: Any a, Int b, Int c { ... }

func init: Any a, Any b, String c { ... }

...

end

(i) can only be called by immediate subprototypes using super as the message receiver. That is, if C
inherits from B that inherits from A, then C cannot call the init or init: methods of A. To call these
methods of the immedidate superprototype, use �super init�, and �super init: args� as the �rst
statement of the init or init: method of the subprototype. Currently init methods of the same
prototype cannot be called (this will change, of course).

There are further restrictions related to methods init, init:, new, and new:, given below.

(a) A user-declared method cannot have name new or new:.

(b) No keyword of any user-declared method can be init: or new:. A future addition to the language
would be to allow a constructor to start with init: and have other keywords:

object Person

func init: String name { self.name = name; age = 0; salary = 0Float; }

func init: String name

64

age: Int age

salary: Float salary {

self.name = name;

self.age = age;

self.salary = salary

}

String name

Int age

Float salary

end

The compiler would create, for this prototype, methods �new: String� and
� `new: String age: Int salary: Float�.

Methods new and new: are only accessible through prototype objects. That means one cannot send a
new or new: args message to an expression that is not a prototype:

object Test

func init: String s { ... }

end

object Program

func run {

var t = Test clone;

var Test u;

// Ok !

u = t clone;

// compile-time error

u = t new: "hi!";

// ok

u = Test new: "hi!";

}

end

init and init: methods can have visibility public, private, protected, and package. The new:

or new method created from the init: or init method has the same visibility as this one. A private

method can only be called inside the prototype in which it was declared. A protected method can only
be called in the prototype it was declared and subprotototypes. A package method can be called in all
prototypes of the same package in which it was declared. A public method is accessible anywhere.

A singleton prototype is created by declaring a single private initmethod, a rede�ned clonemethod,
and no init: methods.

object Earth

private func init { }

private func clone -> Earth = Earth;

// other regular methods

// that do not create Earth objects

end

Unlike most object-oriented languages, Cyan demands that all �elds be initialized before used. To
assure that, the language puts severe restrictions on constructors:

65

(a) every init or init: method of a prototype should initialize every �eld of the prototype that is
not initialized in its declaration. Shared �elds are not considered because they have already been
initialized by initShared methods or in their declarations. Then

object Manager

func init: String name { self.name = name }

var String name

var Float salary = 1000F;

end

is legal but the following prototype is illegal.

object Manager

// salary is not initialized

func init: String name { self.name = name }

var String name

var Float salary

end

The initialization of a �eld should be made in the top-level statement list of the method. The
current Cyan compiler is not smart enough to deduce category is initialized in the following example.
Initialize a local variable inside the if statement and assign it to category.

object Person

func init: String name age: Int age {

self.name = name;

if age >= 18 {

category = "adult"

}

else {

category = "minor"

}

}

String name

String category

end

A �eld can be initialized in its declaration with an expression. But this expression should be a �safe
expression� (SE), de�ned recursively as:

(i) a basic type (such as Int, Nil, or String) is a SE;

(ii) a value of a basic type (such as 0 or "Hello") is a SE;

(iii) an unary message to a literal value of a basic type (such as -0 or +3.14) is a SE;

(iv) a literal array, a literal map, or a literal tuple whose elements are SE is a SE;

(v) an object creation of a prototype if the arguments used are SE. For example,
Array<Int>(5)

or
Array<String> new: Int new

is a SE. Unlike the initShared methods, there is no resctriction on the package of the prototype,
it can be anyone.

66

If this is not required, a variable could be initialized with a call to a method of the same prototype
that accesses a non-initialized variable:

object Test

Int first = self next

var Int nextValue = 9

func next -> Int {

++nextValue;

return nextValue

}

end

In this example, the intention was to set first to 10 but at runtime, when next is called, variable
nextValue has not been initialized and next returns a non-initialized variable nextValue.

(b) suppose S is the superprototype of a prototype P. If S de�nes a method init: but not a method init,
then every init or init: method of P should call a method init: of S. A method init or init: of
P may not have a super call to a method init or init: of S if S has a method init (the compiler
will insert a call to init of S). This method init of S may have been added by the compiler;

(c) inside an init or init: method, �elds can only be used in expressions after they have been initialized;

(d) init and init: methods cannot use self anywhere except in two situations:

(i) when the prototype is �nal and after all prototype �elds have been initialized;

(ii) the method to be called is annotated with
@accessOnlySharedFields

The method that would be called need not to be final. These annotated methods can only
access shared �elds and self cannot be leaked. The overridden subprototype method of a
superprototype method annotated with

@accessOnlySharedFields

should also be annotated with this same annotation.

There is an order of initialization of �eld of a prototype. When an object is created with an init

or init: method, �rst the �elds initialized in their declarations are set (in textual order). Then the
statements of method init or init: are run. The example below shows the order of initialization. one
is initialized before two and so on in an expression �Order new�.

object Order

func init {

three = 3

}

Int three

Int one = 1;

func print {

(one + two + three) println

}

Int two = 2;

end

67

If a prototype does not declare an init or init: method, the compiler will supply one if every �eld
is initialized in its declaration and the superprototype (if any) has an init method. The method added
by the compiler to the prototype is

func init {

super init

}

Of course, considering that there is a superprototype.
If there is any �eld of a prototype that is not initialized in its declaration, then the prototype should

declare at least one init or init: method. If the superprototype of a prototype P does not de�ne an
init method but de�nes a method init:, then P should declare an init or init: method. The compiler
could not create a method

func init {

super init: args

}

because it would not know which parameters args to pass in the call super init: args.
Metaobject init automatically create an init method that initializes �elds. Consider a prototype

Proto that declares �elds p1, p2, ..., pn of types T1, T2, ..., Tn. Then a metaobject annotation
@init(p1, p2, ..., pn)

can be put before the declaration of Proto. When the compiler �nds this metaobject annotation, it will
add the following method to the prototype

func init: (T1 p1), (T2 p2), ... (Tn pn) {

self.p1 = p1;

...

self.pn = pn;

}

So, a prototype

@init(name, location)

object University

@property String name

@property Int age

end

can be used as

var p = Person new: "Carol", 1;

p name println;

There are abbreviations for calling methods called new or new: of a prototype. Expressions

P new

P new: a

P new: a, b, c

can be replaced by

P()

P(a)

P(a, b, c)

68

Using prototypes Test and Person we can write

var t1 = Test(0);

var Test t2 = Test("Hello");

var Person p = Person("Mary", 1);

var q = Person("Francisco", 5);

Using the short form for object creation, we can easily create a net of objects. In this example,
BinTree inherits from Tree (Section 4.11).

open

object Tree

end

@init(left, value, right)

open

object BinTree extends Tree

@property Tree left, right

@property Int value

end

@init(value)

open

object No extends Tree

@property Int value

end

...

var tree = BinTree(No(-1), 0, BinTree(No(1), 2, No(3)));

4.4 Limitations on the Use of Prototypes as Objects

Prototypes in Cyan are objects but with restrictions. Unlike every other prototype-based language, not
every method of a prototype can be called and it is not always legal to assign it to a variable (this
includes parameter passing). But why? Because a prototype is an object whose �elds may not have been
initialized. Let us see an example.

object Person

func init: String name, Int age {

self.name = name;

self.age = age

}

@property

let String name

@property

let Int age

end

69

Annotation property creates get methods for name and age. If methods getName or getAge of prototype
Person is called before any other method, there will be an error: a �eld will be accessed before it has
been initialized.

// access non-initialized field 'name'

Person getName println;

var Any any = Person;

// access non-initialized fields 'name' and 'age'

var personCopy = any clone;

// method 'call:' may access non-initialized fields

// 'name' and 'age'

otherObject call: Person;

// ok!

var protoName = Person prototypeName;

if any isA: Person {

"oh!!, a person!" println;

}

To prevent such runtime errors, the language has some rules regarding the use of prototypes. If a prototype
has an init method, it can be used as a regular object. There are no restrictions in its use. The prototype
itself is created using the new method of itself. So all of its �elds are properly initialized.

If a prototype does not have an init method, it:

(a) cannot receive messages unless the corresponding method is

(a) new or new:;

(b) a final method declared in prototype Any with annotation canBeCalledOnPrototypes:

@annot(canBeCalledOnPrototypes)

final

func prototypeName -> String { ... }

(b) can be used in an expression if:

(a) it is Nil;

(b) it is an argument to method isA: or notIsA:

if any isA: Person { ... }

if any notIsA: Cicle { ... }

These restrictions aim to prevent prototype �elds from being accessed before they are initialized.
A prototype, as an object, is initialized by its method init (if there is one). Therefore, during the

execution of its init method, references to the prototype will result in a runtime error.

object FailInInit

func init {

message = "prototype refer to itself";

FailInInit println;

}

var String message;

end

70

The use of FailInInit inside init will cause a NullPointerException and then an exception
java.lang.ExceptionInInitializerError

This is because the prototype name is translated into a static �eld called prototype of a class _FailInInit
that represents the prototype. This �eld is in process of being initialized when it is used inside init. In
Java, what happens is:

prototype = new FailInInit(); // call 'init'

Before this assignment, prototype is null (in Java). Inside init,

FailInInit println;

is translated into the Java code

_FailInInit.prototype._println();

prototype is null because it is being initialized.
Cyan prohibits references to a prototype inside its init method. However, this does not solve the

problem. The prototype may be indirectly referenced by methods called inside method init.

4.5 Shared Variables and Method initShared

A prototype may declare a �eld as shared, as today in

object Date

... // methods

// shared

@property shared var Date today

@property Int day

@property Int month

@property Int year

end

Variable today is shared among all Date objects. The clone message does not duplicate shared variables.
By that reason, we do not call shared variables �instance� variables. They are similar to �class variables�
of some languages and �static� variables of C++/Java/C#. Every shared variable of a prototype should
be initialized in its declaration or in a special method called initShared.

There are several restrictions on an initShared method. It

(a) should be declared with no return type (it cannot be Nil);

(b) should be private (this may change in the future);

(c) should not be preceded by keyword override (it is private);

(d) should not be abstract or �nal (it is private);

(e) should not be indexing methods (See Section 4.10);

(f) cannot be declared in interfaces;

(g) cannot initialize non-shared �elds.

71

A Restricted Safe Expression, RSE, is recursively de�ned as

(i) a basic type (such as Int, Nil, or String) is a RSE;

(ii) a literal value of a basic type (such as 0 or "Hello") is a RSE;

(iii) an unary message to a literal value of a basic type (such as -0 or +3.14) is a RSE;

(iv) a literal array, a literal map, or a literal tuple whose elements are RSE is a RSE;

(v) an object creation of a prototype of package cyan.lang is a RSE if the arguments used are RSE.
For example,

Array<Int>(5)

or
Array<String> new: Int new

is a RSE.

A RSE can be assigned to a shared �eld in its declaration. There should be an initShared method
that initializes all shared �elds not initialized in their declarations. Method initShared should have
only assignments to shared variables and these should be initialized with safe expressions as de�ned for
initShared methods, which are called SE'.

This prevents that a shared variable or a �eld of another prototype be accessed before it has been
initialized. Of course, these restrictions will be relaxed as soon as possible. They prevent very common
patterns such as to create an object and assign it to a shared variable � see example below.

object SolarSystem

...

private func initShared {

// compile-time error in these two lines

earth = Planet new: "earth";

saturn = Planet new: "saturn"

}

shared Planet earth, saturn

...

end

This prototype should use an union type and there should be a method, called before SolarSystem is
used, that initializes the shared variables earth and saturn.

object SolarSystem

...

private func initShared {

earth = Nil;

saturn = Nil

}

func completeinitShared {

earth = Planet new: "earth";

saturn = Planet new: "saturn"

}

shared Nil|Planet earth, saturn

72

...

end

Unfortunately, now every use of earth or saturn should test if the variable is Nil. We expect that this
will change in a near future. The compiler will build a graph of package and prototype dependences
and produce initializing code, to be called in the beginning of the program execution, that respects the
dependence order among the packages and prototypes.

Another example of a correct use of initShared is given below.

object NameServer

...

private func initShared {

varName = ""

}

shared Int nextVarNumber = 0;

shared String varName

end

4.6 Shared Methods

A method can be declared as shared meaning that it can only access shared �elds. A shared method:

(a) should not be preceded by keyword override or overload;

(b) should not be abstract or final (it does not make sense);

(c) cannot be declared in interfaces;

(d) cannot use non-shared fields;

(e) should have a name different from any other method or field of the same prototype;

(f) should have a name different from any non-private method inherited from superprototypes.

An example of declaration follows

object MyMath

shared

func getMax -> Int = 12;

shared

func fatorial: Int n -> Int {

if n == 0 { return 1 }

else {

return n*(fatorial: n-1)

}

}

...

end

The receiver of a message passing whose corresponding method is shared should be the prototype in
which the method is declared.

73

n = 2* MyMath getMax;

(MyMath fatorial: 10) println;

or none. In the last case, the receiver is not speci�ed:

n = 2*getMax;

(fatorial: 10) println;

There cannot be a shared and a non-shared method in a prototype with the same name. Shared methods
should also have di�erent names

4.7 Keyword Methods and Selectors

The example below shows the declaration of a method. The method body is given between { and }.

func withdraw: Int amount -> Boolean { // start of method body

Boolean ret = true;

(total - amount >= 0) ifTrue: {

total = total - amount

}

ifFalse: {

ret = false

};

} // end of method body

Command return returns the method value. The execution of the function is ended by the return

command.
Method withdraw takes an argument amount of type Int and returns a boolean value (of type

Boolean). It uses a �eld total and sends message
ifTrue: { .. } ifFalse: { ... }

to the boolean value total - amount >= 0. The message has two function arguments,
{ total = total - amount }

and
{ ret = false }

A message like this is called a keyword message and is similar to Smalltalk keyword messages. As another
example, an object Rectangle can be initialized by

Rectangle width: 100 height: 50

This object should have been de�ned as

@init(w, h, x, y)

object Rectangle

func width: Int w height: Int h {

self.w = w;

self.h = h;

}

func set: (Int x, Int y) { self.x = x; self.y = y; }

func getX -> Int = x;

func getY -> Int = y;

Int w, h // width and height

Int x, y // position of the lower-left corner

...

end

74

Each identi�er followed by a �:� is called a keyword. So width: and height: are the keywords of the
�rst method of Rectangle. Sometimes we will use �method with multiple keywords� instead of �keyword
method�. The concatenation of the method keywords is called the method selector. Then width:height:

is a method selector.
The signature of a method is composed by its keywords, parameter types, and return value type.

Then the signature of method �width:height:� is
width: Int height: Int

The return type is Nil and it may not appear. The signature of getX is
getX -> Int

It is important to note that there should be no space before �:� in a keyword. Then the following
code is illegal:

(i > 0) ifTrue : { r = 1 } ifFalse : { r = 0 }

And so is the declaration
func width : Int w height : Int h {

To make the declaration of a keyword method clearer, parenthesis can be used to delimit the parameters
that appear after a keyword:

object Rectangle

func width: (Int w) height: (Int h) {

self.w = w;

self.h = h;

}

func set: (Int x, y) {

self.x = x; self.y = y;

}

...

end

Parameters are read-only. They cannot appear in the right-hand side of an assignment.

4.8 Operator Methods

Operators can be method names in Cyan. However, there are limitations: binary operators should take
one parameter, unary operators should not take parameters. Operators + and - can be both binary and
unary.

object Complex

func init: Double re, Double im {

self.re = re;

self.im = im

}

// unary -

func - -> Complex =

Complex(-re, -im);

func + (Complex other) -> Complex =

Complex(re + other getRe, im + other getIm);

75

// binary -

func - (Complex other) -> Complex =

Complex(re - other getRe, im - other getIm);

func * (Complex other) -> Complex =

Complex(re*(other getRe) - im*(other getIm),

re*(other getIm) + im*(other getRe));

override

func asString -> String = "($re, $im)";

func getRe -> Double = re;

func getIm -> Double = im;

Double re;

Double im;

end

Operators are frequently used for goals not linked to the expected meaning of them. For example, to
use - for removing a number from a list. The expected meaning would be to subtract something from the
number. To prevent such kind of misuse, Cyan limits the use of the following operators:

+ - * / << >> >.>> %

Prototypes that declare methods with these operators should be read-only. That is, all �elds should be
declared with let or without the keyword var. The goal of this is to limit the use of these operators to
mathematical structures, which are usually read-only. This is controversial, we know that.

4.9 On Names and Scope

Unary methods and �elds of an object should have di�erent names. Fields and shared variables can have
names equal to local variables (which includes parameters):

func setName: String name {

self.name = name

}

An object can declare methods �value� and �value:� as in the following example:

object Store

var Int _value = 0;

func value -> Int = _value;

func value: Int newValue {

self._value = newValue

}

end

And a method name can be a language keyword followed by �:�

func while: Boolean expr { ... }

Usually we will not use get and set methods. Instead, we will use the names of the attributes as the
method names as in

76

var Fish fish = Fish new;

fish name: "Cardinal tetra";

fish lifespan: 3;

Out println: "name: ", fish name, " lives up to: ", fish lifespan;

Fish could have been declared as

object Fish

String _name;

Int _lifespan;

func name -> String = _name;

// parameter with the same name as field

func name: _name String { self._name = _name }

func lifespan -> String = _lifespan;

func lifespan: Int _lifespan { self._lifespan = _lifespan }

end

4.10 Operator []

It is possible to de�ne operator [] for indexing:

object Table

func [] at: Int index -> String {

return anArray[index]

}

func [] at: Int index put: String value {

anArray[index] = value

}

Array<String> anArray

end

...

var t = Table new;

t[0] = "One";

t[1] = "Two";

// prints "One Two"

Out println: t[0], " ", t[1];

This operator can only be used with methods at: and at:put:. Each keyword should have only one
parameter. When t[expr] appears inside an expression, it is considered the same as (t at: expr).
When t[expr] appears in the left-hand side of an assignment,

t[expr] = rightExpr

this is considered as
t at: (expr) put: (rightExpr)

One or both methods can be declared. But when both are declared, the type of keyword at: should
be the same. The allowed signatures of these methods are:

at: T -> U

at: T put: W -> Nil

at: T put: W -> U

77

Only one of the last two signatures may be used. Usually, U = W. But these types can be di�erent from
each other.

Indexing methods cannot be abstract and they should be public.

4.11 Inheritance

A prototype may extends another one using the syntax
object Student extends Person ... end

This is called inheritance. Student inherits all methods and �elds de�ned in Person. Student is called
a sub-object or subprototype. Person is the superprototype or superprototype. The declaration of a
superprototype should be preceded by identi�er �open�:

package main

open

object Person

// elided

end

Note that �open� is not a keyword. To restrict the subprototypes to the package of the prototype one can
use �open(package)� as in

package main

open(package)

object Person

// elided

end

Every �eld of the subprototype should have a name di�erent from the names of the public and protected
methods of the superprototype (including the inherited ones) and di�erent from the names of the methods
and other �elds of the subprototype. Since the name of a non-unary method includes the �:�, there may
be �eld iv and method iv:.

A public method of a prototype is visible anywhere the prototype is. A protected method is visible in
the prototype and its subprototypes. A protected method is declared with the syntax

protected

func getList -> List<Int> { ... }

A package method is visible only in the package of the prototype in which the method is.

package main

open

object Employee

package

func getSalary -> Double { ... }

// elided

end

// other source file:

package company

78

object Manager extends Employee

package

func getSalary -> Double { ... }

// elided

end

In this case, prototype Manager, that inherits from Employee, is trying to override method getSalary.
This results in a compile-time error: the �rst method is visible only in package main and the getSalary
of Manager is visible only in package company. Therefore there is a compilation error.

A public, package, or protected method of a subprototype may have the same keywords, parameter
types and number of parameters for each keyword than a method of the superprototype.

open

object MovieList

...

func add: String movieName

director: String director

year: Int year {

...

}

func search: String movieName

year: Int -> Movie {

...

}

end

object LoveMovieList extends MovieList

...

override

func add: String movieName

director: String director

year: Int year {

...

}

override

func search: String movieName

year: Int -> LoveMovie {

...

}

end

Here method

func add: String movieName

director: String director

year: Int year

of MovieList is rede�ned in LoveMovieList, its subprototype. Each keyword takes the same parameters,
which means the same number of parameters and the same types. The subprototype method is preceded by
the Cyan keyword override. The return value type of the subprototype method that was overridden may

79

be a sub-type of the return value type of the superprototype method. For example, method search:year:

of LoveMovieList overrides a superprototype method and returns a LovieMovie that is a subprototype
(then a sub-type) of Movie, which is the return type of the method of the superprototype. Assume that
LovieMovie is a subprototype of Movie. The sub-type relationship is de�ned in Section 4.17.

A method can only be overridden by a method with the same visibility. That is, a public method can
only override a public method. And a protected method can only override a protected method. A public
or protected method of a subprototype with the same name as a private method of the superprototype is
not overridden (of course!).

The Cyan keyword override should follow the quali�er public or protected if any of these are
present. Currently this order is enforced.

open

object Person

func init: String name, Int age {

self.name = name;

self.age = age;

}

override

func print {

Out println: "name: $name (age $age)"

}

@property String name

@property Int age

end

object Student extends Person

func init: String name, Int age , String school {

super init: name, age;

self.school = school

}

override

func print {

super print;

Out println: " School: ", school

}

func nonsense {

// compile-time error in this line

// new: cannot be called

var aPerson = super new: "noname", 0;

// compile-time error in this line

// init: cannot be called

var aPerson = super init: "noname", 0;

// ok, clone is inherited

var johnDoe = super clone;

}

@property String school

end

There is a keyword called super used to call methods of the superprototype. In the above example,

80

method print of Student calls method print of prototype Person and then proceeds to print its own
data.

Methods init, init:, new, new:, and initShared are never inherited. However, init or init:

methods of a subprototype may call init or init: methods of the superprototype using super:.
Keyword override should not be used in the declaration of method init: of Student because init:

of Person is not inherited. The compiler adds to prototype Person a method
Person new: String name, Int age

and to Student

Student new: String name, Int age, String school

Since methods init: and new: are not inherited, there will be compile-time errors in method nonsense.
See Section 4.3 for the many restrictions on init, init:, and initShared methods.

A prototype may be declared as ��nal�, which means that it cannot be inherited:

public final object Int

...

end

There would be a compile-time error if some prototype inherits Int. The prototypes Byte, Short, Int,
Long, Float, Double, Char, Boolean, and String are all �nal.

A method declared as �final� cannot be rede�ned in subprototypes:

public object Car

final func name: String newName { _name = newName }

final String func name = _name;

String _name

...

end

Final methods should be declared in non-�nal prototypes (why?). Final methods allow some optimizations.
The message send of the code below is in fact a call to method name of Car since this method cannot be
overridden in subprototypes. Therefore this is a static call, much faster than a regular call.

var Car myCar;

...

s = myCar name;

The table below summarizes the allowed combination among keywords in a method declaration. Key-
word abstract is explained in Section 4.16.

public protected private override abstract �nal
public Y Y Y
package Y Y Y
protected Y Y Y
private
override Y Y Y Y
abstract Y Y Y
�nal Y Y Y

Table 4.1: Keyword combination in method declaration

The order in which the method quali�ers can appear is rigid. It is public/private/protected/package,
final, override, abstract, and overload. Then all the declarations below cause compile-time errors.

81

abstract protected func abs: Int n

override final func getList -> List { ... }

abstract override func parse: String code -> AST { .. }

Future versions of the language may demand the these keywords appear in alphabetical order: abstract,
final, overload, override, public/private/protected. Or without any order.

In order to prevent some traps explained by Huang, Yang, and Chan [CYH04], a prototype that de�nes
at least one method with package visibility can only be inherited by prototypes in the same package.

4.12 Downcasting with type-case and cast statements

Downcasting is to change the type of an object of a supertype to the type of a subtype. Usually this
is made by a construction that does the casting and throws an exception if it is not possible. Cyan
does not support constructions that does exactly that. But it does support command type-case for safe
downcasting without exception signalling. Its syntax is

type expression

case Type1 [varName1] {

statement list

}

// any other number of case clauses

[else {

statement list

}

]

The varName1 is optional and so is the else part. There may be one or more case clauses. A ';' after
the last case clause or else clause is optional. At runtime, if expression has type Type1, it is cast to
Type1 and assigned to varName1. Then the statements of the case are executed. If expression has not
type Type1, the following case clauses are tested, in textual order.

As an example, the following code will print 1 2 true B

var Dyn d = 0;

for elem in [d, "Hi", 5.0, 'A'] {

type elem

case Char ch {

(ch succ ++ " ") print

}

case String s {

(s size ++ " ") print

}

case Int n {

(n + 1 ++ " ") print

}

case Double n {

((n equal: 5.000001) ++ " ") print

}

}

The type of a case clause cannot be subtype of the type of a previous case clause. Then the two
type-case of the next example produce errors. Assume that Circle inherits from Shape.

82

var Any elem = 0;

type elem

case Any {

}

case Int n { // error here

("An int equal to $n") print

}

var Shape shape = Circle(100.0, 10.0);

type shape

case Shape s {

}

case Circle { // error here

"This will never be printed" println

}

An else clause may follow the last case clause with the obvious meaning. A type-case statement should
have at least one case clause.

Statement cast is a special downcast statement whose syntax is:

cast [Type1] Id1 = Expr1, ..., [Typen] Idn = Exprn {

statementListTrue

}

[

else {

statementListFalse

}

]

If the type of Expri is T|Nil or Nil|T, with T di�erent from Nil, Typei is optional and assumed T. If the
cast succeeds, statementListTrue is executed. Otherwise, statementListFalse is executed. Exemple:

var Int|Nil intNil = 0;

var Any any = "ok";

cast elem = intNil, String s = any {

assert elem == 0 && s == "ok";

}

else {

assert false;

}

cast String s = any {

"s = $s" println

}

elem is assumed to have type Int.

4.13 Interfaces

Cyan supports interfaces, a concept similar to Java interfaces. The declaration of an interface lists zero
or more method signatures as in

interface Printable

83

func print

end

The public keyword is not necessary since all signatures are public. func is not necessary but it is
demanded for sake of clarity (should it be eliminated too?).

An interface has two uses:

(a) it can be used as the type of variables, parameters, and return values;

(b) a prototype can implement an interface. In this case, the prototype should implement the methods
described by the signature of the interface. A prototype can implement any number of interfaces.
Name collision in interface implementation is not a problem.

Interfaces are similar to the concept of the same name of Java.
As an example, one can write

interface Printable

func printObj

end

@init

open

object Person

@property String name

@property Int age

end

object Worker extends Person implements Printable

@property String company

override

func printObj {

Out println: "name: " ++ name ++ " company: " ++ company

}

... // elided

end

Here prototype Worker should implement method printObj because this prototype is implementing in-
terface Printable that de�nes a printObj method. Otherwise the compiler would sign an error. Note
that the printObj method of Worker is preceded by override. This is demanded by the compiler.

Interface Printable can be used as the type of a variable, parameter, and return value:

var Printable p;

p = Worker clone;

p print;

An interface may extend any number of interfaces:

interface ColorPrintable extends Printable, Savable

func setColor: Int newColor

func colorPrint

end

84

Therefore Cyan supports a limited form of multiple inheritance. An interface that does not explicitly
inherits from any other in fact inherits from prototype Any as any other prototype.

An interface is a regular prototype for many uses. It can receive messages for example. But there will
be a runtime error if the message corresponds to a method declared in the interface. There will not be a
runtime error if the method is inherited from Any.

The method signatures declared in an interfaces are transformed into public methods by the compiler.
These methods throw exception ExceptionCannotCallInterfaceMethod:

// interface ColorPrintable as a prototype

object ColorPrintable extends Printable, Savable

func setColor: Int newColor {

throw: ExceptionCannotCallInterfaceMethod("ColorPrintable::setColor");

}

func colorPrint {

throw: ExceptionCannotCallInterfaceMethod("ColorPrintable::colorPrint");

}

end

Interfaces are then objects with full rights: they be assigned to variables, passed as parameters, and
receive messages. However, an interface declaration cannot be preceded by �open� or �open(package)�.
Interfaces are already open. To restrict the use to a package one can declare it with visibility package.
In future versions of Cyan, this is not working yet.

Although interfaces are objects, the compiler puts some restrictions on their use and declaration.

(a) An interface can only extend another interface. It is illegal for an interface to extend a non-interface
prototype.

(b) Interfaces cannot declare any init or init: methods. No object will ever be created from them. But
the interface itself may receive messages and it may be cloned.

(c) A regular prototype cannot inherit from an interface.

(d) If the type of an expression is an interface I, then the compiler checks whether the messages sent to it
match those method signatures declared in the interface, super-interfaces, and Any (See Section 4.15).

(e) If interface Inter declares a method signature and prototype P implements interface Inter, P should
declare a method with that same signature except that the return value type can be a subtype of the
return value type of the method signature of the interface. It is possible that P inherits the method.
In this case P may not declare the method. But whenever P declares a method of a implemented
interface, it should be preceded by keyword �override�.

(f) An interface cannot declare a true overloaded method (Section 4.14). If prototype P implements
interface Inter that de�nes a method signature ms, P should de�ne a method m with that signature.
m cannot belong to an overloaded method.

Besides that, method isInterface inherited from Any returns true when the receiver is an interface.
The examples that follow should clarify these observations.

// ok

var Printable inter = Printable;

// ok, asString is inherited from Any

Out println: (inter asString);

85

// ok, Printable is a regular object

Out println: (Printable asString);

var Any any = Printable;

// ok

Out println: (any asString);

// it is ok to pass an interface as parameter

assert: (any isA: Printable);

assert: (any isInterface && Printable isInterface &&

inter isInterface);

4.14 Method Overloading

There may be methods with the same keywords but with di�erent number of parameters. For example,
one can declare

object MyPanel

func print: Circle c, Int x, Int y -> Circle { ... }

func print: String s, String format -> Boolean { ... }

func print: { ... }

func print: Int n -> Int { ... }

end

There are four print methods that are considered di�erent by the compiler. In a message send
MyPanel print: anObj

there is no ambiguity on which method should be called. It can only be the last method, which is the only
one that takes just one parameter. Since all methods are considered di�erent, they may have di�erent
return value types. This is not true method overloading.

One may also use several keywords:

object Test

func at: Int i, Int j put: Int k -> String { }

func at: Int i put: Int k -> Int { ... }

func at: String s put: String s, Int k -> Boolean { ... }

...

end

This object could be used as in

var f = Test;

f at: 0, 1 put: 2;

f at: #1 put: "one", 0;

f at: 0 put: 1;

We call the �name of a method� the concatenation of all of its keyword names, each one followed by
its number of parameters and a white space. The trailing white space should be removed. For example,
methods

func key: String aKey

value: Int aValue -> String

func name: String first, String last

age: Int aAge

salary: aSalary Float -> Worker

86

have names "key:1 value:1" and "name:2 age:1 salary:1".
A restricted form of multi-methods is allowed in Cyan. In most languages, the receiver of a message

determines the method to be called at runtime when the message is sent. In CLOS [Sei12], all parameters
of the message are taken into consideration (which includes what would be the �receiver�). This is called
multiple dispatch and the methods are called �multi-methods�.

Cyan implements a restricted version of multi-methods: the method to be called is chosen based on
the receiver and also on the runtime type of the parameters. This is called �overloading� in Cyan and
the methods involved are called overloaded methods � this is true overloading. The compiler generates
just one method for all overloaded methods with the same name in a prototype. Then we sometimes say
�overloaded method�, in the singular.

An overloaded method is composed by one or more regular methods with the same name declared in
the same prototype. The �rst method should be preceded by the Cyan keyword overload (more on this
soon).

open

object MyBlackBoard

// keyword 'overload' precedes an overloaded method declaration

overload

func draw: Square f { ... }

func draw: Triangle f { ... }

func draw: Circle f { ... }

func draw: Shape f { ... }

private String name

end

Then in the example above there is one draw overloaded method composed by four methods. In the
example below there is another overloaded method draw composed by two methods.

object MyOtherBlackBoard extends MyBlackBoard

func draw: Polygon f { ... }

func draw: Elipse e { ... }

end

The �rst method of an overloaded method in a prototype hierarchy should be pre�xed with the keyword
�overload�. By ��rst� we mean the method that is higher in the hierarchy and that is textually before
the others with the same name in its prototype. This �rst overloaded method should not override another
method and all methods that override it are also considered overloaded methods. Overloaded methods
can only be public. 1 Keyword overload should appear before the �func� keyword.

The compiler checks all methods of an overloaded method of a prototype at once. The rules below
are based on a single method but once no error is detected, all methods of the overloaded method of the
prototype are considered correct (with relation to its signature). Before proceding, remember that the
name of a method is composed by joining each of its keywords followed by the number of parameters
followed by a white space. The last space is discarded. So the name of method

func at: Int n with: String s, Long k add: Person p -> Boolean { ... }

is
"at:1 with:2 add:1"

The signature of a method is composed by the keywords and the full name of the parameter types and
return value type. Then the signature of the above method is

1this may change later.

87

at: Int with: String, Long add: main.Person -> Boolean

Prototypes of package cyan.lang are not preceded by the package name.
Consider a method m not preceded by overload whose signature is ms. m is declared in a prototype P.

During the semantic analysis, the Cyan compiler does some checkings on m. The compiler search for all
public and protected methods with the same name in P and its superprototypes putting the list of methods
found in msList. The search includes m itself. The compiler searches for all methods with the same name
as m in all interfaces implemented by P putting the list of method signatures found in interMSList. Then
interMSList contains zero or one signatures because interfaces cannot declare or inherit methods with
di�erent signatures and the same name. The list of all public and protected methods declared in P with
the same name as m is put in list pmsList (so pmsList is a subset of msList and it does not include
inherited methods). The rules for the validity of the declaration of m are given below.

(a) If msList has just method m and interMSList is empty, the declaration of m is correct. If interMSList
is not empty, it should have just one method since interfaces cannot declare overloaded methods. If
the single method signature of interMSList is di�erent from the signature of m then the declaration
of m is incorrect;

(b) Suppose all methods of msList are in P (pmsList is equal to msList) and pmsList has more than
one element. The declaration of the methods of pmsList are correct if:

(i) each two methods of pmsList have di�erent signatures;

(ii) all methods of pmsList have the same return value type;

(iii) the �rst textually declared method is preceded by keyword overload. No other method is
preceded by this keyword;

(iv) if one method of pmsList is �nal, all methods of this list should be �nal too. If it is not �nal,
no method of the list should be �nal;

(v) no method of pmsList is protected or abstract;

(vi) interMSList should be empty.

(c) Suppose there is at least one method in msList that is in a superprototype and:

(i) no method of msList is preceded by overload;

(ii) there is just one method in pmsList. It should be preceded by �override�;

(iii) the return value type of m is a subtype of the return value type of m1, which is the �rst method
with name equal to m found in a search starting in the superprototype of P and continuing
upwards;

(iv) all methods of msList have the same signature except for the return value type. That would
mean that each method of msList is in a di�erent prototype;

(v) if the method of pmsList is protected, so are all the methods of the list msList.

Then the declaration of the method of pmsList is correct even if interMSList contains an element.

(d) Suppose there is at least one method in msList that is in a superprototype and there are at least two
methods of msList that have di�erent signatures. That includes the case in which pmsList has two
methods (since they have the same name, they must have di�erent signatures). The declaration of
the methods of pmsList are correct if:

(i) each two methods of pmsList have di�erent signatures. Note that pmsList may have just one
element, m, although msList should have at least two elements;

88

(ii) all methods of pmsList are preceded by keyword �override�;

(iii) all methods of pmsList have the same return value type;

(iv) let Q be the �rst direct or indirect superprototype of P that declares a method with the same
name as m and directSMList be the list of methods of Q that have the same name as m. All
methods of directSMList have the same return value type R. The return type of all methods of
pmsList should be subtype of R;

(v) let T be the superprototype of P that declares a method with the same name as m and that is
higher in the P hierarchy. That is, no superprototype of T declares a method with the same name
as m. Then the �rst textually declared method of T should be preceded by keyword overload.
No other method in the P hierarchy should be preceded by this keyword;

(vi) either none or all methods of pmsList are �nal;

(vii) no method of pmsList is protected or abstract;

(viii) interMSList should be empty.

If a method m of a prototype P is declared with the overload keyword, then:

(a) no method with the same name should have been declared textually before it in the prototype hi-
erarchy. That includes P and its superprototypes. That is, m should not override a superprototype
method;

(b) no interface implemented by P should declare a method with the same name as m;

(c) no method with the same name in the prototype should be abstract;

(d) if the method is �nal, all methods with the same name should be �nal too. If it is not �nal, no method
with the same name can be �nal;

(e) the return value type of all methods with the same name as m in P should be the same.

Let us see some incorrect examples:

object MyBlackBoard

func draw: Square f { ... }

overload // second method, compile-time error

func draw: Triangle f { ... }

func draw: Circle f { ... }

func draw: Shape f { ... }

private String name

end

open

object A

func draw: Square f { ... }

end

object B extends A

func draw: Shape p { ... }

end

Method draw of A should have been declared as overload.

89

interface I

func draw: Shape

end

object A

func draw: Square f { ... }

end

object B extends A implements I

func draw: Square p { ... }

override

func draw: Shape p { ... }

end

B should implement �draw: Shape� thus becoming draw in an overloaded method. Then A should have
declared this method as an overloaded method.

In a message send, the method found at compile-time may be di�erent from the method called at
runtime. This is true regardless the method found at compile-time is an overloaded method or not. If
the method found at compile-time is an overloaded method, the runtime search for a method is as usual
starting from the runtime prototype of the receiver and proceding to the top of the hierarchy (Any).
However, there may be, in a prototype, two or more methods that have the name of the method found
at compile-time. The compiler tests whether one of these methods, in the textual declaration order,
can accepts parameters of the message send. To accept a parameter, each runtime argument should be
subtype of the declared parameter of the method. If no method of the prototype can accept the runtime
parameters, the search for a method continues at the superprototype.

To make the mechanism clearer, study the example below. Assume that Grass, FishMeat, and Plant

are prototypes that inherit from prototype Food.

open

object Animal

overload

func eat: Food food { Out println: "eating food" }

end

object Cow extends Animal

override

func eat: Grass food { Out println: "eating grass" }

end

object Fish extends Animal

override

func eat: FishMeat food { Out println: "eating fish meat" }

override

func eat: Plant food { Out println: "eating plants" }

end

object Program

func run {

var Animal animal;

var Food food;

90

animal = Cow;

animal eat: Grass; // prints "eating grass"

animal eat: Food; // prints "eating food"

// the next two message sends prints the same as above

// the static type of the parameter does not matter

food = Grass;

animal eat: food; // prints "eating grass"

food = Food;

animal eat: food; // prints "eating food"

animal = Fish;

animal eat: FishMeat; // prints "eating fish meat"

animal eat: Plant; // prints "eating plants"

animal eat: Food; // prints "eating food"

// the next two message sends prints the same as above

// the static type of the parameter does not matter

food = FishMeat;

animal eat: food; // prints "eating fish meat"

food = Plant;

animal eat: food; // prints "eating plants"

food = Food;

animal eat: food; // prints "eating food"

}

end

4.15 Nil and Any, the superprototype of Everybody

Nil is a prototype outside the type hierarchy. It is not supertype or subtype of any other prototype.
Therefore a variable whose type is Nil can only be assigned the value Nil. And Nil can only be assigned
to a variable whose type is Nil. But when using dynamic typing this rule should not be obeyed. As
shown in Section 5, Nil is also compatible with type Dyn. Any expression can be assigned to a variable
whose type is Dyn and an expression whose type is Dyn can be assigned to any variable. That is, Dyn is
supertype and subtype of anything, including Nil. See the example.

var Nil myEmptyness;

myEmptyness = Nil; // ok

var String s;

s = myEmptyness; // compile-time error

s = Nil; // compile-time error

myEmptyness = s; // compile-time error

Dyn myDyn = Nil; // ok

The declaration of Nil is given below. This prototype de�nes some basic methods that are not really
necessary but were included to make Nil and Any have a common interface. Then there will never be an
error if a message println is sent to a Dyn expression.

package cyan.lang

91

object Nil

func prototypeName -> String

func asString -> String

func asString: (Int ident) -> String

func print

func println

func == (Dyn other) -> Boolean

func === (Dyn other) -> Boolean

func != (Dyn other) -> Boolean

func !== (Dyn other) -> Boolean

end

Prototypes that are declared without explicitly extending a superprototype in fact extend an object
called Any. Therefore Any is the superprototype of every other object but Nil. It de�nes some methods
common to all objects such as asString, which converts the object data to a format adequate to printing.
For example,

Rectangle width: 100 height: 50

Rectangle set 0, 0;

Out println: (Rectangle asString);

could print something like

Rectangle {

w: 100

h: 50

x: 0

y: 0

}

Method asString: Int n also converts its receiver to a String. However, it does that with an identation
of n white spaces. The indentation is made with defaultIdentNumber white spaces. This is a shared
variable declared in Any.

The methods declared in Any are given below. The method bodies are elided.

package cyan.lang

public object Any

func eq: (Dyn other) -> Boolean

func neq: (Dyn other) -> Boolean

func prototype -> Any

final func prototypeName -> String

final func prototypeParent -> Any

final func prototypePackageName -> String

final func isInterface -> Boolean

final func isA: (Any proto) -> Boolean

final func notIsA: (Any proto) -> Boolean

final func throw: (CyException e) -> Dyn

func clone -> Any

92

final

func ++ (Any other) -> String

func asString -> String = asString: 0;

func asString: (Int ident) -> String

func asStringThisOnly: Int ident -> String

func asStringQuoteIfString -> String

func == (Dyn other) -> Boolean

func === (Dyn other) -> Boolean

func != (Dyn other) -> Boolean

func !== (Dyn other) -> Boolean

func isCase: (Any other) -> Boolean

func assertxx: (Boolean expr)

func assertxx: Boolean expr, String message

func print

func println

func toAny: Dyn elem -> Any

final

func featureList -> Array<Tuple<key, String, value, Any>>

final

func featureList: (String slotName) -> Array<Tuple<key, String, value, Any>>

final

func slotFeatureList -> Array<Tuple<slotName, String, key, String, value, Any>>

final

func annotList -> Array<Any>

final

func annotList: (String slotName) -> Array<Any>

func doesNotUnderstand: (String methodName, Array<Array<Dyn>> args) -> Dyn

final

func functionForMethod: String signature -> Any

final func functionForMethodWithSelf: String signature -> Any

func hashCode -> Int

end

Method prototype returns the prototype of an object. It is added to the compiler to every prototype
� the cannot be user de�ned. Its return value type is the prototype. Then in a prototype Student

method prototype is

func prototype -> Student

Methods new and new: are added to the prototype if it de�nes the correspondent init and init: methods.
Note that some of the Any methods are �nal and therefore they cannot be user-de�ned. As an example,

prototypeName is �nal.
Method eq: returns true if self and the parameter reference the same object, false otherwise.

This method is not �nal but it can only be overridden in the basic subprototypes, including String (a
metaobject checks that). For the basic types, excluding Nil, method eq: compares the contents of the
receiver object with the parameter. It is equivalent to ==.

Method prototypeParent returns the parent prototype of the receiver determined at runtime.

var Person p = Person("fulano", 32);

assert p parent == Person prototypeParent;

93

Method prototypeParent of an interface always return Any even if the interface inherits from several
other ones. When the receiver of message prototypeParent is Any, the value returned is Any. A future
change is to make prototypeParent return Any|Nil. Then prototypeParent on Any would return Nil.

Method isInterface returns true if the receiver is an interface. It cannot be rede�ned. Method
isA: returns true if the prototype of self is the same as proto or a descendent of it. Parameter proto
should be a prototype, which is checked by a metaobject. Assuming that Circle inherits from Elipse

that inherits from Any, we have

var Elipse e = Elipse(...); // elided

var Circle c = Circle x: 100 y: 200 radius: 30;

assert c isA: Elipse && c isA: Circle;

assert c isA: Any && Circle isA: Any && Circle isA: Circle;

Method notIsA: return the negation of isA:.
Method throw: throws the exception that is the parameter. See more on Chapter 11. hashCode

returns an integer that is the hash code of the receiver object (this needs to be better de�ned).
The compiler adds method clone to every prototype that does not de�ne this method. If a prototype

de�nes clone, the compiler checks whether it has the correct method signature. clone returns a cloned
copy of self. It is used shallow copy. Method asString returns a string with the content of self. It can
and should be override to give a more faithful representation of the object. Method == returns the same
as eq: by default. But it can and should be user-de�ned. In the basic types, it returns true if the values
are equal. Method != returns true if == returns false and vice-versa. Method isCase: is the same as
== in Any. This method will be used in a switch statement that will be added to the language.

Method assertxx: takes a boolean expression as parameter and throws exception ExceptionAssert

if expr is false. Methods print and println print information on the receives using methods print: and
println: of prototype Out.

A feature is a metadata composed by a name and a value that can be attached to a prototype,
�eld, shared variable, or method. Any de�nes methods for retrieving features from the prototype and its
methods and �elds.

package main

// feature attached to a prototype

@feature(xmlRoot, "A_person")

@init(name, age, city)

object Person

func getName -> String = name;

func getAge -> Int = age;

func getCity -> City = city;

// feature attached to a field

@feature(xmlElement, "PersonName")

String name

@feature(xmlElement, "PersonAge")

Int age

@feature(xmlElement, "PersonCity")

City city

// feature attached to a method

@feature(aName, "a complex name")

func at: Int n with: String s { }

94

@feature(over1, "at(Int)")

overload

func at: Int n { }

@feature(over2, "at(String)")

func at: String s { }

end

Method featureList returns an array with all features of the prototype. Method

func featureList: (String slotName) -> Array<Tuple<key, String, value, Any>>

returns the feature list of slot slotName, which may be the name of a �eld, method, or shared variable
declared in the prototype. The method name includes the types of the parameters but not the return
value type. This table gives several method names

method method name for featureList:
+ -> Int "+"

+ Int -> Int "+ Int"

at: Int -> Int "at: Int"

at: cyan.lang.Int,

String with: Person p -> String "at: cyan.lang.Int, String with: Person p"
Unfortunately, the parameter slotName should be exactly as in the declaration. Which is not well

speci�ed. For example, a method
add: Table t

has name "add: Table" without any speci�cation on the package of Table. And if a method is declared
as

add: cyan.lang.Int elem

its name should be considered
"add: cyan.lang.Int"

and not the simpler
"add: Int"

It is not necessary to say that this is a �aw in the language that will be corrected in a near future.
Method featureList of Any returns a list of features of the prototype of the receiver:

for t in any featureList {

Out println: "key = ", t key, " value = ", t value;

}

Method slotFeatureList returns a list of all features of all slots of the prototype of the receiver.
Annotations are a special case of features. An attachment
@annot(#root)

is the same as
@feature("annot", #root)

Method annotList returns a list of annotation objects attached to the prototype. Method

func annotList: (String slotName) -> Array<Any>

returns the annotation list of slot slotName. For methods, slotName is the concatenation of the keywords
Method doesNotUnderstand: is called whenever a message is sent to the object and it does not have

an appropriate method for that message. The message name (as a symbol) and the arguments are passed
as arguments to doesNotUnderstand:. This method ends the program with an error message. The name
of a message is the concatenation of its keywords. The name of message

95

ht at: i put: obj with: #first

is �at:put:with:�. The name is also called the �selector� of the message.
Since Cyan is statically typed, regular message sends will never cause the runtime error �method not

found�. But that can occur with dynamic message sends such as

var Int n = 0;

var Dyn d = 0;

n ?push: 10; // runtime error

// runtime error if the previous line is commented

d at: 0 put: 10;

The second argument to method doesNotUnderstand: is an array whose elements are arrays, each one
grouping the parameters of each keyword. Then if method format:print:to: does not exist in object x,
the call

x format: "%d%s%i" print: n, name, age to: output

will cause method doesNotUnderstand: to be called with parameter

[

[first0],

[first1, name, age],

[first2]

]

in which

var Dyn first0 = "%d%s%i";

var Dyn first1 = n;

var Dyn first2 = output;

The last assignments assure that the array is of type Array<Dyn>.
There are several missing methods in Any related to re�ective introspection. These re�ective intro-

spection methods will be added to Any in a near future.

4.16 Abstract Prototypes

Abstract prototypes in Cyan are the counterpart of abstract classes of class-based object-oriented lan-
guages. The syntax for declaring an abstract prototype is

package myShapes

abstract object Shape

func init: Int newColor {

color: newColor;

shapeColor = 0;

}

abstract func draw

func color -> Int = shapeColor;

func color: Int newColor { shapeColor = newColor }

Int shapeColor

end

96

An abstract prototype is considered �open�. It is not necessary to put this word before the prototype
declaration. However, to restrict the subprototypes to be package of the abstract prototype, one may use
�open(package)�.

An abstract method is declared by putting keyword �abstract� before �func� and it can only be
declared in an abstract prototype, which may also have non-abstract methods and �elds. A subprototype
of an abstract prototype may be declared abstract or not. However, if it does not de�ne the inherited
abstract methods, it must be declared as abstract.

Overloaded methods cannot be abstract. Future versions of Cyan may allow that.
It is a compile-time error to send a message new or new: to an abstract prototype. Since these methods

can only be called through a prototype, no object will ever be created from an abstract prototype. Methods
new and new: cannot be called even using re�ection:

var shape = Shape;

// prints 'Any', the superprototype of Shape

(shape ?new) prototypeName println;

// compile-time error

(Shape ?new) prototypeName println;

It is not a compile-time error to call other methods of an abstract prototype:

Shape prototypeName println; // ok, prints "Shape"

Shape draw; // runtime error

let Any any = Shape;

any prototypeName println; // ok, prints "Shape"

any draw; // runtime error if previous error is commented

let Dyn dyn = Shape;

dyn prototypeName println; // ok, prints "Shape"

dyn draw; // runtime error if previous errors are commented

If the method called is abstract, as draw, there will be a runtime error. An exception will be thrown because
the compiler adds a body to every abstract method. This body throws an exception ExceptionCannotCallAbstractMethod:

func draw {

throw: ExceptionCannotCallAbstractMethod("myShapes.Shape::draw")

}

init and init: methods may be declared � they may be called by subprototypes.
An abstract prototype can inherit from a non-abstract prototype. However, an abstract method cannot

override an inherited method.
Objects are concrete things. It seems weird to call a concrete thing �abstract�. However, this is not

worse than to call an abstract thing �abstract�. Classes are abstraction of objects and there are �abstract
classes�, an abstraction of an abstraction.

Suppose an abstract prototype Solid inherits from abstract prototype Shape. If Solid declares an
abstract method draw, this should be preceded by keyword abstract:

abstract object Solid extends Shape

abstract override

func draw

end

97

4.17 Types and Subtypes

A type is a prototype (when used as the type of a variable or return value) or an interface. Subtypes are
de�ned inductively. S is subtype of T if:

(a) S extends T (in this case S and T are both prototypes or both interfaces);

(b) S implements T (in this case S is a prototype and T is an interface);

(c) S is a subtype of a type U and U is a subtype of T.

Then, in the fake example below, I is supertype of every other type, J is supertype of I, J and D are
supertypes of E, and B is supertype of C, D, and E.

interface I end

interface J extends I end

open

object A implements I end

open

object B extends A end

open

object C extends B end

open

object D extends C implements J end

open

object E extends D end

Considering that the static type or compile-time type of s is S and the static type of t is T, the
assignment �t = s� is legal if S is a subtype of T. Using the previous example, the following declarations
and assignments are legal:

var I i;

var J j;

var A a;

var B b;

var D d;

var E e;

i = j; i = a; a = e; i = a;

j = d; b = d; j = e;

There is a prede�ned function typeof evaluated at compile-time that return the type of an expression.
In the example

var Int x;

var typeof(x) y;

x and y have both the Int type. typeof works even with expressions, which are not evaluated at runtime:

var typeof(1 + 2) result;

assert result prototypeName == "Int";

result will have the type Int.

98

4.18 Union Types

The language supports type unions that is the union of two or more types.

var String|Int si;

si = 0;

assert si == 0;

si = "zero";

assert si == "zero";

An union type is a virtual type; that is, a type for which there is no prototype. There is a restriction in
relation to an union T1, T2, ... Tn: if j ⩾ i, then Ti cannot be supertype of Tj . Hence, Any|Int is
illegal because Any is supertype of Int. A special case of the second rule is that type cannot be repeated:
Int|Int is illegal.

The type checking rules for unions are those expected:

(a) A is a supertype of T1|T2| ... |Tn if A is a supertype of every Ti for 1 ⩽ i ⩽ n;

(b) T1|T2| ... |Tn is a supertype of A if there is a Tj that is supertype of A;

(c) T1|T2| ... |Tn is a supertype of U1|U2| ... |Um if, for each Uj , 1 ⩽ j ⩽ m, there is a Ti,
1 ⩽ i ⩽ n, such that Ti is a supertype of Uj .

Assume B and C inherits from A, D inherits from C. All prototypes declare an init method. The example
shows some legal assignments.

var Any any = Any;

var A a = A();

var B b = B();

var C c = C();

var D d = D();

var B|C bc = b;

a = bc;

// b = bc; // error

any = bc;

var D|C dc = c;

// var C|D cd; // D should come first

c = dc;

a = dc;

bc = d;

var B|D bd = b;

bc = bd;

var Any|Nil anil = bd;

anil = bc;

anil = Nil;

var Dyn dyn = anil; // or anything

var B|Dyn bdyn = anil; // or anything

An expression whose type is an union can only receive messages == and !=. If other methods need to
be called, use the type-case statement. In this example, assume Shape is a superprototype of Circle.

var Circle|Shape join;

...

99

type join

case Circle aCircle {

("join is a Circle with radius " ++ aCircle radius) println

}

case Shape aShape {

"join is a Shape" println

}

The type-case rules apply: the type of a case clause cannot be a subtype of the type of a previous clause
and each case type should be a subtype of the expression type.

Unions are an alternative to method overloading. Instead of declaring several methods, one for each
parameter type, there may be a single method:

object Company

...

func apply: Manager|Director futureEmployee { ... }

Array<Manager | Director> employeeList;

end

4.19 Tagged Unions

The generic prototype Union of package cyan.lang is used for tagged unions. An instantiation of this
prototype should have the format

Union<id1, T1, ... idn, Tn>

in which idi is a lower case identi�er and Ti is any Cyan type but Nil. Each object keeps just one object
at a time, tagged with the identi�er. For each identi�er idi associated with type Ti, the union declares a
method:

func idi: Ti elem -> Union< id1, T1, ... idn, Tn>

idi: is used to store an element to the union object and associate it with idi. self is the value returned
by this method. The stored object can only be retrieved using statement type-case.

// create the union object

var myUnion = Union<number, Int, numberStr, String> new;

// myUnion = "12"; // compile-time error if uncommented

// associate 'number' to 12

myUnion number: 12; // ok

myUnion numberStr: "12"; // ok

type myUnion

case Int number {

(1 + 2*number) println

}

case String numberStr {

if numberStr startsWith: "1" { numberStr println }

}

100

The type-case statement should have one case clause for each tag of the union, in the order the tags
appear in the Union prototype. The variable name of each case clause should be the tag. Since the
identi�ers identify the value kept by the tagged union object, types can be repeated.

var enery = Union<wattHour, Double, calorie, Double, joule, Double> new;

energy wattHour: 314.15;

type energy

case Double wattHour {

"watt-hours: $wattHour" println

}

case Double calorie {

"I had $calorie calories" println

}

case Double joule {

"I had $joule joules" println

}

The types of union elements can be other tagged or non-tagged unions.

var chother = Union<ch, Char, other, String>();

chother other: "aaa";

var agename =

Union<age, Int, name, Union<ch, Char, other, String>>();

agename name: chother;

type agename

case Int age { printexpr age; }

case Union<ch, Char, other, String> name {

type name

case Char ch { printexpr ch; }

case String other { printexpr other; }

}

var p = Union<age, Int, name, Char|String>();

p name: 'a';

type p

case Int age { printexpr age; }

case Char|String name {

type name

case Char ch { printexpr ch; }

case String other { printexpr other; }

}

4.20 Interoperability with Java

Not surprisingly, Cyan code call use Java classes. A Java class/interface can be the type of a �eld, local
variable, parameter, or return value of a method. A Java package can be imported, a Java class can be
imported. Java objects can be created and messages can be sent to them using Cyan syntax. Objects
of the wrapper classes of Java are automatically converted to the corresponding Cyan prototypes and

101

vice-versa (Byte, Integer, Short, Long, Character, Boolean, Float, Double). Idem for values of the
basic Java types (byte, int, short, long, char, boolean, float, double). Assignments from anything
to java.lang.Object are allowed.

package javaInter.main

// import Java package

import java.util

import java.lang

// import Java class

import java.io.File

object JavaTest1

// field whose type is a Java class

var java.lang.StringBuffer sbWorker

// return value is a Java class

func retSB -> StringBuffer {

// Cyan syntax for creating an object of

// a Java class. There is automatic conversion of

// "a" from Cyan to a Java string

return StringBuffer("a");

}

// parameter type is a Java class

func retSB: StringBuffer sb -> String {

// automatic conversion from Java string to Cyan string

// 'sb toString' is the sending of a message in Java.

let String s = sb toString;

// return s OR just the line below

return sb toString;

}

func test {

// automatic conversion

var Int n = Integer(0);

assert n == 0;

n = Integer new: 1;

assert n == 1;

var String s = self retSB toString;

s println;

(self retSB: StringBuffer("abc")) println;

/*

self retSB toString println

does not work. The type of 'self retSB toString' is java.lang.String

which does not have a 'println' method.

*/

// conversion from 'int' of Java to 'Int' of Cyan

n = java.lang.String("abc") length;

102

// assignments from anything to java.lang.Object

// are allowed

var java.lang.Object obj = 0;

obj = "ok";

obj = String;

}

end

There is automatic conversion from Integer and int to Int in array indexing. Java arrays can be
declared as in Java. Only one-dimensional arrays are supported.

package javaInter.main

// import Java package

import java.util

// import Java class

import java.io.File

import java.lang

object JavaTest2

func test {

var intArray = [7, 2, 3];

// convertion from Java Integer(0) to Cyan 0

assert intArray[Integer(0)] == 7;

assert intArray[0] == 7;

// convertion from Java Integer(9) to Cyan 9

intArray[0] = Integer(9);

assert intArray[0] == 9;

assert intArray[Integer new: 2] == 3;

}

func messagePassingJavaTest {

// File is a Java class

var File file;

file = File new: "C:\\Dropbox\\Cyan";

// message send in Java

if file isDirectory {

Out println: (file getCanonicalPath), " is a directory"

}

// message send in Java

file setReadable: true;

let ok = true;

// conversion of Boolean 'ok' in Cyan to boolean 'ok' in Java

file setReadable: ok;

// a Java array

103

let File [] fileList = file listFiles;

// for does not work with Java arrays yet

for n in 1..<fileList length {

// indexing with a Java array

let File ff2 = fileList[n];

// Out println: ff2 getCanonicalPath;

}

var java.lang.StringBuffer sb = java.lang.StringBuffer();

sb append: "Append in String Buffer!";

let String ssss = sb toString;

assert ssss == "Append in String Buffer!";

// conversion of Cyan string to Java string

var java.lang.String js = "abcdef";

js = "a b c d";

// automatic type for Java local variable

// strArray has type java.lang.String[]

var strArray = js split: " ";

// conversion from Java string to Cyan string

var String cyanStr = strArray[0];

assert cyanStr == "a";

// indexing of a Java array

cyanStr = strArray[1];

assert cyanStr == "b";

cyanStr = strArray[2];

assert cyanStr == "c";

/* the code

assert cyanStr[2] == "c";

does not work. cyanStr[2] has type java.lang.String and therefore the '=='

operator

used is that of Java. It compares the pointer, not the contents as in Cyan.

*/

}

end

Generic classes of Java can be used but there should be no restrictions on the type parameters. The
real type parameters can be both Java classes and Cyan prototypes.

package javaInter.main

// import Java package

import java.util

// import Java class

import java.lang

104

object JavaTest3

func test {

// parameter to ArrayList is Int, a Cyan prototype

var ArrayList<Int> intArray = ArrayList<Int> new;

intArray add: 88;

intArray add: 99;

var Int n = intArray get: 0;

assert n == 88;

n = intArray get: 1;

assert n == 99;

// parameter to ArrayList is StringBuffer, a Java class

var ArrayList<StringBuffer> strArray = ArrayList<StringBuffer> new;

strArray add: StringBuffer("aaa");

strArray add: StringBuffer("bbb");

var String s = strArray get: 0;

assert s == "aaa";

s = strArray get: 1;

assert n == "bbb";

var java.util.Set<Int> iset = java.util.HashSet<Int>();

iset add: 0;

iset add: 1;

iset add: 2;

var Boolean b = iset contains: 0;

assert b;

b = iset contains: 1;

assert b;

/*

just

assert iset contains: 1;

does not work. The return type of 'iset contains: 1' is java.lang.boolean

which is not automatically cast to Boolean. Macro assert in fact sends

unary message '!' to the expression.

*/

b = iset contains: 3;

assert !b;

}

end

Generic prototypes of Cyan can take Java classes as real parameters. However, due to the fact that
every Cyan prototype inherits from Any, this will hardly work.

105

package javaInter.main

open

object GP<T>

func init: T elem { self.elem = elem }

func get -> T = elem;

func set: T elem { self.elem = elem }

func getStr -> String {

var java.lang.Object any = elem;

var String s = any toString;

return s

}

var T elem

end

Note the method getStr of prototype GP. The prototype expects a Java class as real parameter to the
generic prototype. Therefore it uses special code to deal with Java objects. This prototype can be used
as in the next example.

package javaInter.main

import java.lang

object JavaTest4

func test {

let a56 = GP<Integer>(9);

assert a56 getStr == "9";

a56 set: Integer(5);

assert a56 getStr == "5";

}

end

Java Boolean and boolean values can be used in if, while, and repeat-until statements.

package javaInter.main

import java.lang

object JavaTest5

func ifWhileTest {

var java.lang.Boolean b = false;

106

if b { assert false; }

else {

assert true;

}

b = true;

if b { assert true; }

else {

assert false;

}

while b {

b = false

}

var Boolean ok = b;

assert !ok;

}

end

There are some limitations on the use of Java inside Cyan code:

(a) whenever a prototype T and a Java class or interface T is imported, the compiler will use the prototype.
The collision of names will not be considered an error. Then the word �String� in a Cyan code will
always mean the Cyan prototype even when package �java.lang� is imported. To use the Java class,
pre�x it with the package:

java.lang.String

(b) the Java basic types, int, char, etc cannot be used in a Cyan code. They do not belong to package
java.lang, they are native to Java. Use the wrapper classes (Integer, Character, etc) instead. If
a method returns an array of a basic type, use a Java class that casts this array to an array of a
wrapper class.

class CastArray {

public Integer[] intToInteger(int []v) {

Integer []newV = new Integer[v.length];

int i = 0;

for (int elem : v) {

newV[i] = elem;

++i;

}

return newV;

}

}

This is awful;

(c) null of Java cannot appear in a Cyan code. Use prototype cyan.lang.Null to get the null value.
It is returned by

Null getNull

107

To compare an expression expr to null, use

Null equalNull: expr

It returns a Boolean object. Note that

expr == Null getNull

will not work. The compiler will look for a method _equal_equal (or something similar) in the class
of expr. It will not use the original == method of Java.

(d) a Cyan prototype cannot inherit from a Java class because it must inherit, even indirectly, from Any;

(e) for statements do not accept Java types. They will do some day;

(f) Java methods that take a variable number of parameters cannot be called in Cyan.

The above limitations restric the usability of the mixing Cyan and Java. However, future versions of Cyan
may improve the communication between the two languages.

Objects of basic Cyan types are used to do the communication between the Cyan code and the Java
code inside Cyan code. Then the two codes are relatively separated from each other.

In order to use Java classes, it is necessary tell the compiler where to �nd the jar �les with the Java
packages � the Java code must be in a jar �les. This is made with the compiler option �-cp� as in

saci "C:\Dropbox\Cyan\cyanTests\master"

-cyanlang "C:\Dropbox\Cyan\lib"

-cp "C:\Dropbox\Cyan\external-Java-libs\javassist.jar"

Option �-java� may be used if only the packages of the basic libraries of Java, �le �rt.jar�, will be used.

saci "C:\Dropbox\Cyan\cyanTests\master"

-cyanlang "C:\Dropbox\Cyan\lib"

-java

Caveat: interoperability with Java has not been thoroughly tested.

4.21 Future Enhancements

Operator | may be used as a method name. It is in prototype Int, for example. A future version of the
language will use | only for unions. It will not be possible to use it as a method name.

Type Dyn is not a real prototype, it is virtual because there is not a source code associated to it. Then
this type can appear as type where only types are expected, as variable type or return value type. But
Dyn cannot receive a message in an expression:

var String s;

s = Dyn prototypeName; // compile error

Dyn is the only prototype of this kind in Cyan. Future versions of Cyan will make every non-tagged Union

prototype virtual too. This saves the creation of an object for a union. The language will be faster.
The language may support the Elvis operator, Nil-safe message sends, and Nil-safe array access.

They will be as follows.

108

The Elvis operator would be implemented as a method ifNil:, Nil-safe message sends would have all
keywords pre�xed with ?., and Nil-safe array access would be made with ?[and]?. See the examples.

var String userName;

// getUserName is a method name

var Nil|String gotUserName = UserDataBase getUserName;

userName = ifNil gotUserName, "anonymous";

The last line is the same as

type gotUserName

case String s99 {

userName = s99

}

case Nil {

userName = "anonymous"

}

Nil-safe message send:

var Nil|IndexedList<String> v;

// it may associate Nil to v

v = obj getPeopleList;

v ?.at: 0 ?.put: "Gauss";

The last line is the same as

type v

case IndexedList<String> v8 {

v8 at: 0 put: "Gauss";

}

Or the same as

cast v8 = v {

v8 at: 0 put: "Gauss";

}

There should not be any space between the ?. and the keyword. And all keywords of a message
should be preceded by ?. in a Nil-safe message send.

Nil-safe array access:

var Nil|Array<Person> clubMembers;

...

var firstMember = clubMembers?[0]?;

The last line is the same as

var Person|Nil firstMember;

cast c2 = clubMembers {

firstMember = c2[0];

}

else {

firstMember = Nil

}

109

A code

if clubMembers != Nil {

clubMembers[0] = "Newton"

}

is equivalent to

clubMembers?[0]? = "Newton";

We can use all features at the same time:

var Nil|Array<Nil|Person> clubMembers;

...

var String firstMemberName = ifNil (clubMembers?[0]? ?.name), "no member";

110

Chapter 5

Dynamic Typing

A dynamically-typed language does not demand that the source code declares the type of variables,
parameters, or methods (the return value type). This allows fast coding, sometimes up to ten times faster
than the same code made in a statically-typed language. All type checking is made at runtime, which
brings some problems: the program is slower to run and it may have hidden type errors. When a type
error occur, an exception is thrown. Statically-typed languages produce faster programs and the type
errors are caught at compile time. However, program development is slower.

The ideal situation is to combine both approaches: to develop the program using dynamic typing and,
after the development ends, convert it to static typing. Cyan o�ers some mechanisms that help to achieve
this objective, described next.

A message send whose keywords are preceded by ? is not checked at compile-time. That is, the
compiler does not check whether the static type of the expression receiving that message declares a
method with those keywords. For example, in the code below, the compiler does not check whether
prototype Person de�nes a method with keywords name: and age: that accepts as parameters a String

and an Int.

var Person p;

...

p ?name: "Peter" ?age: 31;

The receiver of a message of this kind cannot be super. That would not make sense because message
sends to super are static calls. We know which method will be called at compile-time.

This non-checked message send is useful when the exact type of the receiver is not known:

func openArray: (Array<Any> anArray) {

anArray foreach: { (: Any elem :)

elem ?open

}

}

The array could have objects of any type. At runtime, a message open is sent to all of them. If all
objects of the array implemented an IOpen interface,1 then we could declare parameter anArray with
type Array<IOpen>. However, this may not be the case and some kind of dynamic message send would
be necessary to call method open of all objects.

The expression that receives a ?-message cannot be a prototype:

var a = A ?new;

1With a method open.

111

If every message keyword (such as open in the above examples) is preceded by a ? we have transformed
Cyan into a dynamically-typed language. If just some of the keywords are preceded by ?, then the program
will use a mixture of dynamic and static type checking.

Keyword Dyn is used for a dynamic type in Cyan. Dyn is not a prototype. It is a virtual type2 that
is supertype and subtype of every other prototype including Nil. Therefore assignments to and from Dyn

are always legal at compile-time. At runtime there is a check in assignments from Dyn to any other type
(that includes, of course, parameter passing, which is a kind of assignment, and return value of methods).
At runtime the Dyn expression should refer to a prototype that is subtype of the type of the left-hand side
variable.3

var Person p;

var Dyn dynVar;

...

p = dynVar;

In the assignment the compiler inserts a check to verify whether dynVar refer to an object whose type
is subtype of Person (which includes Person). Nil can be assigned to a Dyn variable and an expression
whose type is Dyn can be assigned to a variable whose type is Nil.

Assignments whose left-hand side is Dyn need not to be checked either at compile or runtime. Since
Dyn is not a prototype, it cannot be used as an expression:

(Dyn prototypeName) println; // compile-time error

A message sent to a receiver whose type is Dyn is not checked by the compiler. The return value type
of the message send is considered to be Dyn too. Then if the type of a variable is Dyn we can send to it a
regular message, without ? preceding the keywords.

var Dyn p = Person;

p name: "Peter" age: 31;

The compiler will not do any checking. This is equivalent to declare p with any other type and use ?

before the keywords. Dyn is considered a supertype and a subtype of any prototype. Of course, it is a
virtual type, there is no source �le �Dyn.cyan�.

The return value type of a message send is considered to be Dyn when the receiver expression has
type Dyn. Therefore the return value is not checked. In this example, the compiler consideres that get:
returns Dyn and, since it is a subtype of Boolean, there is no error.

var Dyn t = MyHashtable<String, String>;

if t get: "one" == "1" {

"found one" println

}

When the return value of a dynamic message is assigned to a variable declared without a type, the
compiler considers that the type of the variable is Dyn, as expected.

// n has type Dyn

var n = obj ?value;

Dynamic message sends, with keywords preceded by ?, plus the re�ective facilities of Cyan can be used
to create objects with dynamic �elds. Object DTuple of the language library is a tuble initially without
�elds, which can be added dynamically:

2Internally the compiler considers that Dyn is a prototype declared in package �cyan.lang�.
3or indexing expression like �a[0] = dynVar�.

112

var t = DTuple new;

t ?name: "Carolina";

// prints "Carolina"

Out println: (t ?name);

// if uncommented the line below would produce a runtime error

//Out println: (t ?age);

t ?age: 1;

// prints 1

Out println: (t ?age);

Here �elds name and age are dynamically added to object t. Whenever a message is sent to an object and it
does not have the appropriate method, method doesNotUnderstand: is called. The original message with
the parameters are passed to this method. Every object has a doesNotUnderstand: method inherited
from Any.

DTuple keeps a list or hash table of pairs �(�eldName, �eldValue)�. Each �eld has the name fieldName
and a value fieldValue. When a DTuple object receives a message id: aValue, method doesNotUnderstand:
is called4 and a search is made in this list or hash table. If no �eld with name id is found, one is created
with value aValue. If a �eld is found, its value is updated to aValue.

When the DTuple object receives a message id and id is not a method declared in DTuple or Any,
method doesNotUnderstand: is called. It searches in the list or hash table for id. If it is not found,
method doesNotUnderstand: of Any is called. If id is found, its value is returned. For more information,
see �le DTuple.cyan in package cyan.lang.

The previous DTuple example can be made more legible by declaring t with type Dyn.

var Dyn t = DTuple new;

t name: "Carolina";

// prints "Carolina"

Out println: (t name);

// if uncommented the line below would produce a runtime error

//Out println: (t ?age);

t age: 1;

// prints 1

Out println: (t age);

Cyan supports the ` operator (backquote, ASCII 96) for calling a method whose keywords are in
string variables. Each keyword used at runtime is the contents of each variable.

var String s = "print";

0 `s;

The last line sends message print to 0.
In a message send with parameters the variable names should be followed by : as usual.

var String s = "at";

var p = "put";

let IMap<String, Int> map = ["two" -> 2];

map `s: "one" `p: 1;

4Unless this is a method of Any.

113

assert map get: "one" == 1

The method to be called has keywords s ++ ":" and p ++ ":", in which ++ is used for concatenating
strings. That is, the method to be called is at:put:. One may add : at the end of the string too:

var s = "at:";

var p = "put:";

let IMap<String, Int> map = ["two" -> 2];

map `s: "one" `p: 1;

assert map get: "one" == 1

Methods whose names are operators may also be called but the backquote variable should be followed
by �:�.

for op in ["+", "*", "-"] {

Out println: (6 `op: 2);

}

// prints 8, 12, 4

Each keyword preceded by backquote should be a variable of type String, CySymbol, or Dyn. It
cannot be a �eld accessed through self as self.name. The receiver of a backquote message send cannot
be super.

The backquote operator cannot be used in a chain of unary message sends. Then it is illegal to write
either

club `first `second

or
club members `second

That is, a chain of message sends in which there is a backquote should have size one.
Language Groovy has this mechanism for message sends:

animal."$action"()

The method of animal called will be that of variable action, which should refer to a String.
During the design of Cyan, several decisions were taken to make the language support optional typing:

(a) types are not used in order to decide how many parameters are needed in a message send. For example,
even if method get: of IMap takes one parameter and put: of MyTable takes two parameters, we
cannot write

let IMap<String, Int> map = ["one" -> 1];

n = MyTable put: map get: "one", j

The compiler could easily check that the intended meaning is

n = MyTable put: (map get: "one"), j

by checking the prototypes IMap and MyTable.

However, if the type of map is Dyn, this checking would not be possible. The type information would not
be availabe at compile time. Therefore Cyan consider that a message send includes all the keywords
that follow the receiver and that are not in an expression within parentheses;

114

(b) when a method is overloaded, the static or compile-time type of the real arguments are not taken
into consideration to chose which method will be called at runtime. In the Animal, Cow, and Fish

example of page 90, the same methods are called regardless of the static type of the parameter to
eat:. Therefore the use of static or dynamic typing does not change the semantics of message passing.
That allows one to change from static to dynamic typing and vice-versa without fear of breaking the
program.

There is one more reason to employ the runtime search algorithm for methods that Cyan uses, which
does not consider the static, compile-time type of the receiver and parameters: the exception system.
Most exception handling systems of object-oriented languages are similar to the Java/C++ system.
There are catch clauses after a try block that are searched for after an exception is thrown in the
block. The catch clauses are searched in the declared textual order. In Cyan, these catch clauses are
encapsulated in eval methods with are searched in the textual order too. The eval methods have
parameters which correspond to the parameters of the catch clauses in Java/C++. The eval methods
are therefore overloaded. The search for an eval method after an exception is made in the textually
declared order of these methods, as would be made in any message send whose correspondent method
is overload. This matches the search for a catch clause of a try block in Java/C++, which appear to
be the best possible way of dealing with an thrown exception. And this search algorithm is exactly
the algorithm employed in every message send in Cyan;

(c) the Cyan syntax was designed in order to be clear and unambiguous even without types in the decla-
ration of variables and parameters. For example, before a local variable declaration it is necessary to
use �var�, which asserts that a list of variables follow, preceeded or not by a type. For example, the
declaration of Int variables in Cyan is

var Int a, b, c;

To declare these variables with type Dyn one can write

var a, b, c;

If an expression is assigned to a variable in its declaration, its type will be the compile-time type of
the expression if the type is not supplied:

var count = 0; // count has type Int

var flavor = "vanilla"; // flavor has type String

If let is used instead of var the expression should always be supplied and therefore read-only variables
will have the type of the expression.

Remember that method parameters without types have type Dyn:

func add: key, value { ... }

Both key and value have type Dyn. The return value type should always be supplied.

115

Chapter 6

Generic Prototypes

Generic prototypes in Cyan play the same role as generic classes and template classes of other object-
oriented languages. Unlike other modern languages, Cyan takes a loose approach to generics. In many
languages, the compiler guarantees that a generic class is type correct if the real parameter is subtype of a
certain class speci�ed in the generic class declaration. For example, a generic class Hashtable takes a type
argument T which should be subtype of Hashable, an interface with a single method hashCode -> Int

(using Cyan syntax). Then whenever one uses Hashtable<A> and A is subtype of Hashable, it is guaranteed
that Hashtable<A> is type correct � the compiler does not need to check the source code of Hashtable<A>
to assert that.

In Cyan, Hashtable has to be compiled with real argument A in order to assure the type correctness
of the code. This has pros and cons. The pro part is that there is much more freedom in Cyan to
create generic prototypes. The con part is that any changes in the code of a generic prototype can cause
compile-time errors elsewhere. Cyan does not supports the conventional approach for two reasons: a)
there would not be any novelty in it (no articles about it would be accepted for publishing) and b) the
freedom given by the de�nition of Cyan generics makes them highly useful � see the examples given here,
in Section 11.5, and in Chapter 7.

There are several ways of declaring a generic prototype in Cyan. In the �rst and simplest way, a list
of parameters is given between < and > after the prototype name:

package ds

object P< T1, T2, ... Tn >

...

end

Parameters T1, T2, . . . Tn are called formal parameters or generic parameters of the generic prototype.
Each of them starts with an upper-case letter.

There should be no space between the prototype name, P, and the character �<�. Space may follow
�<� as in

package ds

object Stack< T >

func push: T elem { ... }

func pop -> T { ... }

func print {

array foreach: { (: T elem :)

116

elem print // message print is sent to an object of type T

}

}

...

end

After importing package ds, that declares Stack, one may use Stack if an argument is supplied:

var Stack<Int> intStack;

var Stack< Person > personStack;

Stack< Stack<Int> > prototypeName print;

intStack push: 0;

personStack push: aPerson;

However, there should be no space between the generic prototype name and �<�. That would cause a
compile-time error. If there is a space between the object name and �<�, the compiler will consider �<� as
the operator �less than�. Then in the code

if Stack < Int > {

"compile-time error in the line above" println

}

the compiler will consider that Stack is receiving message �<� with parameter Int which is followed by
�>�. The Cyan grammar does not allow multiple comparison operators in the same expression (that is,
�a < b < c > d� is illegal) and �>� demands a parameter, which does not appear in the code above.
Therefore there is a compile-time error even before the semantic analysis.

When the compiler �nds �Stack<Int>� in a source code that imports package ds, it creates a brand
new prototype whose name is �Stack<Int>� by replacing the generic parameter T in prototype Stack<T>
by Int. This process is called instantiation of a generic prototype and Int is called a real parameter

or real argument to the generic prototype. There are restrictions on where a formal parameter can
appear in the source code of the prototype (Stack in the example) and when it is replaced by a real
parameter.

A formal parameter may appear as a keyword name (both in a method declaration and in a message
send), type, identi�er in an expression, parameter to an metaobject annotation, and after # (to de�ne a
symbol). No local variable or parameter will have the name of a formal parameter because the former
start with a lowercase letter and the latter with an uppercase letter. In any other case an identi�er equal
to a formal parameter is ignored in the process of instantiation of a generic prototype. That is, the formal
parameter is not replaced by the real parameter in any other case.

More speci�cally, the compiler replaces a formal parameter by a real parameter if it is in a symbol
literal or it is an Id or IdColon of the following grammar rules. Id in QualifId is only replaced if QualifId
appears in the rules below. Only the part of the rules that matters are shown.

QualifId ::= Id { �.� Id }
ExprPrimary ::= QualifId { �<� TypeList �>� }+ [ObjectCreation] |

QualifId { �<� TypeList �>� }+ |

�typeof� �(� QualifId [�<� TypeList �>�] �)�
MetSigUnary ::= Id
SelecWithParam ::= IdColon |

[�[]�] IdColon ParamList
InterMethSig2 ::= Id |

{ IdColon [InterParamDecList] }+

117

SingleType ::= QualifId { �<� TypeList �>� } |

�typeof� �(� QualifId [�<� TypeList �>�] �)�
Annotation ::= �@� Id

[�(� ExprLiteral [�,� ExprLiteral] �)�]
[LeftCharString TEXT RightCharString]

The rule ExprPrimary expands to three things:

(a) a generic prototype instantiation as Array<Int>;

(b) an object creation of a generic prototype instantiation such as
Array<Int>(100)

(c) the typeof compile-time function:

typeof(x) prototypeName;

typeof(Array<Int>) prototypeName;

ExprPrimary expands only inside expressions.
MetSigUnary and SelecWithParam are used to produce names of unary methods and keyword names

of keyword methods. They expand to code like these:

asString

read:

[] at: Int

between: Int start, Int theEnd

These rules are used to produce method signatures:

func asString -> String { ... }

func read: -> Array<Byte> { ... }

func [] at: Int -> Int { ... }

func between: Int start, Int theEnd -> Array<Int> { ... }

InterMethSig2 produces signatures of methods in interfaces. The di�erence with SelecWithParam/Met-
SigUnary is that the type of parameters should appear (this rule is not shown). The examples are the
same as those of SelecWithParam/MetSigUnary.

SingleType produces a type. It may expand to

Person

Array<Int>

typeof(x)

typeof(cyan.lang.Int)

typeof(Array<Int>)

typeof(cyan.lang.Array<Int>)

Annotation expands to a metaobject annotation. It may expand to any of the following.

@checkStyle

@annot("main")

@concept{* T implements I *}

The Id in these rules given above can be generic prototype formal parameters. Then if T is a formal
parameter, the following uses are legal. The lines do not compose a code, they are just a set of examples.

118

myProto = Array<T>;

myArray = Array<T>(100);

var protoName = typeof(T) prototypeName;

var String protoName2 = typeof(Array<T>) prototypeName;

func T -> String { ... }

func T: -> Array<Byte> { ... }

func [] T: Int -> Int

func T: Int start, Int theEnd -> Array<Int> { ... }

T println;

[0] T println;

var T x;

var Array<T> tArray;

var typeof(T) aT;

var typeof(Array<T>) anotherTArray;

var typeof(cyan.lang.Array<T>) anotherTArray;

@annot(T)

@feature(T, T)

A formal parameter can also appear inside the text of an annotation:

package main

@concept{*

T has [func next -> T]

*}

object Element<T>

...

end

Let us see some examples. First a generic interface.

package main

interface InterNice<T>

func add: T -> Int

end

A superprototype used in the next example.

package main

open

object SuperNice<T>

func superMethod: Int n -> Int = n;

end

A nice example with all possible uses of generic prototypes

package main

119

object Nice<T, R, S, AsString> extends SuperNice<T> implements InterNice<T>

func init: T x {

self.x = x;

people = "people";

tArray = Array<T> new;

}

@annot(T)

@feature(AsString, T)

func example {

var typeof(T) aT;

var typeof(Array<T>) aTArray;

var typeof(cyan.lang.Array<T>) anotherTArray;

aTArray = Array<T>();

anotherTArray = Array<T>();

var myProto = Array<T>;

var myArray = Array<T>(100);

var protoName = typeof(T) prototypeName;

var String protoName2 = typeof(Array<T>) prototypeName;

Out println: protoName, protoName2, myProto prototypeName,

myArray prototypeName;

var Boolean found = false;

for elem in annotList {

if elem == "person.Person" { found = true }

}

assert found;

}

override

func AsString -> String {

// after a # to define a symbol

return #T ++ #R ++ #S;

}

// keyword name

func R: Char p -> Int { return p asInt }

// type

override

func add: (T p) -> Int {

var S.Person per = T("Carolina", 7);

var per2 = S.Person("Livia", 11);

var typeof(T) aPerson;

120

var typeof(S.Person) otherPerson;

return 0

}

// type

T x

var Array<T> tArray

String people;

end

A prototype that uses Nice is

package main

import people

object Program

func run {

let Person livia = Person("Livia", 11);

typeof(livia) prototypeName println;

var nice = Nice<Person, charToInt, people, asString>(livia);

assert nice asString == "people.PersoncharToIntpeople";

assert (nice charToInt: 'a') == 97;

nice add: Person("Carol", 7);

assert (nice superMethod: 0) == 0;

}

end

A formal parameter may be the name of a generic prototype:

object NiceExample< T >

public var T<Int> value

end

In the instantiation NiceExample<Empty> the compiler checks whether there is an Empty prototype. That
is, a non-generic prototype called �Empty�. After the instantiation, when NiceExample<Empty> is com-
piled, the compiler checks whether there is a generic prototype Empty that takes one argument.

There is a compile-time error if the formal parameter is the name of a parameter because variables
and parameter should start with a lowercase letter.

object Wrong< T >

func myError: (Int T) { } // compile-time error

end

A formal parameter appearing as a substring of a Cyan symbol is not replaced.

121

object P<T>

func print { #T1 print }

end

Prototype P<Int> is

object P<Int>

func print { #T1 print }

end

because �T� is just a substring of �T1�.
In the same way, package names and imported packages are not replaced.

package T

import main.T

object P<T>

end

P<Person> is

package T

import main.T

object P<Person>

end

Currently there is no way of producing new symbols from formal parameters. There could be a +++

operator that is executed at compile-time to concatenate formal parameters and something else:

object P<T>

func print { #T +++ 1 print }

end

Prototype P<Int> would be

object P<Int>

func print { #Int1 print }

end

Till now we have found no need for such operators or to compile-time commands such as �static if� of
language D.

In a generic prototype instantiation, each real parameter should be a type or an identi�er starting
with a lower-case letter (which is called identi�er parameter). The �rst one one can be a generic prototype
instantiation. Then the general format of a real parameter is given by rule RP of the grammar below.
IdLowerCase stands for �identi�er starting with a lower-case letter�.

RP ::= IdLowerCase | Type
Type ::= SingleType { | SingleType }
SingleType ::= QualifId { �<� TypeList �>� } | BasicType
TypeList ::= Type { �,� Type }
QualifId ::= Id { �.� Id }
Anyway, the real parameter starts with a Cyan identi�er. If this identi�er starts with an upper-case

letter, the compiler considers that the real parameter is a type. Therefore this type should be visible in
the place of the generic prototype instantiation or a compile-time error will be signalled. If the identi�er
starts with a lower-case letter, it is not considered a type, the compiler does not do any checking in the
place of the instantiation.

122

var Stack<A> s; // compiler checks if "A" is a prototype declared or imported

var Stack< Set<Char> > s; // compiler checks if "Set<Char>" is legal

var Nice<myId> n; // compiler does not check if "myId" is a prototype

The instantiation �Wrong<Array>� causes a compile-time error because there is no prototype �Array�.

object Wrong<T>

T<String> myData

...

end

There is a generic prototype �Array<T>� in package cyan.lang which is not related to a non-existing
non-generic Array prototype.

A call to the compile-time function typeof cannot be used as a parameter in a generic prototype
instantiation.

var Int count = 0;

var Stack<typeof(count)> intStack; // compile-time error

Because of this restriction, the grammar for RP given above de�nes SingleType di�erently from the
grammar of Section 12.

A generic prototype may declare more than one generic parameter:

package cyan.lang

interface IMap<K, V> extends Iterable<Tuple<key, K, value, V>>

func [] at: K key -> V|Nil

func [] at: K key put: V value -> V|Nil

...

end

All formal parameters should have di�erent names. Each of them should start with an upper-case letter
and there should be no prototype in package cyan.lang with the same name as the parameter. So a
parameter cannot have name �Tuple� or �Interval�. You are invited to use single letters to formal
parameter names.

Currently there is no way of declaring a private generic prototype in Cyan (or a private regular
prototype). The implementation of this feature would make the compiler more complex. We believe
private generic prototypes would be rarely used and almost never necessary.

A real parameter to a generic prototype cannot be an integer number as in C++ [Str13]. However,
metaobject extract can be used to simulate the passing of an Int as parameter.

package main

object Store<T>

func set: Int elem {

if elem > @extract(T) {

throw: ExceptionStr("Number out of limits in Store prototype")

}

self.elem = elem

}

func get -> Int = elem;

123

var Int elem = 0;

end

If T has the form intN or int_N in which N is a literal Int, then
@extract(T)

results in N.

var s100 = Store<int_100>();

s100 set: 99; // ok

s100 set: 200; // exception thrown

6.1 Generic Prototypes with real arguments

A prototype that is not generic can be declared using the generic prototype syntax:

package ds

object Stack<Int>

func push: Int elem { ... }

func pop -> Int { ... }

...

end

There may be both the generic prototype Stack<T> and this non-generic version in the same package. In
this case, Stack<Int> will refer to the non-generic version (the one above) and Stack<Char> will be an
instantiation of the generic prototype Stack. The details of this combination will soon be explained.

We will refer to a non-generic prototype declared using the generic prototype syntax as �generic
prototype with real arguments�. Each one of the parameters that appear inside <...> will be called
�real argument�.

A real argument of a generic prototype with real arguments can be:

(a) identi�er parameter, which is a single identi�er starting with a lower-case letter such as �t� or �add�.
For example,

interface ISingle<write>

func write: Char

end

(b) a single identi�er starting with an upper-case letter such that there is a prototype in package
cyan.lang with this same name. For example,

object P<Int>

func add: Int { ... }

end

(c) a quali�ed identi�er; that is, a sequence of identi�ers separated by �.� with at least one dot such as
�main.Person�. For example,

package ds

import main

interface MyList<main.Person>

124

func add: Person

end

This quali�er identi�er should be the full name of a prototype, which includes its package name;

(d) a generic prototype instantiation possibly preceded by a package name such as �Tuple<Int, String>�
or �ds.Stack<main.Person>�. For example,

package ds

object List< Tuple<key, String, value, Int>, ds.Map<String, main.Person> >

...

end

By the above rules, a prototype can be used as a real argument if it is preceded by its package.
This demand is dropped in prototypes of package cyan.lang. Therefore if Person is in package main, a
prototype Stack<main.Person> should be declared as

package ds

object Stack<main.Person>

func push: main.Person elem { ... }

func pop -> main.Person { ... }

...

end

In this way the compiler knows whether an identi�er that appears after < is a formal parameter or a real

argument of a generic prototype with real arguments. If the parameter:

(a) is composed by a single identi�er that starts with a lower-case letter it is a real argument. See a
previous example of prototype ISingle with parameter write;

(b) is composed by a single identi�er that starts with an upper-case letter and there is a prototype in
cyan.lang with this same name, then it is a real argument;

(c) is composed by a single identi�er that starts with an upper-case letter and there is no prototype in
cyan.lang with this same name, then it is a formal parameter;

(d) is quali�ed, with at least one �.� in it, then it is a real argument;

(e) is a generic prototype instantiation, then it is a real argument.

The non-generic version of a generic prototype is a completely independent prototype. It can have
di�erent methods, inheritance, and so on. This feature is used to de�ne a prototype Function<Boolean>
that represents a function that does not take parameters and return a Boolean. This kind of function
should support methods whileTrue: and whileFalse:

var i = 0;

{ ^ i < 10 } whileTrue: {

i println;

++i

};

125

No other function prototype should have these methods.
A generic prototype with real arguments may be useful for providing a more e�cient implementation

for a given type. For example, a HashMap<Int, Int> implementation could somehow be more e�cient
because Int�s are used.

6.2 Generic Prototype with a Varying Number of Parameters

Generic prototypes with a variable number of parameters are supported. They are declared by putting a
+ after the generic parameter name:

object P<T+>

...

end

There should be just one formal parameter between �<� and �>� and there should be just one set of
pairs �<� and �>�. The generic prototype is used with any number of set of pairs �<� and �>�. Then the
prototype P of the example above is used for all of the following instantiations:

P<Int> P<Int, String> P<Int><Int> P<Int><Char, Double>

P<Char, Int><Float, String, Char><Int><Int, Int><Nil>

Of course, the syntax is misleading for it induces one to think there is just one set of pairs �<� and �>�.
There is no way to use formal parameter like T using regular Cyan syntax. The only way of doing

that is through metaprogramming, using metaobjects (See �The Cyan Metaobject Protocol� in the Cyan
site). For example, prototype Tuple is declared as

package cyan.lang

@createTuple

object Tuple<T+>

end

In an instantiation of Tuple, as Tuple<Int, String>, metaobject createTuple has access to the list of
real argument, Int and String. Basead on these parameters, createTuple generates Cyan code that
replaces the metaobject annotation. That is, �@createTuple� is replaced by declarations of methods and
�elds produced by createTuple.

It is tempting to add language constructions to handle a variable number of real arguments. However,
that would be a mistake. The number of constructions needed to do something useful would be large.
Since this kind of feature will be rarely used, they are best left for metaobjects. It is important to note
that several library prototypes of Cyan are implemented using generic prototypes with a varying number
of arguments: Tuple, Union, and Function.

6.3 Multiple Parameter Lists

A generic prototype may have more than one <...> list. Inside each list, there may appear more than
one parameter as before.

package example

object Test<T1, T2><U1, U2>

end

126

It is illegal to mix di�erent kinds of parameters. All parameters should be one of the following:

(a) real arguments;

(b) formal parameters without a + operator;

(c) a formal parameter (just one) with a + operator.

Then there are three possible ways of declaring a generic prototype:

package example

object Test<Int, Char><main.Person>

end

package example

object Test<T1, T2><U1, U2><R>

end

package example

object Test<T+>

end

There will be a compile-time error if the di�erent kinds of parameters are mixed as in

package example

object Test<T+><Int><U> // error

end

6.4 Source File Names

Cyan has rules for associating �le names to prototypes. As seen, a public prototype P should be in a �le
called �P.cyan�. A generic prototype with real arguments

package pack

object P<T1, T2, ... Tn>...<U1, U2, ... Um>

...

end

should be in a �le
P(T1,T2,...Tn)...(U1,U2,...Um).cyan

There should be no space in the �le name. For example, consider the source �le below.

package example

object Test<Int, Char><main.Person>

end

127

It should be in �le
Test(Int,Char)(main.Person)

The generic prototype

package pack

object P<T1, T2, ... Tn>...<U1, U2, ... Um>

...

end

should be in �le �P(n)...(m).cyan�. All parameters are formal ones.
The generic prototype

package pack

object P<T+>

...

end

should be in �le �P(1+).cyan�.
As examples of declarations and �le names, see the table.

P<Int, Char, main.Person> P(Int,Char,main.Person).cyan

P<R, S, T><U, V><W> P(3)(2)(1).cyan

P<T+> P(1+).cyan

P< Tuple<key, String, value, main.Person> > P(Tuple(key,String,value,main.Person)).cyan

ISingle<write> ISingle(write).cyan

6.5 Combining Generic Prototypes

A package may declare a non-generic prototype and several generic prototypes with the same name. A
generic prototype may have formal parameters, real arguments, or a varying number of parameters. All
source �les should be in the same package directory which means the source �le names are di�erent.

Suppose an imported package declares several prototypes with name P � at most one is non-generic
and the others are generic ones. When the compiler �nds an instantiation

P<T1, ... Tn>...<U1, ... Um>

it tries to �nd a generic prototype P with real arguments that match exatly the real arguments T1, ... Tn,
... U1, ... Um. If none is found, the compiler searches for a generic prototype whose number of parameters
in each <> list is equal to the instantiation. If none is found, it searches for a generic prototype P with a
variable number of parameters (�le P(1+).cyan). If no adequate generic prototype is found, the compiler
signals an error.

For example, suppose that the instantiation is
Tuple<key, Int, value, String>

First the compiler searches for a prototype Tuple<key, Int, value, String> which should be in a �le
Tuple(key,Int,value,String).cyan

If this prototype does not exist, it searches for a generic prototype
Tuple<T1, T2, T3, T4>

with four formal parameters. This should be in a �le
Tuple(4).cyan

128

If there is no such prototype, the compiler searches for
Tuple<T+>

which should be in a �le Tuple(1+).cyan.
If the instantiation uses other instantiations the process is recursive. In
Tuple<key, Tuple<Array<Int>, Union<Int, Char>> >

the compiler searches for a prototype with this name which should be in �le
Tuple(key,Tuple(Array(Int),Union(Int,Char))).cyan

6.6 Concepts

A generic prototype may assume that one of its parameters, say T, is a prototype that de�nes some
methods, is subprototype of some other prototype, implements a certain interface, and so on.

package main

object Test<T>

func run {

var T x = T();

x open;

x write: "not all is ok";

var IHas<String> h = x;

if h has: "ok" {

"has ok" println;

}

}

end

In this example, the code assumes that T:

(a) is a prototype;

(b) has a method init without parameters;

(c) has an unary method open;

(d) has a method write: that can accept a string as parameter;

(e) implements interface IHas<String>.

If Test is instantiate with a prototype that does not de�ne init, open, has: String, write: Any,
or write: String, a compilation error will occur. The compiler will show a stack of generic prototype
instantiations:

In file C:\Dropbox\Cyan\cyanTests\negTestsJose\t10\main\--tmp\Test(Int).cyan

(line 9 column 9)

object/interface main.Test<Int>

Method open was not found in prototype Int or its superprototypes

Stack of generic prototype instantiations:

main.Test<Int> line 9 column 9

main.OtherTest<Int> line 8 column 30

129

main.Program line 5 column 21

x open;

This message says that in line 5, column 21, of main.Program prototype main.OtherTest<Int> was
instantiated. Then in line 8, column 30, of main.OtherTest<Int> prototype main.Test<Int> was instan-
tiated. Then in line 9, column 9, of main.Test<Int> there was the error �Method open was not found in

prototype Int or its superprototypes�. The last line shows the o�ending line:
x open;

Although the error message helps to trace the error, it shows code internal to the generic prototype.
The error message will not be easily understood by a user of the generic prototype. Instead of allowing
this kind of error to happen one can use Concepts [GJS+06]. They can be used to specify restrictions
that the real arguments to a generic prototype should have. If the real argument does not obey the
restrictions, an error message is issued in the instantiation of the generic prototype. Code internal to the
generic prototype is not shown.

Concepts are predicate on types and values. In Cyan, concepts are implemented using a metaobject
and are predicates on types and identi�er parameter.1 The concepts of a generic prototype are made
based on the semantic needed in the prototype. For example, suppose a generic prototype GroupWork has
a generic parameter which should be a Group.2

In the methods of GroupWork it is assumed that T has methods inverse, unit, and binary *. And
that these methods obey the semantics expected for a Group.

package main

object GroupWork<T>

func work: T a {

printexpr a;

printexpr a inverse;

printexpr a unit;

printexpr a * a unit;

assert a * a inverse == T unit;

assert T unit == a inverse * a;

assert a unit == T unit;

assert a * T unit == a;

}

func workout: T a, T b, T c {

printexpr (b inverse * a inverse) * a * b;

printexpr (c inverse * b inverse * a inverse) * a * b * c;

1Identi�ers starting with lowercase letters passed as parameters to generic prototypes, like speed in BinaryTree<Int,

speed>.
2A group is a set G with an operation ∗ in such a way that, if a, b, c ∈ G, a ∗ b ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c, there exist

e ∈ G (the unit of G) such that a ∗ e = e ∗ a = a for all a ∈ G, and for all a ∈ G there exists an element b called the inverse
of a such that a ∗ b = b ∗ a = e.

130

printexpr b inverse * b;

printexpr c * b * a * (a inverse * b inverse * c inverse);

assert c * b * a * (a inverse * b inverse * c inverse) == T unit;

assert a*(b*c) == (a*b)*c;

assert c*(b*a) == (c*b)*a;

}

end

As said before, prototype GroupWork may be instantiated with any type, which will result in a compile-
time error if the real argument does not support the methods expected in the prototype body. And there
will be runtime errors if the methods do not have the expected semantics.

The error messages can be made clearer with the use of metaobject concept. An annotation should
be attached to the generic prototype:

package main

@concept{*

// both kinds of comments are allowed

T has [func * (T other) -> T

func unit -> T

func inverse -> T],

"T should have methods *, unit, and inverse in order to be considered element of

a Group",

axiom opTest: T a, T b, T c {%

if (a * (b * c) != (a * b) * c) ||

(c * (b * a) != (c * b) * a {

return "T is not associative"

}

return Nil

%},

axiom unitTest: T a, T b, T c {%

if (a * a unit != a unit * a) ||

(b * a unit != b unit * b) ||

(a unit * b unit != c unit * c unit) {

return "The unit element of T is not an identity"

}

return Nil

%},

axiom inverseTest: T a, T b, T c {%

if (a * a inverse != b unit) ||

131

(a unit != b inverse * b) ||

(c inverse * c != T unit) {

return "The inverse operation is not working properly"

}

return Nil

%}

*}

object GroupWork<T>

func work: T a, T b, T c {

printexpr a asInt;

printexpr a inverse asInt;

printexpr a unit asInt;

printexpr (a * a inverse) asInt;

printexpr (a * a unit) asInt;

printexpr ((b inverse * a inverse) * a * b) asInt;

printexpr ((c inverse * b inverse * a inverse) * a * b * c) asInt;

printexpr (b inverse * b) asInt;

printexpr (c * b * a * (a inverse * b inverse * c inverse)) asInt;

}

func workout: T a, T b, T c {

printexpr ((b inverse * a inverse) * a * b) asInt;

printexpr ((c inverse * b inverse * a inverse) * a * b * c) asInt;

printexpr (b inverse * b) asInt;

printexpr (c * b * a * (a inverse * b inverse * c inverse)) asInt;

let tunit = T unit;

assert c * b * a * (a inverse * b inverse * c inverse) == tunit;

assert a*(b*c) == (a*b)*c;

assert c*(b*a) == (c*b)*a;

}

end

The Domain Speci�c Language (DSL) of the concept metaobject annotation of this example speci�es the
restrictions the generic parameters should have. The �rst line,

T has [func * ...

means that parameter T should have the methods between [and]. The string that follows,
"T should have methods * ..."

is the error message issued by the metaobject if T does not de�ne the methods. Each method can have
its own error message:

132

package main

@concept{*

T has [func * (T other) -> T "T should support operator * in order to be a Group",

func unit -> T

func inverse -> T],

"""T should have methods *, unit, and inverse in order to be considered element

of a Group""",

...

*}

object GroupWork<T>

...

end

If the message after the method signature is not given, the message after the predicate is used. If there is
no message after the predicate, a standard message is used. In this last example, if a type MyGroup does
not de�ne method * in GroupWork<MyGroup>, message

"MyGroup should support ..."

is issued. If MyGroup does not de�ne method unit, message
"MyGroup should have methods *, unit, and ..."

is issued. If there was no message
"T should have methods *, unit, and ..."

then the standard message would be used in this last case.
axiom is a keyword of the concept DSL. It de�nes a method whose body appears between {% and %} in

this example (any left char sequence can be used. See the de�nition of left char sequence for metaobjects).
If the metaobject annotation has parameter test as in

...

@concept(test){*

...

*}

object GroupWork<T>

...

end

the metaobject will create test packages, prototypes, and methods. In particular, for each concept anno-
tation there will be a test prototype. This prototype will have a method for each axiom and it will be in
a test directory created in a directory --test of the program. For example, suppose the program is in
directory

C:\Dropbox\Cyan\cyanTests\simple

Package main of this program contains the GroupWork prototype. The metaobject concept will create
the path

C:\Dropbox\Cyan\cyanTests\simple\main_ut\

groupwork_lt_main_d_intgroupplus_gt__axiom_test

if GroupWork is instantiated with parameter IntGroupPlus (a prototype). The path above is shown in
two lines to �t in the page. Inside this directory there will be a prototype

GroupWork_lt_main_d_IntGroupPlus_gt__Axiom_Test

with the axioms. It is shown next.

package main_ut.groupwork_lt_main_d_intgroupplus_gt__axiom_test

133

object GroupWork_lt_main_d_IntGroupPlus_gt__Axiom_Test

func opTest_0: main.IntGroupPlus a, main.IntGroupPlus b, main.IntGroupPlus c ->

String|Nil {

if (a * (b * c) != (a * b) * c) ||

(c * (b * a) != (c * b) * a {

return "main.IntGroupPlus is not associative"

}

return Nil

}

func unitTest_1: main.IntGroupPlus a, main.IntGroupPlus b, main.IntGroupPlus c ->

String|Nil {

if (a * a unit != a unit * a) ||

(b * a unit != b unit * b) ||

(a unit * b unit != c unit * c unit) {

return "The unit element of main.IntGroupPlus is not an identity"

}

return Nil

}

func inverseTest_2: main.IntGroupPlus a, main.IntGroupPlus b, main.IntGroupPlus c ->

String|Nil {

if (a * a inverse != b unit) ||

(a unit != b inverse * b) ||

(c inverse * c != main.IntGroupPlus unit) {

return "The inverse operation is not working properly"

}

return Nil

}

end

Each axiom gives origin to a method with the same name with a su�x number.
Another path will be created:
--test\main_ut\groupwork_test

It will contain usually one prototype for each formal parameter of the generic prototype and a test
prototype. In this example, the prototypes will be GroupWork_Test and T.

package main_ut.groupwork_test

object GroupWork_Test

func run {

var main.GroupWork<T> testVar;

}

134

end

Usually but not always a prototype is created for each parameter with the restrictions it should have.
In the example, the real argument for T should have some methods such as *, unit, and inverse. Then
prototype T is declared with these methods:

package main_ut.groupwork_test

object T

func * T other -> T = T;

func unit -> T = T;

func inverse -> T = T;

end

T could have other restrictions as to implement a certain interface IMyInter. If that was the case, proto-
type T would be declared as

object T implements IMyInter

To test whether the DSL used in the metaobject annotation concept of GroupWork is enough, one
should compile GroupWork_Test as a program. It instantiates GroupWork using prototype T above. If
GroupWork assumes that its formal parameter T has a method not described in the concept DSL, a
compilation error will occurs when compiling GroupWork_Test. This is the goal of creating prototypes in
package main_ut.groupwork_test.

The test cases are not inserted in the program that uses the concept metaobject. They have to be
separated compiled. The code of the axioms are not checked by metaobject concept. They may contain
invalid Cyan code. Each axiom should return Nil if the there is no error or an error message as a String.

The valid predicates of metaobject concept are given below. We use T, U, and S for types and I for
identi�er parameters. These types may be anyone, including generic parameter.

predicate meaning

T is U T should be equal to U

T implements U T should implement interface U

S subprototype T S should be subprototype of T

S superprototype T S should be superprototype of T

T interface T should be an interface

T noninterface T should be a prototype that is not an interface

T has [list of methods] T should have the methods in the list

T in [list of prototypes] T should be one of the prototypes in the list

I in [list of identifiers] T should be one of the prototypes in the list

T identifier T should be an identi�er parameter

! any of the predicates the opposite of the predicate should be true

axiom axiomMethod generates the test case axiomMethod, which is similar
to a method declaration

The compile-time function typeof can be used in the DSL of a concept. It may even be recursive:

package main

135

@concept{*

T has [

func search: typeof(R get) -> typeof(T get: Int)

// recursion

func at: Int -> typeof(R at: Int)

func get: Int -> Double

],

R has [

func get -> Program

// recursion

func at: Int n -> typeof(T at: 0)

],

typeof(R at: Int) in [Int, Long, typeof(Int asString)]

*}

object Strange<T, R>

end

However, there will be an error if parameter test is passed to this concept metaobject annotation.
The metaobject will not be able to generate the test prototype because of the typeof compile-time
function.

There may be errors in the predicates. For example, the DSL of a concept annotation may:

(a) demand that T, the parameter, is both a prototype (not interface) and an interface;

(b) demand that T inherits from A and that A inherits from T;

(c) have inconsistences such as demand that T should be in a list of prototypes and that implement a
certain interface but no prototype in the list implements the interface;

(d) requires that T has incompatible methods such as
func get: Int -> Int

func get: Double -> Double

Most of these errors are not caught by the metaobject concept.
A list of predicates can be put in a �le and reused. For example, the whole DSL that appears between

{* and *} of metaobject annotation concept of GroupWork can be put in a �le
group(T).concept

of the directory --data of the directory of package main. Now the example can be written as

package main

@concept{*

main.group(T)

*}

object GroupWork<T>

// as before

...

end

The concept �le �group(T).concept� can be used by other packages of the programa. The �le name
should be preceded by the package name:

136

package other

@concept{*

main.group(T)

*}

object MyGroupWork<T>

... // elided

end

This prototype is in package other. Note that it is not necessary to import the package main in order to
use group(T).concept.

Package cyan.lang has several concept �les:
addable(T).concept,
arithmetic(T).concept,
comparable(R,S).concept,
container(T,R).concept,
equatable(T).concept,
init(T).concept,
init(T,R).concept,
init(T,R, S).concept,
iterator(T).concept,
iteratorSize(T).concept,
lessThan(T).concept,
predicate(T).concept

To discover an up-to-date description of each of them, open the �les in a directory
cyan\lang\--data

Whenever one uses a concept �le its axioms are incorporated in the test prototype of the concept
that used it. Then if a concept attached to a prototype uses concept arithmetic(T) of cyan.lang, its
prototype test will have the axioms of the concept.

Metaobject concept may be used with non-generic prototypes. This is useful to enforce that a
prototype should obey some restrictions and that some test cases should be generated for it. See the
example

package algebra

@concept{*

cyan.lang.arithmetic(Matrix),

cyan.lang.init(Matrix, Int, Int)

*}

object Matrix

... // elided

end

Test cases would be generated for Matrix.
Currently it is not possible to pass a generic prototype as a parameter to a concept �le:

package structures

137

@concept{*

cyan.lang.init(Vector<T>) // error

*}

object Vector<T>

... // elided

end

6.7 Message Sends To Generic Prototype Instantiations

Compile-time messages can be send to a generic prototype instantiation through the syntax
Function<String, Int, Char> .# writeCode

Currently only message �writeCode� can be send. This message calls a virtual method3 writeCode at
compile-time. The generic prototype created for this instantiation is in �le

Function(String,Int,Char).cyan

Virtual method writeCode writes to �le
full-Function(String,Int,Char).cyan

of the directory of the project. This code has all the parts added by the compiler and metaobjects.
Method writeCode is very useful to discover what is inside the real generic prototype. When there is
a metaobject annotation in the generic prototype, as in Function, errors may be di�cult to discover
without the full code of the prototype.

The syntax .# only works if the generic prototype instantiation is where a type is expected as in a
variable declaration. One can check the �nal version of prototype Program and Function<Int, Int>

using the example that follows.

package main

object Program

func run {

var Program .# writeCode p;

var Function<Int, Int> .# writeCode f;

}

end

6.8 Future Enhancements

The compile-time message send using .# will be replaced by metaobject annotations attached to types.
Then

Function<String, Int, Char> .# writeCode

will be replaced by
Function<String, Int, Char>@writeCode

Now writeCode can be used even inside an expression:

package main

object Program

func run {

3It does not exist really.

138

// Program is an expression here

Out println: Program@writeCode prototypeName;

// Function<Int, Int> is a type here

var Function<Int, Int>@writeCode f;

}

end

Cyan does not support generic methods. However, it is very probably it will do in the future. We then
give a �rst de�nition of this construct and show the characteristics it should have in the language.

A generic method would be declared by putting the generic parameters after keyword func as in

object MySet

final

func<T> T add: (T elem) { ... }

...

end

When the compiler �nds a message send using add: of MySet, as in
p = MySet add: p

it creates a speci�c method for that type using the compile-time type of p. This method could not override
any superprototype method and it could not be rede�ned in subprototypes. It should be a final method.

The di�erence between using a generic method add: and declaring a method
func add: (Any elem) -> Any

is that the compiler checks the relationships between the parameter and the return value. As another
example, a generic method

public func<T> relate: (T first, T second)

demands that the arguments to the method be of the same compile-time type.

139

Chapter 7

Important Library Objects

This Chapter describes some important library objects of the Cyan basic library. All the objects described
here are automatically imported by any Cyan program. They are in a package called cyan.lang.

7.1 System

Prototype System has methods related to the runtime execution of the program. It is equivalent to the
System class of Java. Its methods are given below. Others will be added in due time.

// ends the program

func exit

// ends the program with a return value

func exit: (Int errorCode)

// runs the garbage collector

func gc

// current time in milliseconds

func currentTime -> Long

// prints the stack of called methods in the

// standard output

func printMethodStack

// execute a command

func exec: String command

func exec: Array<String> commandList

// see the Java method System.exec for help

func exec: Array<String> commandList, Array<String> envpList, String dir

@doc{*

this method can be used as a dynamic storage for global variables

*}

func globalTable -> IMap<String, Dyn> = mapGlobalVariables;

7.2 Input and Output

Prototype In and Out are used for doing input and output in the standard devices, usually the keyboard
and the monitor.

140

public object In

func readInt -> Int

func readFloat -> Float

func readDouble -> Double

func readChar -> Char

func readLine -> String

...

end

public object Out

func (println: (Any)*)

end

7.3 Tuples

A tuple is an object with methods for getting and setting a set of values of possibly di�erent types. A
literal tuple is de�ned in Cyan between �[.� and �.]� as in:

var t = [. name = "Lívia", age = 4 .];

Out println: "name: " ++ t name ++ " age: " ++ t age;

This literal object has type Tuple<name, String, age, Int>. This is a tuple in which the �elds have
user-de�ned names.

A literal tuple may also have unnamed �elds which are further referred as f1, f2, etc:

var t = [. "Lívia", 4 .];

Out println: "name: ", t f1, " age: ", t f2;

The type of this literal tuple is Tuple<String, Int> which is exactly the prototype
Tuple<f1, String, f2, Int>

Prototype Tuple can take any number of parameters. A metaobject is responsible for creating its
methods and �elds. The real prototype created from Tuple<name, String, age, Int> is below.

package cyan.lang

public final object Tuple<name, String, age, Int>

func init: (String g1, Int g2) {

_name = g1;

_age = g2;

}

func name: String g1 age: Int g2 -> Tuple<name, String, age, Int> {

return Tuple<name, String, age, Int> new: g1, g2;

}

@annot(#name) var String _name

func name -> String = _name;

func name: String other { _name = other }

@annot(#age) var Int _age

141

func age -> Int = _age;

func age: Int other { _age = other }

override

func == (Dyn other) -> Boolean {

if other isA: Tuple<name, String, age, Int> {

var Tuple<name, String, age, Int> another;

@javacode{* _another = (_Tuple_LT_GP__name_GP_CyString_GP__age_GP_CyInt_GT)

_other;

*}

if name != (another name) { return false }

if age != (another age) { return false }

return true

}

else {

return false

}

}

override func asString -> String {

return "[. name = " ++ name asStringQuoteIfString ++ ", age = " ++

age asStringQuoteIfString ++ " .]"

}

func copyTo: (Any other) { }

end

Metaobject annot attaches to a �eld, shared variable, method, prototype, or interface a feature given by
its parameter. This feature can be retrieved at runtime by method featureList: of the object.

The Tuple<name, String, age, Int> prototype has methods for getting and setting each tuple
�eld:

var Tuple<name, String, age, Int> t;

t name: "Carolina" age: 1;

Out println: (t name);

t name: "Lívia";

t age: 4;

Out println: "name: ", t name, " age: ", t age;

An empty tuple is illegal:

var t = [. .]; // compile-time error: empty tuple

var anotherError = [..]; // unidentified symbol '[..]'

7.3.1 Future Enhancements

Object Tuple will have a method copyTo: that copies the information of the tuple into a more meaningful
object. We will shown how it works using an example. We want to copy a tuple of type

Tuple<String, Array<String>, String, Int>

into an object of Book.

142

package main

@init(name, authorList, publisher, year)

object Book

@annot(#f1)

@property String name

@annot(#f2)

@property Array<String> authorList

@annot(#f3)

@property String publisher

@annot(#f4)

@property String year

override

func asString -> String {

return authorList[0] ++ " et al. " ++ name ++ ". Published by " ++ publisher ++

". " ++ year ++ ".";

}

end

However, copyTo: has to know to which �eld of Book it should copy �eld f1 of the tuple. This method
cannot choose one �eld based on the types � there are two of them whose type is String. We should
use annotations for that: Now the following code will work as expected.

var Tuple<String, Array<String>, String, Int> t;

var b = Book("", [""], "", 0);

t = [. "Philosophiae Naturalis Principia Mathematica",

["Isaac Newton"],

"Royal Society",

1687

.];

t copyTo: b;

b println;

Tuples inside tuples are copied recursively. The Manager example is

@init(person, company)

object Manager

@annot(#f1)

@property Person person

@annot(#f2)

@property String company

143

end

@init(name, age)

object Person

@annot(#f1)

@property String name

@annot(#f2)

@property Int age

end

...

var manager = Manager new: Person, 0;

var john = [. [. "John", 28 .], "Cycorp" .];

john copyTo: manager;

assert john person name == "John" &&

john person age == 28 &&

john company == "Cycorp";

Method copyTo: can be used in grammar methods to store the single method argument into a
meaningful object:

object BuildBook

@grammarMethod{*

(bookname: String (author: String)* publisher: String year: Int)

*}

func build: Tuple< String, Array<String>, String, Int> t -> Book {

var book = Book new("", [""], "", 0);

t copyTo: book;

return book

}

This method accepts as arguments all the important book information: name, authors, publisher, and
publication year:

var prin = BuildBook bookname = "Philosophiae Naturalis Principia Mathematica"

author = "Isaac Newton"

publisher = "Royal Society"

year = 1687;

7.4 Dynamic Tuples

Object DTuple is a dynamic tuple. When an object of DTuple is created, it has no �elds. When a
dynamic message �?attr: value� is sent to the object, a �eld attr whose type is the same as value is
created. The value of this �eld can be retrieved by sending the message �?attr� to the object. See the
example:

var t = DTuple new;

t ?name: "Carolina";

// prints "Carolina"

144

Out println: (t ?name);

// if uncommented the line below would produce a runtime error

//Out println: (t ?age);

t ?age: 1;

// prints 1

Out println: (t ?age);

Object DTuple is the object

package cyan.lang

object DTuple

func init { ... }

override

func doesNotUnderstand: (String methodName, Array<Array<Dyn>> args) -> Dyn ...

func contains: String fieldName -> Boolean ...

func size -> Int = fieldList size;

func getFieldList -> Array<String> = fieldList;

// elided

end

DTuple rede�nes method doesNotUnderstand: in such a way that a �eld is added dynamically if it
does not exist. When a non-existing method �tt f:� in a message send �f: value� is called on the object,
doesNotUnderstand: simulates the addition to the receiver of a �eld _f and methods f: T and T f.
The methods set and get the �eld. T is the type of value.

7.5 Intervals

A interval is the return value of methods .. and ..< of the types Byte, Short, Int, Char, and Boolean.
Then if first and last are integers, first..last returns an interval with all integers numbers between
first and last, including this last one. And first..< last returns an interval with all integers between
first and last - 1 � it is equivalent to first..(last - 1). If last < first the return is a valid
interval but without elements.

var Interval<Int> inter;

inter = 3..5;

// this code prints numbers 0 1 2

0..2 foreach: { (: Int i :)

Out println: i

};

// this code prints numbers 3 4 5

inter repeat: { (: Int i :)

Out println: i

};

// prints the alphabet

'A'..'Z' foreach: {

145

(: Char ch :)

Out println: ch

};

var anArray = [0, 1, 2, 3];

0..<anArray size foreach: { (: Int n :) n

println

};

Operator �..� has smaller precedence than the arithmetical operators and greater precedence than the
logical and comparison operators. So, the lines

i+1 .. size - 1 repeat: { ... }

if 1..n == anInterval { ... }

are equivalent to

((i+1) .. (size - 1)) repeat: { ... }

if (1..n) == anInterval { ... }

Prototype Interval is de�ned as follows. Generic parameter T can only be instantiated with types
Byte, Short, Int, Long, and Char.

package cyan.lang

// T should be one of these types. Otherwise a compiler error is issued

@concept{*

T in [Byte, Short, Int, Long, Char],

"The parameter 'T' to this generic prototype instantiation should be Byte, Short

, Int, Long, or Char"

*}

object Interval<T> implements Iterable<T>

...

// method bodies elided

override

func == (Dyn other) -> Boolean

func asArray -> Array<T>

func times: Function<Nil> b

func repeat: Function<T, Nil> b

override

func foreach: Function<T, Nil> b

func filter: Function<T, Boolean> f -> Array<T>

func filter: Function<T, Boolean> f foreach: Function<T, Nil> b

func map: Function<T, T> f -> Array<T>

func |> Function<Interval<T>, Interval<T>> f -> Interval<T>

func + Iterable<T> other -> Iterable<T>

// Smalltalk-like injection

func inject: (T initialValue)

into: Function<T, T, T> b

-> T

// injection method to be used with context object.

// the initial value is private to injectTo

146

func to: (T max)

do: (InjectObject<T> injectTo)

-> T

func size -> Int

func first -> T

func last -> T

func apply: (String message) -> Dyn

func .* (String message)

func .+ (String message) -> Any

override

func iterator -> Iterator<T>

// elided

end

package cyan.lang

interface Iterable<T>

func iterator -> Iterator<T>

func foreach: Function<T, Nil>

end

package cyan.lang

abstract object InjectObject<T> extends Function<T, Nil>

override

abstract func eval: T

abstract func result -> T

end

Intervals can be used with method in: of the basic types:

var String s = "";

var Int age = In readInt;

if age in: 0..2 {

s = "baby"

}

else if age in: 3..12 {

s = "child"

}

else if age in: 13..19 {

s = "teenager"

}

else {

s = "adult"

}

147

Chapter 8

Grammar Methods

Many languages support methods with a varying number of parameters. These parameters are usually
accessed as an array:

// Java

public void print(String format, Object... args) {

...

}

This method could be used as

out.print("Color %s %f", "red", 33.0);

Cyan goes beyond by allowing a varying number of parameter, a varying number of keywords, optional
parameters, optional keywords, and much more. The pattern of a message passing can be given by a regular
expression. That all is made using metaobject grammarMethod whose annotation should be attached to
a method. The DSL of the metaobject annotation describes the pattern of possible message passings
through a regular expression containing message keywords, types, and regular expression operators. The
valid operators are | (�or�), + (one or more repetitions), * (zero or more repetitions), and ? (optional).

package grammar

object Car

@grammarMethod{*

(do:

(on: | off: | left: | right: | move: Int)+

)

*}

func carPlay: Tuple< Any,

Array< Union<f1, Any, f2, Any, f3, Any, f4, Any, f5, Int> >

> t -> String {

var s = "";

for elem in t f2 {

type elem

case Any f1 { s = s ++ "car on " }

case Any f2 { s = s ++ "car off " }

case Any f3 { s = s ++ "car left " }

148

case Any f4 { s = s ++ "car right " }

case Int f5 { s = s ++ "car move($f5) " }

}

return s

}

end

The annotation for metaobject grammarMethod in this example is attached to method carPlay:. The
attached method should always take one single parameter whose type is based on the DSL of the anno-
tation. Latter we will describe how to calculate this type. Anyway, It is not necessary to know how to
build the parameter type from the DSL. Simply declare the method, carPlay: in the example, without
the type of the parameter. The metaobject will sign an error and tell you which should be the type of the
parameter. Copy and paste this type to your code. There is no restriction on the method return type.

A Car object may receive messages that match the regular expression of the DSL of the metaobject
annotation grammarMethod. The regular expression should be between parentheses. The | between the
keywords mean �or�. The + mean �one or more�. The the regular expression mean �do: followed by zero
or more of the following keywords: on:, off:, left:, right:, or move: (with an Int parameter). Then
the message passings below are legal:

let car = Car();

car do: on:;

car do: on: off:;

car do: on: move: 50 left: move: 20 right: off:;

Prototype Car does not de�ne methods on:, on: off:, and on:move:left:move:right:off:. Each of
the message passings above should cause a compile-time error. They almost do. Before signalling the
error the compiler searches for a metaobject whose annotation, attached to the prototype or a method,
implements interface

IActionMethodMissing_dsa

This interface has a method that returns the code that should replace the message passing. It will be
a message carPlay: with the appropriate parameter. The three messages of the last example will be
replaced by the code that follows. How the parameter is generated will soon be explained.

car carPlay: [. Any,

[(Union<f1, Any, f2, Any, f3, Any, f4, Any, f5, Int>() f1: Any)]

.];

car carPlay: [. Any,

[(Union<f1, Any, f2, Any, f3, Any, f4, Any, f5, Int>() f1: Any) ,

(Union<f1, Any, f2, Any, f3, Any, f4, Any, f5, Int>() f2: Any)]

.];

car carPlay: [. Any,

[(Union<f1, Any, f2, Any, f3, Any, f4, Any, f5, Int>() f1: Any),

(Union<f1, Any, f2, Any, f3, Any, f4, Any, f5, Int>() f5: 50),

(Union<f1, Any, f2, Any, f3, Any, f4, Any, f5, Int>() f3: Any),

(Union<f1, Any, f2, Any, f3, Any, f4, Any, f5, Int>() f5: 20),

(Union<f1, Any, f2, Any, f3, Any, f4, Any, f5, Int>() f4: Any),

(Union<f1, Any, f2, Any, f3, Any, f4, Any, f5, Int>() f2: Any)]

.];

149

A method add: that accepts any number of real arguments that are subtypes of type T can be declared
as

package grammar

object GMTest<T>

@grammarMethod{*

(add: (T)+)

*}

func addAll: Array<T> args {

all addAll: args

}

func init { all = Array<T>(); }

override

func asString -> String = all asString;

func getAll -> Array<T> = all;

let Array<T> all

end

The compiler will replace T inside the DSL of the metaobject annotation grammarMethod by the real
argument.

let GMTest<Int> ti = GMTest<Int>();

ti add: 0, 1, 2, 3;

assert ti getAll == [0, 1, 2, 3];

The + means one or more real arguments of type T or its subtypes. We could have used * instead to
mean �zero or more real arguments�. In this case, the following code would be legal.

let GMTest<Int> ti = GMTest<Int>();

ti add: ;

assert ti getAll == Array<Int>();

Instead of using keyword add: just one time, we may want to use a keyword each: before each
element added in the array.

package grammar

object GMTest<T>

@grammarMethod{*

(add: (T)*)

*}

@grammarMethod{*

(each: T)+

*}

func addAll: Array<T> args {

all addAll: args

150

}

func init { all = Array<T>(); }

override

func asString -> String = all asString;

func getAll -> Array<T> = all;

let Array<T> all

end

Both metaobject annotations are attached to method addAll:. This is possible because both demand
exactly the same parameter, Array<T>. This is not usually the case. Now elements may be added with
one or more each: keyword:

let GMTest<Int> ti = GMTest<Int>();

ti add: 0, 1, 2, 3;

assert ti getAll == [0, 1, 2, 3];

ti each: 4 each: 5 each: 6;

assert ti getAll == [0, 1, 2, 3, 4, 5, 6];

Here we should use + because we cannot have zero �each: value� elements. If we used * the metaob-
ject would issue the error

This regular expression matches an empty input, which is illegal

More than one keyword may be repeated as in

package grammar

object StringHashTable

func init { map = HashMap<String, String>(); }

@grammarMethod{*

(key: String value: String)+

*}

func multKeyValue: Array<Tuple<String, String>> list {

for t in list {

map[t f1] = t f2

}

}

func getMap -> IMap<String, String> = map;

let IMap<String, String> map

end

151

Part �key: String, value: String� is represented by Tuple<key, String, value, String>. Since
there is a plus sign after this part, the whole method takes a parameter of type

Array<Tuple<String, String>>

An example of use is

let ht = StringHashTable();

ht key: "John" value: "Professor"

key: "Mary" value: "manager"

key: "Peter" value: "designer";

8.1 Matching Message Sends with Methods

A prototype may have one or more methods with an attached grammarMethod prototype. It may have
other metaobject annotations that implement interface

IActionMethodMissing_dsa

These annotations may be attached to the prototype, to �elds, local variables, etc or not attached to any-
thing. The prototype may inherit from a prototype that has annotations of metaobjects that implement
this interface.

The semantic analysis of a message passing starts with the semantic analysis of the receiver and real
arguments. Then the compiler searches for an adequate method in the prototype that is the type of
message receiver, say T, and its superprototypes. How this search is done is discussed elsewhere (page 86).

If no adequate method is done, the compiler puts in a list all metaobject annotations of T of metaobjects
that implement

IActionMethodMissing_dsa

This list is ordered according to the textual order in which the annotations appear in the prototype T.
The �rst element appears in the smaller line number of the source code of T.

Then the compiler calls method
dsa_analyzeReplaceKeywordMessage

of each metaobject. If two or more of them return a non-null value, an error is issued: the call is
ambiguous. If one of them returns a non-null value, this value is a tuple with the code that should
replace the original message passing. For example, in the example

ti add: 0, 1, 2, 3;

of prototype GMTest<T>, the compiler will replace this message passing by

ti addAll: [0, 1, 2, 3];

The code returned by the metaobject grammarMethod, in this case, is
"ti addAll: [0, 1, 2, 3]"

The call to method
dsa_analyzeReplaceKeywordMessage

of all metaobjects may return null. That is, metaobjects corresponding to metaobject annotations in
T. In this case, the compiler searches for metaobject annotations of the superprototypes such that the
metaobject implement interface

IActionMethodMissing_dsa

If there is no superprototype an error message is issued.
The grammarMethod annotation cannot be attached to init: methods because init: methods cannot

be called by sending messages to expressions.

152

A grammar method annotation will try to match as much as possible the message with its regular
expression. Then the second add: keyword of prototype MyOddArray will never be used. The second
tuple element, an array, will always have size zero.

package grammar

object MyOddArray

@grammarMethod{*

((add: Int)+ (add: Int)*)

*}

func addAll: Tuple<Array<Int>, Array<Int>> t {

all addAll: t f1;

assert t f2 size == 0;

all addAll: t f2;

}

func init { all = Array<Int>(); }

override

func asString -> String = all asString;

func getAll -> Array<Int> = all;

let Array<Int> all

end

Note that:

(a) there could be other metaobject annotations that may change message passing. A future restriction
would be to restrict to public places an annotation of a metaobject that implements interface

IActionMethodMissing_dsa

Currently an annnotation internal to a method, for example, is taken into consideration;

(b) interfaces are not searched for. That is, it is legal to attach, to an interface or method signature of
an interface, an annotation of a metaobject whose class implements

IActionMethodMissing_dsa

But it will not be taken in consideration;

(c) the grammar method metaobject does not do any further anaylysis in the annotation DSL. The in the
prototype MyOddArray, there will not be any warning that the second add: keyword is never used.
The only checking is whether the regular expression accepts the empty string;

(d) a method that has a metaobject annotation grammarMethod may be overridden in a subprototype.
Then the method called may be that of the subprototype. See this example:

package grammar

object SubMyOddArray extends MyOddArray

@grammarMethod{*

((addThis: Int)+ (addOther: Int)*)

153

*}

override

func addAll: Tuple<Array<Int>, Array<Int>> t {

let Array<Int> array = getAll;

for elem in t f1 {

array add: elem + 1

}

}

end

The compiler replaces the message send based on the compile-time type.

var MyOddArray array = SubMyOddArray();

// this is replaced by a call to addAll

// the method called is that of SubMyOddArray

array add: 0 add: 1;

array println;

assert array asString == "[1, 2]";

// if uncommented, there would be a compile-time error

// array addThis: 0 addThis: 1;

(e) init: and new: are not allowed as keywords in the regular expression of a grammar method anno-
tation.

8.2 Unions and Optional Keywords

Unions are used to compose the type of the parameter of grammar methods that use the regular operator
�|�. The signature �A | B� means A or B (one of them but not both).

package grammar

object EnergyStore

@grammarMethod{*

(add: (wattHour: Double | calorie: Double | joule: Double))

*}

func addEnergy: Tuple<Any, Union<f1, Double, f2, Double, f3, Double>> t {

addAmount: t f2

}

func addAmount: Union<f1, Double, f2, Double, f3, Double> value {

type value

case Double f1 {

amount = amount + f1*3600.0

}

case Double f2 {

amount = amount + f2*4.1868

}

case Double f3 {

amount = amount + f3;

154

}

}

// keeps the amount of energy in joules

@property var Double amount = 0.0;

end

Any is the type associated to keywords without parameters such as add: of this example. We can use
this prototype as

var EnergyStore store = EnergyStore new;

store add: wattHour: 5.0;

store add: joule: 10.0;

store add: calorie: 3.0;

store getAmount println;

The optional keywords may be repeated using �+� (one or more) or �*�. We used �+� in the annotation
of addEnergyList:.

package grammar

object EnergyStore

@grammarMethod{*

(add: (wattHour: Double | calorie: Double | joule: Double)+)

*}

func addEnergyList: Tuple<Any, Array<Union<f1, Double, f2, Double, f3, Double>>> t {

for elem in t f2 {

addAmount: elem

}

}

@grammarMethod{*

(add: (wattHour: Double | calorie: Double | joule: Double))

*}

func addEnergy: Tuple<Any, Union<f1, Double, f2, Double, f3, Double>> t {

addAmount: t f2

}

func addAmount: Union<f1, Double, f2, Double, f3, Double> value {

type value

case Double f1 {

amount = amount + f1*3600.0

}

case Double f2 {

amount = amount + f2*4.1868

}

case Double f3 {

amount = amount + f3;

}

155

}

// keeps the amount of energy in joules

@property var Double amount = 0.0;

end

Now we can write things like

EnergyStore add:

wattHour: 100.0

calorie: 12000.0

wattHour: 355.0

joule: 3200.67

calorie: 8777.0;

This is transformed in a method call to addEnergyList:.
As another example, a stub of a prototype MyFile could be

package grammar

object MyFile

@grammarMethod{*

(open: String (read: | write:))

*}

func openReadWrite: Tuple<String, Union<f1, Any, f2, Any>> t {

let String name = t f1;

type t f2

case Any f1 {

"open '$name' for reading" println;

}

case Any f2 {

"open '$name' for writing" println;

}

}

end

Method openReadWrite: is called twice at runtime in this example:

var MyFile myfile = MyFile();

myfile open: "AAAA" read:;

myfile open: "BBBB" write:;

Optional parts should be enclosed by parentheses and followed by �?�, as in

package grammar

@init(name, age)

object Person

@grammarMethod{*

156

(name: String

(age: Int)?)

*}

func set: Tuple<String, Union<some, Int, none, Any>> t {

self.name = t f1;

type t f2

case Int some {

self.age = some

}

case Any none {

}

}

override

func asString -> String = "Person($name, $age)";

@property var String name = "";

@property var Int age = 0;

end

The type associated to (age: Int)? is
Union<some, Int, none, Any>

The type associated to R? will be
Union<some, type of R, none, Any>

Method set: of Person is called by the message passings

let Person p = Person("Carolina", 7);

assert p getName == "Carolina";

// call set:

p name: "Carol";

assert p getName == "Carol";

// call set:

p name: "Carolina" age: 7;

assert p getName == "Carolina";

In a grammar annotation, it is possible to use more than one type between parentheses separated by
�|�:

package grammar

object ArrayIS

@grammarMethod{*

(add: (Int | String)*)

*}

func addMany: Array<Union<Int, String>> unArray {

for intStr in unArray {

type intStr

157

case Int elem { array add: elem }

case String elem { array add: elem }

}

}

override

func asString -> String {

let Array<Any> anyArray = Array<Any>();

for intStr in array {

type intStr

case Int elem { anyArray add: elem }

case String elem { anyArray add: elem }

}

return anyArray asString

}

@property let Array<Int|String> array = Array<Int|String>();

end

Message add: with a variable number of Int and String parameters can be sent to an ArrayIS object:

let ArrayIS isArray = ArrayIS();

isArray add: 0, "zero", 1, "one", 2, "three";

Care must be taken with alternative keywords in the DSL code of a grammar method.

package grammar

object ArrayIS

@grammarMethod{*

(addElem: Any | addElem: Int | addElem: String)+

*}

func addManyElem: Array<Union<f1, Any, f2, Int, f3, String>> unArray {

for anyIntStr in unArray {

type anyIntStr

case Any f1 { "found Any" println }

case Int f2 { array add: f2 }

case String f3 { array add: f3 }

}

}

@grammarMethod{*

(add: (Int | String)*)

*}

func addMany: Array<Union<Int, String>> unArray {

158

for intStr in unArray {

type intStr

case Int elem { array add: elem }

case String elem { array add: elem }

}

}

override

func asString -> String {

let Array<Any> anyArray = Array<Any>();

for intStr in array {

type intStr

case Int elem { anyArray add: elem }

case String elem { anyArray add: elem }

}

return anyArray asString

}

@property let Array<Int|String> array = Array<Int|String>();

end

Using this prototype, one can write

isArray addElem: 0

addElem: "zero"

addElem: Any

addElem: 0.0

addElem: 'a'

addElem: 1;

assert isArray getArray size == 0;

No element is inserted in the �eld array of ArrayIS because the �rst keyword of the grammar method,
addElem: Any

is always chosen.

8.3 Re�ning the De�nition of Grammar Methods

It is time to describe precisely the type of the parameter of a method that has a metaobject annotation
grammarMethod. The association of regular expressions with types is given by the following table. T1, T2,
..., Tn are types and R is part of the signature of the code of the DSL of the metaobject annotation. For
example, R can be

add:

add: Int

at: Int put: String

add: Int | sub: Int

(add: Int)*

159

Whenever there is a list of R�s, assume that the types associated to them are T1, T2, and so on. For
example, in a list R R R, assume that the types associated to the three R�s are T1, T2, and T3, respectively.
We used typeof(S) for the type associated, by this same table, to the grammar element S.

rule type

T1 T1

R R ... R Tuple<T1, T2, ..., Tn>

Id �:� R R ... R Tuple<T1, T2, ..., Tn>

Id �:� Any

Id �:� T T, which must be a type

Id �:� �(� T �)� �∗� Array<T>

Id �:� �(� T �)� �+� Array<T>

�(� R �)� typeof(R)

�(� R �)� �∗� Array<typeof(R)>

�(� R �)� �+� Array<typeof(R)>

�(� R �)� �?� Union<some, typeof(KeywordUnitSeq), none, Any>

T1 �|� T2 �|� ... �|� Tn Union<f1, T1, f2, T2, ..., fn, Tn>

R �|� R �|� ... �|� R Union<f1, T1, f2, T2, ..., fn, Tn>

We will give now the precise de�nition of the type of the parameter of the method based on the
grammar of the DSL of the metaobject annotation. It will be used �typeof(P)� for the type associated
to the grammar production P.

The productions will be divided in cases.
KeywordGrammar ::= �(� KeywordUnitSeq �)� �∗�
KeywordGrammar ::= �(� KeywordUnitSeq �)� �+�
typeof(KeywordGrammar) = Array<typeof(KeywordUnitSeq)>

KeywordGrammar ::= �(� KeywordUnitSeq �)�
typeof(KeywordGrammar) = typeof(KeywordUnitSeq)

KeywordGrammar ::= �(� KeywordUnitSeq �)� �?�
Now typeof(KeywordGrammar) = Union<some, typeof(KeywordUnitSeq), none, Any>

KeywordUnitSeq ::= KeywordUnit
typeof(KeywordUnitSeq) = typeof(KeywordUnit)

When there are at least two KeywordUnit�s:
KeywordUnitSeq ::= KeywordUnit KeywordUnit { KeywordUnit }
typeof(KeywordUnitSeq) = Tuple<typeof(KeywordUnit1), ..., typeof(KeywordUnitn)>

in which typeof(KeywordUniti) is the ith production.

When there are at least two KeywordUnit�s separated by �|�
KeywordUnitSeq ::= KeywordUnit �|� KeywordUnit { �|� KeywordUnit }

typeof(KeywordUnitSeq) = Union<f1, typeof(KeywordUnit1), ...,

fn, typeof(KeywordUnitn)>

in which typeof(KeywordUnit) is the ith production.
KeywordUnit ::= SelecGrammarElem
typeof(KeywordUnit) = typeof(SelecGrammarElem)

160

KeywordUnit ::= KeywordGrammar
typeof(KeywordUnit) = typeof(KeywordGrammar)

SelecGrammarElem ::= IdColon
typeof(SelecGrammarElem) = Any

SelecGrammarElem ::= IdColon Type1, Type2, ... Typen
typeof(SelecGrammarElem) = Tuple<Type1, Type2, ..., Typen>

if IdColon is followed by two or more types or
typeof(SelecGrammarElem) = Type1

if
SelecGrammarElem ::= IdColon Type1

SelecGrammarElem ::= IdColon �(� Type �)� (�∗� | �+�)
typeof(SelecGrammarElem) = Array<typeof(Type)>

Note that a Type may be an union type. Then the type of
Int | String

is Union<Int, String>.
Let us see some examples of associations of signatures of grammar methods with types:

Int Int

add: Int Int

add: Int, String Tuple<Int, String>

add: (Int)* Array<Int>

add: (Int)+ Array<Int>

(add: Int)* Array<Int>

(add: Int)+ Array<Int>

(add: Int | String) Union<Int, String>

(add: (Int | String)+) Array<Union<Int, String>>

(add: Int | add: String) Union<f1, Int, f2, String>

key: Int value: Float Tuple<Int, Float>

nameList: (String)* (size: Int)? Tuple<Array<String>, Union<some, Int, none, Any>>

coke: Any

coke: | guarana: Union<f1, Any, f2, Any>

(coke: | guarana:)* Array<Union<f1, Any, f2, Any>>

(coke: | guarana:)+ Array<Union<f1, Any, f2, Any>>

((coke: | guarana:)+)? Union<some, Array<Union<f1, Any, f2, Any>>, none, Any>

((coke: | guarana:)?)+ Array<Union<some, Union<f1, Any, f2, Any>, none, Any>>

amount: (gas: Float | alcohol: Float) Tuple<Any, Union<f1, Float, f2, Float>>

It is possible to have an annotation that does not use any regular operator. That is legal

@grammarMethod{*

(format: (String form) print: (String s))

*}

func formatPrint: Tuple<String, String> t {

...

}

161

8.4 Domain Speci�c Languages

Grammar methods make it easy to implement domain speci�c languages (DSL). A small DSL can be
implemented in Cyan in a fraction of the time it would take in other languages. The reasons for this
e�ciency are:

(a) the lexical analysis of the DSL is implemented using grammar methods is the same as that of Cyan;

(b) the syntactical analysis of the DSL is given by a regular expression, the signature of the grammar
method, and that is easy to create;

(c) the program of the DSL is a grammar message send. The Abstract Syntax Tree (AST) of such a
program is automatically built by the compiler. The tree is composed by tuples, unions, arrays, and
prototypes that appear in the de�nition of the grammar method. The single method parameter refer
to the top-level object of the tree;

(d) code generation for the DSL is made by interpreting the AST referenced by the single grammar
method parameter. Code generation using AST�s is usually nicely organized with code for di�erent
structures or commands being generated by clearly separated parts of the compiler;

To further exemplify grammar methods, we will give more examples of them.

@init(from, to)

object Edge

@annot(#f1) @property Int from

@annot(#f2) @property Int to

end

@init(numVertices, edgeArray)

object Graph

@annot(#f1) @property Int numVertices Int

@annot(#f2) @property Int edgeArray Array<Edge>

end

object MakeGraph

@grammarMethod{*

(numVertices: Int (edge: Int, Int)*)

*}

func make: Tuple<Int, Array<Tuple<Int, Int>> t -> Graph {

let edgeArray = Array<Edge>();

for elem in t f2 {

edgeArray add: Edge(elem f1, elem f2);

}

return Graph new: t f1, edgeArray;

}

end

A call

var g = MakeGraph numVertices: 5

edge: 1, 4

162

edge: 3, 1

edge: 1, 2

edge: 2, 4;

would produce and return an object of type Graph properly initialized.
Flower [Fir12] gives an example of a DSL used to control a camera which is in fact a window of

visibility over a larger image. As an example, we can have a 1600x900 image but only 200x100 pixels can
be seen at a time (this is the camera size). Initially the �camera� shows part of the image and a program
in the DSL moves the camera around the larger image, showing other parts of it. The DSL grammar is

<Program> ::= <CameraSize> <CameraPosition> <CommandList>

<CameraSize> ::= "set" "camera" "size" ":" <number> "by" <number> "pixels" "."

<CameraPosition> ::= "set" "camera" "position" ":" <number> "," <number> "."

<CommandList> ::= <Command>+

<Command> ::= "move" <number> "pixels" <Direction> "."

<Direction> ::= "up" | "down" | "left" | "right"

CameraSize is the size of the window visibility of the camera. CameraPosition is the initial position of
the camera in the larger image (lower left point of the window). CommandList is a sequence of commands
that moves the camera around the larger image. The site [Fir12] shows an annimation of this.

A grammar method implementing the above grammar is very easy to do:

package grammar

object Camera

@grammarMethod{*

(sizeHoriz: Int sizeVert: Int

positionX: Int positionY: Int

(move: Int (up: | down: | left: | right:))+)

*}

func camera:

Tuple<Int, Int, Int, Int,

Array<

Tuple<Int,

Union<f1, Any, f2, Any, f3, Any, f4, Any>>>> t {

// here comes the commands to actually change the camera position

}

end

This method could be used as

Camera sizeHoriz: 1600 sizeVert: 900

positionX: 0 positionY: 0

move: 100 up:

move: 200 right:

move: 500 up:

move: 150 left:

move: 200 down;

It takes seconds, not minutes, to codify the signature of this grammar method given the grammar of the
DSL. Other easy-to-do examples are a Turing machine and a Finite State Machine.

A future work is to design a library of grammar methods for paralel programming that would imple-
ment some commom paralel patterns. We could have calls like:

163

Process par: { Out println: 0 }, { Out println: 1 }

seq: { Out println: 2 }, { Out println: 3 }

par: (Graphics getMethod: "convert"), (Printer getMethod: "print");

Functions after par: would be executed in any paralel. Functions after seq: would be executed in the
order they appear in the message send. Then 1 may appear before 0 in the output. But 2 will always
come before 3. Remember methods are u-functions.

164

Chapter 9

Functions

Functions of Cyan are similar to blocks of Smalltalk or anonymous functions of other languages. A
function is a literal object � an object declared explicitly, without being cloned of another object. A
function may take arguments and can declares local variables. The syntax of a literal function is:

{ (: ParamRV :) code }

ParamRV represents the declaration of parameters and the return value type (optional items). A function
is very similar to a method de�nition � it can take parameters and return a value. For example,

b = { (: Int x -> Int :) ^ x*x };

declares a function that takes an Int parameter and returns the square of it. Symbol ^ is used for
returning a value. However, to b is associated a function, not a return value, which depends of the
parameter. Functions are objects and therefore they support methods. The function body is executed
by sending to the message eval: with the parameters the function demands or eval if it does not take
parameters. For example,

y = b eval: 5;

assigns 25 to variable y. The eval: methods are similar to Smalltalk�s value methods. We have chosen
a method name di�erent from that of Smalltalk because in Cyan a function may not return a value when
evaluated. In Smalltalk, it always does.

The function { (: Int x :) ^ x*x } is similar to the object

object LiteralFunction001

func eval: (Int x) -> Int {

return x*x;

}

end

For every function the compiler creates a prototype like the above, although one that inherits from yet-to-
be-seen prototypes Function<...>. Then two identical functions give origin to two di�erent prototypes.
There are important di�erences between the function and this prototype which will be explained in due
time.

The return value type of a function can be omitted. In this case, it will be the same as the type of the
return value of the expression returned � all returned values should be of the same type. For example,

{ (: Int x, Int y :)

var Int r;

r = sqrt: ((x-x0)*(x-x0) + (y-y0)*(y-y0));

^ r }

165

declares a function which takes two parameters, x and y, declares a local or temporary variable r,1 and
returns the value of r (therefore the return value type is Int). Assume that this function is inside an
object which has a method called sqrt:. Variables x0 and y0 are used inside the function but they are
neither parameters nor declared in the function. They may be �elds of the object or local variables of
functions in which this literal function is nested. These variables can be changed in the function.

The language does not demand that the return value type of a function be declared. In some situations,
the compiler may not be able to deduce the return type:

var b = { ^b };

To prevent this kind of error, when a function is assigned to a variable b in its declaration, as in this
example, b is only considered declared after the compiler reaches the beginning of the next statement.
Then in this code the compiler would sign the error �b was not declared�. In the general case, in an
assignment �var v = e� variable v cannot be used in e.

Generic arrays of Cyan have a method foreach that can be used to iterate over the array elements.
The argument to this method is a function that takes a parameter of the array element type. This function
is called once for each array element:

var Array<Int> firstPrimes = [2, 3, 5, 7, 11];

// prints all array elements

firstPrimes foreach: { (: Int e :)

Out println: e

};

var sum = 0;

// sum the values of the array elements

firstPrimes foreach: { (: Int e :)

sum = sum + e

};

Out println: sum;

An statement ^ expr is equivalent to return expr when it appears in the level of method declaration;
that is, outside any function inside a method body. See the example:

func aMethod: Int x, Int y -> Int {

var b = { ^ x < 0 || y < 0 };

// method does not return in the next statement

(b eval) ifTrue: { Error signal: "wrong coordinates" };

// method returns in the next statement

return sqrt: ((Math sqr: x) * (Math sqr: y));

}

A Cyan function at runtime is a closure, a literal object that can close over the variables visible where
it was de�ned. More rigorously, the syntax { (: params :) stats } creates a closure at runtime for the
linking with the instance and local variables is only made dynamically. An object is created each time a
function appears at runtime. Therefore the code

var Int x;

var Function<Int> a, b, c;

a = {^ i*i + x };

b = {^ i*i + x };

c = {^ i*i + x };

1Which of course can easily be removed as the function can return the expression itself.

166

creates three functions, each of which captures variable x.
Functions can be curried; that is, we can supply some of the parameters and get a new functions with

the remaining parameters:

var Function<Int, Int, Int> mult = { (: Int a, Int b :) ^a*b };

var Function<Int, Int> doubleNum = mult curry: 2;

var Function<Int> six = mult curry: 2, 3;

// print 6

(doubleNum eval: 3) println;

six eval println; // print 6

doubleNum is the function

{ (: Int b :) ^2*b }

A function that takes n parameters has curry: methods that take from 1 to n parameters.

9.1 Problems with Anonymous Functions

Anonymous functions are extremely useful features. They are supported by many functional and object-
oriented languages such as Scheme, Haskell, Smalltalk, D, and Ruby. However, this feature causes a
runtime error when

(a) an anonymous function accesses a local variable that is destroyed before the function becomes inac-
cessible or is garbage collected. Then the body of the function may be executed and the non-existing
local variable may be accessed, causing a runtime error;

(b) a function with a return statement live past the method in which it was declared. When the anonymous
function body is executed, there will be a return statement that refers to a method that is no longer
in the call stack. For the time being, return statements inside an anonymous function is prohibited
in Cyan. But the examples of this section will show what would happen if they are allowed.

We will give examples of these errors. Assume that �Function<Nil>� is the type functions that does not
take parameters and returns nothing.

object Test

func init {

function = { }

}

func run {

prepareError;

makeError;

}

func prepareError {

function = { return };

return;

}

func makeError {

function eval;

}

Function<Nil> function

end

167

Suppose the execution starts at method run that calls prepareError that stores an anonymous function
in �eld function. In makeError, the function stored in the �eld receives message eval and statement
return of this function is executed. This is a return from method prepareError that is no longer in the
stack. There is a runtime error.

object Test

func run {

returnFunction eval

}

func returnFunction -> Function<Nil> {

return { return };

}

end

Here returnFunction returns a function which receives message eval in run. Again, statement return
of the function is executed in method run and refers to returnFunction, which is not in the call stack
anymore.

object Test

func init {

function = { ^0 }

}

func run {

prepareError;

makeError;

}

func prepareError {

var x = 0;

function = { ^x };

}

func makeError {

Out println: (function eval);

}

Function<Int> function

end

Suppose method run is called on an object of Test. In statement �function eval� in method makeError,
the function body is executed which accesses variable x. However, this variable is no longer in the stack.
It was when the function was created in prepareError because x is a local variable of this method. There
is again a runtime error.

object Test

func run {

var a1 = 1;

var Function<Nil> b1;

if a1 == 1 {

var a2 = 2;

b1 = { Out println: a2 };

}

b1 eval

}

168

end

Here a function that uses local variable a2 is assigned to variable b1 that outlives a2. After the if
statement, a2 is removed from the stack and message eval is sent to b1, causing an access to variable a2
that no longer exists.

Function< Function<Int> > is the type of functions that return objects of type Function<Int>.

object Test

func run {

var a1 = 1;

var Function< Function<Int> > b1;

if a1 == 1 {

var a2 = 2;

b1 = { ^{ ^a2 } }

}

(b1 eval) eval;

}

end

After the execution of �var b1 = { ^{ ^a2 } }�, b1 refers to a function that refers to local variable a2.
In statement (b1 eval) eval, variable a2, which is no longer in the stack, is accessed causing a runtime
error.

There are some unusual use of functions that would not cause runtime errors:

object Test

func run {

var a1 = 1;

var Function<Int> b1;

if a1 == 1 {

var b2 = {

b1 = { ^a1 }

};

b2 eval;

}

b1 eval

}

end

No error occurs here because b1 and a1 are create and removed from the stack at the same time.

object Test

func run {

var a1 = 1;

var Function<Function<Int>> b1;

if a1 == 1 {

b1 = { ^{ ^a1 } }

}

Out println: b1 eval eval

}

end

Here b1 eval eval will return the value of a1 which is in the stack. No error will occur.

169

object Test

func run {

Out println: test

}

func test -> Int {

var Function<Nil> b1;

{

var b2 = {

b1 = { return 0 };

};

b2 eval;

} eval;

b1 eval;

Out println: 1

}

end

After message send �b2 eval� a function is assigned to b1. After �b1 eval� statement �return 0� is
executed and method test returns. The last statement is never reached. Note that function

{ return 0 }

is a function that does not return a value. Therefore its type is Function<Nil>.
Currently the Cyan compiler allows a anonymous function to access any visible variable. There is

never a runtime error because the local variables accessed inside a anonymous function are allocated in
the heap. Note that �elds belong to the self object and are always in the heap. The return statatement
cannot be used inside an anonymous function.

9.2 Functions with Multiple Keywords

Regular functions only have one keyword, which is eval: or eval (when there is no parameter). It is
possible to declare a function with more than one eval: keyword. One can declare
var b = { (: eval: (T11 p11, T12 p12, ..., T1k1 p1k1)

eval: (T21 p21, T22 p22, ..., T2k2 p2k2)

...

eval: (Tn1 pn1, Tn2 pn2, ..., Tnkn pnkn)

-> R :) {

// function body

};

in which ki ⩾ 0 for each i.
Consider a function with a method composed by n eval: keywords, each of them with at least one

parameter. The ith eval: keyword has ki parameters. This function inherits from prototype
Function<T11, T12, ..., T1k1><T21, T22, ... T2k2>...<Tn1, Tn2, ... Tnkn, R>

This prototype declares just one abstract method, which is
abstract

func eval: (T11 p11, T12 p12, ..., T1k1 p1k1)

eval: (T21 p21, T22 p22, ..., T2k2 p2k2)

...

eval: (Tn1 pn1, Tn2 pn2, ..., Tnkn pnkn) -> R

170

As an example, one can declare a function

var Function<String><Int, Nil> b;

b = { (: eval: String key eval: Int value :)

Out println: "key $key is $value"

};

// prints "key One is 1"

b eval: "One" eval: 1;

An eval: method can have zero parameters. In this case, none is used in the place of the type in the
generic prototype. That is, function

{ (: eval: Int i, Int j

eval:

eval: Char ch :) ^ ch ++ i ++ j }

has type

Function<Int, Int><none><Char, String>

9.3 Methods as Functions

Method functionForMethod of Any takes a literal string with the name of a method and returns a function
that call that method. The name of a unary method is the unary method. The name of a non-unary
method is the joining of each keyword followed by its number of parameters, separated by a single white
space. Then the names of the methods

object Test

func run2 { ... }

func run: Array<String> { ... }

func aa: String s0, Int s1, Char s2

bb: Int s3, Char s4

cc: Char s5, String s6 -> String {

return asString ++ s0 ++ s1 ++ s2 ++ s3 ++ s4 ++ s5 ++ s6

}

func * Int n -> Char = n asChar;

func - -> String = "000";

...

end

are

run2

run:1

aa:3 bb:2 cc:2

*1

-

As an example, the code calls the methods of prototype Test given above

let Function<Nil> mRun = Test functionForMethod: "run2";

mRun eval;

171

let Function<Array<String>, Nil> mRun1 = Test functionForMethod: "run:1";

mRun1 eval: ["0", "1", "2"];

let Function<String, Int, Char><Int, Char><Char, String, String> mabc =

Test functionForMethod: "aa:3 bb:2 cc:2";

(mabc eval: "0", 1, '2' eval: 3, '4' eval: '5', "6") println;

let Function<Int, Char> mMult = Test functionForMethod: "*1";

(mMult eval: 0) println;

let Function<String> mMinus = Test functionForMethod: "-";

mMinus eval println;

The function returned by functionForMethod:, when receives an eval or eval: message, send the orig-
inal message to the receiver of functionForMethod:. For example,

mRun1 eval: ["0", "1", "2"]

sends message [run: "0", "1", "2"] to object Test because Test is the receiver of message
functionForMethod: "run:1"

The metaobject changeFunctionForMethod whose annotation is attached to functionForMethod

changes
Test functionForMethod: "run:1"

to
{ (: Array<String> p0 :) Test run: p0 }

This metaobject can only be applied to methods functionForMethod: and functionForMethodWithSelf:.
Method functionForMethodWithSelf: return a function as functionForMethod: does but with one

di�erence: there is an additional �rst parameter whose type is the type of the receiver of the message. In
the function returned, the message is sent to this �rst parameter.

Both methods return a function that works like a method of the receiver, but with an important
di�erence. functionForMethod: returns what could be called a �object method�, a method speci�c to the
object that is the receiver. And functionForMethodWithSelf: returns a more generic method, one that
demands that the receiver be passed as parameter. Let us see how functionForMethodWithSelf: works.

let t0 = Test();

let t1 = Test();

let Function<Test, Nil> mRunSelf = Test functionForMethodWithSelf: "run2";

mRunSelf eval: t0;

"aaa" println;

let Function<Test><Array<String>, Nil> mRun1Self = Test

functionForMethodWithSelf: "run:1";

mRun1Self eval: t1 eval: ["0", "1", "2"];

"bbb" println;

let Function<Test><String, Int, Char><Int, Char><Char, String, String> mabcSelf

=

Test functionForMethodWithSelf: "aa:3 bb:2 cc:2";

(mabcSelf eval: t0 eval: "0", 1, '2' eval: 3, '4' eval: '5', "6") println;

"ccc" println;

let Function<Test><Int, Char> mMultSelf = Test functionForMethodWithSelf: "*1";

172

(mMultSelf eval: t1 eval: 0) println;

"ddd" println;

let Function<Test, String> mMinusSelf = Test functionForMethodWithSelf: "-";

(mMinusSelf eval: t1) println;

"eee" println;

mRunSelf is a function that takes a Test as parameter because run2 is an unary method. This function is
returned in a call to Test (line 3) but it is called in line 4 on object t0. mRun1Self takes two parameters,
one for each eval: keyword. If the literal string argument of functionForMethodWithSelf: speci�es a
non-unary method, the returned function will have an eval: keyword taking a single parameter whose
type is the type of the receiver of this message. Then

Test functionForMethodWithSelf: "run:1"

returns

{ (: eval: Test myself

eval: Array<String> p0 :) ^myself run: p0

}

If Test had a method
func open: String s read: close: -> String

the function returned by
Test functionForMethod: "open:1 read:0 close:0"

would be

{ (: eval: String p0

eval:

eval: :) ^Test open: p0 read: close:

}

whose type is Function<String><none><none, String>.
The function returned by functionForMethodWithSelf: would be

{ (: eval: Test myself

eval: String p0

eval:

eval: :) ^myself open: p0 read: close:

}

whose type is Function<Test><String><none><none, String>.
Using methods as objects is very convenient in creating graphical user interfaces. Listeners can be

regular methods. See the example.

object MenuItem

func onMouseClick: (Function<Nil> b) {

...

}

end

object Help

func show { ... }

...

end

173

object FileMenu

func open { ... }

end

...

var helpItem = MenuItem new;

helpItem onMouseClick: (Help functionForMethod: "show");

var openItem = MenuItem new;

openItem onMouseClick: (FileMenu functionForMethod: "open");

...

9.4 Methods of Functions for Decision and Repetition

Object Function<Boolean> de�nes some methods used for decision and iteration statements. The code
of these methods is shown below.

package cyan.lang

abstract object Function<Boolean>

abstract func eval -> Boolean

func whileTrue: (Function<Nil> aFunction) {

(self eval) ifTrue: {

aFunction eval;

self whileTrue: aFunction

}

}

func whileFalse: (Function<Nil> aFunction) {

(self eval) ifFalse: {

aFunction eval;

self whileFalse: aFunction

}

}

end

An function that does not take any parameters and does not return a value inherits from Function<Nil>.

package cyan.lang

abstract object Function<Nil>

abstract func eval

func loop {

while true {

self eval

}

}

func repeatUntil: (Function<Boolean> test) {

self eval;

174

while ! (test eval) {

self eval

}

}

@createCatchMethodsForFunctionNil

@checkCatchParameter

@grammarMethod{*

((catch: Any)+ (finally: Function<Nil>)?)

*}

func catchFinally: Tuple<Array<Any>, Union<some, Function<Nil>, none, Any>> t {

}

func hideException {

{

self eval

} catch: { (: CyException e :)

};

}

// other methods

end

Method loop implements an in�nite loop and repeatUntil: implements a loop that ends when the
function parameter evaluates to true. There are many catch: methods that are not shown. They are
produced by metaobject createCatchMethodsForFunctionNil.

9.5 Future Enhancements

This section proposes a future change to anonymous functions that would allow the compiler to allocate
local variables in the stack even if they are used inside a function.

Metaobject annotations can to be attached directly to types as in

var Char@letter ch;

ch = 'A'; // ok

ch = '0'/ // compile-time error

Here a metaobject letter is attached to Char and controls the type checking of ch. This feature will be
used with Functions. An annotation of metaobject rf will be attached to prototype Function to give
the precise type of a function:

func Int test {

var Int a1 = 0;

var f1 = {

++a1;

};

var f2 = { ^0 };

(f2 eval) println;

f1 eval;

175

f0 eval;

}

The types of the function variables will be:

f1 Function<Nil>@rf(1)

f2 Function<Int>@rf(-1)

f2 Function<Int>

Note that Function without the metaobject will be equal to Function<Int>@rf(-1).
Before studying functions in depth, it is necessary to de�ne what is �scope�, �variable of level k�, and

�function of level k�. Each identi�er is associated to a scope, the region of the source code in which the
identi�er is visible (and therefore it can be used). A scope can be the region of a method or of a function,
both delimited by { and }. The scope of a local variable starts just after its declaration and goes to the
enclosing �}� of the function in which it was declared. A scope will be called �level 1� if the delimiters {
and } are that of a method. �level 2� is the scope of a function inside level 1. In general, scope level n+1
is a function inside scope n:

func test: (Int n) {

// scope level 1

var Int a1 = n;

(n < 0) ifFalse: {

// scope level 2

var Int a2 = -a1;

(n > 0) ifTrue: {

// scope level 3

var a3 = a2 + 1;

Out println: "> 0", a3

}

ifFalse: { Out println: "= 0" }

}

} // a1 and n are removed from the stack here

We will call �variable of level k� a variable de�ned in scope level �k�. Therefore variable ai of this example
is a variable of level i. The level of parameters is considered -1. There is no variable of level 0.

The variables external to a function are those declared outside the code between and that delimits
the function. For example, a1 is external to the function passed as parameter to keyword ifFalse: in
the previous example (any of the ifFalse: keywords). And a1 and a2 are external to the function that
is argument to the keyword ifTrue:.

In the discussion that follows, it is important to remember that Cyan currently does not allow return
statements inside anonymous functions. A function is called �function of level -1� if it does not access non-
constant local variables. This kind of function can access only parameters, variables that are constants,
and �elds.

By �access� a variable we mean that a local variable appear anywhere between the function delimiters,
which includes nested functions. In the example that follows, the function that starts at line 3 and ends
at line 7 accesses local variable a1 which is external to the function. This access is made in the function
of line 5 which is inside the function of lines 4-6 which is inside the 3-7 function. Therefore 3-7 is not
a function of level -1. And neither is the function of lines 4-6 or the function of line 5. However, the
function that is the body of method test (lines 1-8) is a function of level -1.

1 func test {

176

2 var a1 = 1;

3 { var a2 = 2; // start

4 { var a3 = 3;

5 { ++a1 } eval;

6 } eval;

7 } eval // end

8 }

The following function, between lines 3-5, is a function of level -1.

1 func make: Int n {

2 let Int p = In readInt;

3 var f = { (: Int k :)

4 ^k + p + n;

5 };

6 (f eval: 0) println;

7 }

Let v1, v2, ..., vn be the external non-constant local variables accessed in a function B � B is a
function, not a variable that refers to a function. Fields and parameters are not considered. If m is the
level in which B is de�ned, then B can only access external local variables de�ned in levels ≤ m. But not
all variables of levels ≤ m are visible in B for some of them may belong to sister functions or they may
be de�ned after the de�nition of B. Variables de�ned in levels > m are either inaccessible or internal to
the function. The following example explains these points.

func test {

// level 1

var a1 = 1;

{ // level 2

var a2 = 2; // start of function B1

{ // level 3

var a31 = 31; // start of function B2

{ ++a1 } eval; // function B3

} eval; // end B2

var a22 = 2;

{ // level 3

var a32 = 32; // start of function B4

{ // start of function B5

// level 4

var a5 = 5;

a2 = a1 + a2 + a5

} eval // end B5

} eval; // end B4

} eval // end B1

}

Function B2 is de�ned at level 2 but it cannot access variable a22 of level 2 � it is de�ned after B2.
Variable a5 de�ned at level 4 is not visible at function B2.

The important thing to remember is �B de�ned at level m can only access external local variables
de�ned in levels ≤ m�, although not all variables of levels ≤ m are accessible at B. The example of
Figure 9.1 should clarify this point. Ellipses represent functions. A solid arrow from function C to

177

source uses local variables of the target

source is inside the target

0

1 2

3 4 5

6

Figure 9.1: Nesting of functions

function B means that C is inside B. A dashed arrow from C to B means that C uses local variables
declared in B.

This Figure represents the functions of the example that follows. The root is the function of the
method itself which is represented by the top-level ellipse in the Figure. The numbers that appear in the
ellipses are the return values of the functions. This number is used to identify the functions (we will say
function 0 for the function that returns 0). The values returned by all the functions are not used (the
return value of a method may be ignored. Statements like �1 + 2� are legal).

func test {

var v0 = 0;

{

var v1 = 1;

{

++v1;

++v0;

^3

} eval;

var v11 = 2;

{

++v0;

^4

} eval;

^1

} eval;

{

var v2 = 2;

{ ^5

{

++v0;

++v2;

178

^6

} eval;

} eval;

^2

} eval;

return 0

}

By the scope rules of Cyan, a function B can only access its own local variables or variables from functions
that are ancestors of B.2 Only variables declared before B are accessible. In this example, the function
that returns 3 cannot access v11 even though this variable is declared in an outer function (because the
declaration appears after the declaration of function 3). In the Figure, a function B may access local
variables of function A if there is a path in solid arrows from A to B (we will write just path from A to
B).

When method eval or eval: of a function A is called, the runtime system pushes to the stack the
local variables of A. Till the method returns, these local variables are there and they can be accessed
by functions declared inside A. Using the Cyan example above and the Figure, when method eval of
function 0 is called, it pushes its local variables to the stack. Then function 1 is called and this function
calls function 4 that accesses variable v0 declared at function 0. No error occurs because v0 is in the
stack. To call function 4 it was �rst necessary to call function 1 and, before this, function 0 which declares
variable v0.

However, this example could be modi�ed in such a way that function 3 is assigned in function 1 to a
variable b1 declared at function 0 (suppose this is legal � it is not as we will see).

// unimportant functions were removed

func test {

var v0 = 0;

var Function<Int> b1;

{

var v1 = 1;

b1 = {

++v1;

++v0;

^3

};

var v11 = 2;

^1

} eval;

// compile-time correct, runtime error

b1 eval;

return 0

}

b1 is visible in function 1 by the scope rules of Cyan. After functions 3 and 1 are removed from the stack
and control returns to method eval of 0, b1 receives an eval message. Since b1 refers to function 3, the
method called will try to access variable v1 declared in function 1. This variable is no longer in the stack.
There would be a runtime error. However, the rules of Cyan will not allow function 3 be assigned to
variable b1 of function 0. A function variable b will never refer to a function that uses external variables
that live less than b.

2X is an ancestor of Y if Y is textually inside X.

179

Inner functions may be assigned to variables of outer functions without causing runtime errors:

func test {

var a1 = 1;

var Function<Nil> b;

{

var a2 = 2;

{

{

b = { ++a1; }

} eval

} eval;

c eval;

} eval;

b eval;

}

Here a function { ++a1 } is assigned to variable b declared at level 1. This does not cause errors because
the function only refer to variables of level 1. Variable b and a1 will be removed from the stack at the
same time. There is no problem in this assignment. In this example, if the function used a2 instead of
a1, there would be a runtime error at line �b eval�. Variable a2 that is no longer in the stack would be
accessed. To prevent runtime errors of the kind �reference to a variable that is no longer in the stack�
Cyan only allows an assignment �b = B�, in which B is a function, if the variables accessed in B will live
as much as b. This is guaranteed by the rules given in the next section.

Functions are classi�ed according to the external local variables they access. To a function B is
associated a number bl(B) called �the level of function B� found according to the following rules.

1. A function that do not access non-constant local variables are called �functions of level -1�. This
kind of function may access parameters and variables declared as constants.

2. Functions that access at least one external non-constant local variable have their number bl(B)
calculated as

bl(B) = max{ lev(v1), lev(v2), ..., lev(vn) }

lev(v) is the level of variable v.

v1, v2, ..., vn are the external local non-constant variables accessed in function B. The �function
level� of B is bl(B).

A function that has a reference to a external non-constant local variable of level k is at least a function
of level k. However, it may be a function of level ≥ k (if it accesses an external non-constnat variable of
a superior level). The use of �elds, constants, or parameters is irrelevant to the calculus of the level of a
function. Fields are not created with the method or when the function receives message eval or eval:.
And parameters and constants are read only.

The de�nition of bl(B), the level of a function, is di�erent from the de�nition �function de�ned or
declared at level k� used previously. A function de�ned at level k is a function that is textually at level k.
The function level of a function depends on the external local variables that appear in its body (including
the nested functions inside it).

The higher the level of a local variable a function accesses, the more restrictive is the use of the
function. For example, function B3 in the next example can be assigned to any of the local function

180

variables bi of this example. But B4 cannot. If it is assigned to b2, for example, the message send �b2
eval� would access a local variable a31 that is no longer in the stack.

func test {

// level 1

var a1 = 1;

var Function<Nil> b1;

{ // start of function B1

// level 2

var a2 = 2;

var Function<Nil> b2;

{ // start of function B2

// level 3

var a31 = 31;

var Function<Nil> b31;

var b31 = { ++a1 }; // function B3

var Function<Nil> b32;

b32 = { ++a31 }; // function B4

b2 = { ++a2 };

} eval;

b2 eval;

} eval;

b1 eval;

}

The example below should clarify the de�nition of �function level k�.

func test: (Int p) -> Int {

// level 1

var a1 = 1;

var b1_1 = { ^a1 }; // function of level 1, defined at level 1

var b1_2 = { ^0 }; // function of level -1, defined at level 1

var b1_3 = { // function of level 1 because it uses a1

// level 2

var a2 = 2;

var c2 = 0;

var b2_1 = { ^a1 }; // function of level 1, defined at level 2

var b2_2 = { a2 = 1 }; // function of level 2, defined at level 2

var b2_4 = { Out println: c2 }; // function of level -1, defined at level 2

var b2_5 = { // function of level 2 because it uses a2

// level 3

var a3 = 3;

var b3_1 = { b1_1 eval }; // function of level 1, defined at level 3

var b3_3 = { ^a3 }; // function of level 3, defined at level 3

var b3_5 = { ^p }; // function of level -1, defined at level 3

}

};

b1_3 eval;

return 0

}

181

A function of level -1 may access constants, parameters, and �elds. Functions of level -1 are called
u-functions or unrestricted-use functions. There is no restriction on the use of u-functions: they may be
passed as parameters, returned from methods, returned from functions, assigned to �elds, or assigned to
any variable. They only have the type restrictions of regular objects.

Functions of levels 0 and up are called r-functions or restricted-use functions. There are limitations in
their use: they cannot be stored in �elds, returned from methods and functions, and there are limitations
on the assignment of them to local variables. This will soon be explained.

An function of level that takes parameters of types T1, T2, ..., Tn and returns a value of type R inherits
from prototype

abstract object Function<T1, T2, ..., Tn, R>

abstract func eval: (T1, T2, ..., Tn) -> R

// other methods --- explained later

end

If the function is restricted, a metaobject annotation rf should be attached to its type:

var Function<Int, String>@rf(2) f;

The parameter is the level number.
Every function has its own prototype that inherits from Function<...> objects. When the compiler

�nds a function
{ ^n }

it creates a prototype Function001 that inherits from Function<Int> (assume that n is a local Int
variable). The name Function001 was chosen by the compiler and it can be any valid identi�er. If this
function is assigned to a variable in an assignment,

var b = { ^n }

the type of b will be Function<Int>@rf(k) in which k is a literal integer representing the level of the
function.
As another example, the type of variable add in

var add = { (: Int n :) ^n + 1 };

could be UFunction017. Since this function inherits from Function<Int, Int> we can declare add before
assigning it a value as

var Function<Int, Int> add;

add = { (: Int n :) ^n + 1 };

Or as

var Function<Int, Int>@rf(-1) add;

add = { (: Int n :) ^n + 1 };

Since this function does not access any local variable, its level is -1.
Methods of functions are called primitive methods. A primitive method is not an object. The only

allowed operation on a primitive method is to call it.
Functions are them a special kind of object, one that has only primitive methods. However, all

prototypes that extend prototype Function can be passed as an argument to a method that expect a
Function as a real argument. For example, an Int array de�nes a foreach: method that expects an
r-function as parameter that accepts an Int parameter and returns Nil. One can pass as parameter a
regular object:

object Sum extends Function<Int, Nil>

func init { sum = 0 }

182

@property var Int sum

func eval: (Int elem) {

sum = sum + elem

}

end

...

var Array<Int> v = [2, 3, 5, 7, 11, 13];

v foreach: Sum;

Out println: "array sum = " ++ Sum getSum;

9.5.1 Type Checking Functions

Now it is time to unveil the rules that make functions statically typed in Cyan. The rules are:

(a) there is no restriction on the use of u-functions and variables whose type is Function<..., R> or
Function<..., R>@rf(-1). A �eld can have type Function<..., R>;

(b) �elds cannot have type Function<T1, ... Tn, R>@rf(k) with k greater than -1;

(c) methods and functions cannot have Function<T1, ... Tn, R>@rf(k) as the return type if k is greater
than -1;

(d) a variable r declared at level k whose type is Function<T1, ... Tn, R>@rf(kp) may receive in
assignments:

� a variable s of level m if m ≤ k and the type of s is Function<T1, ... Tn, R>@rf(mp) or one of
its subtypes, including Function<T1, ... Tn, R>@rf(-1);

� an r-function of level m if m≤ k and this r-function extends prototype Function<T1, ... Tn, R>@rf(m);

� an u-function that extends prototype Function<T1, ... Tn, R>@rf(-1);

(e) a parameter whose type is Function<T1, ... Tn, R> is considered a variable of level 0. The real
argument corresponding to this parameter may be a variable or function of any level. Of course, the
type of the variable or function should be Function<T1, ... Tn, R> or one of its subtypes;

(f) a variable or parameter whose type is Any cannot receive as real argument any r-function. Unfortu-
nately this introduces an exception in the subtype hierarchy: a subprototype may not be a sub-type.
For example, Function<Int> is not subtype of Any. Although a function like { ^0 } inherits from Any

(indirectly), its type is not considered subtype from Any. The only way of correcting this is allocating
the local variables in the stack. But that is ine�cient to say the least.

Based on the rules for type checking functions, one can conclude that:

(a) �elds can be referenced by both u-functions and r-functions;

(b) the restriction �methods and functions can have Function<T1, ... Tn, R> as the return type� (but
not Function<T1, ... Tn, R>@rf(k) with k ⩾ 0 could be changed to �a method can only return
u-functions and a function de�ned at level k can only return a function if it is of level m with m ≤ k�.
In the same way, a function de�ned at level k can have a variable as the return value if this variable
is of level m with m ≤ k. However, we said �could�, these more liberal rules are not used in Cyan;

(c) since parameters are read-only, it is not possible to assign a variable or function to any of them;

183

(d) both r-functions and u-functions can access �elds since their use do not cause any problems � �elds
belong to objects allocated in the heap, a memory space separated from the stack. Then it is legal to
return a function that accesses a �eld or to assign such a function to any UFunction variable:

@init(name, age)

object Person

func init { }

private func functionCompare -> UFunction<Person, Boolean> {

return { (: Person p :) ^age > (p getAge) }

}

@property String name = "noname";

@property Int age = 99;

end

...

var myself = Person new;

// methods setName: String and setAge: Int are automatically created

myself setName: "José";

myself setAge: 14;

if (Person functionCompare) eval: myself {

Out println: "Person is older than José";

}

(e) the type of a �eld or return method value cannot be an r-function. But it can be an u-function.
Therefore there will never be a �eld referring to a function that has a reference to a local variable.
And a function returned by a method will never refer to a local method variable;

(f) a parameter that has type Function<T1, ... Tn, R> cannot be assigned to any variable of the same
type because this variable is of level at least 1 and the parameter is of level -1;

(g) the generic prototype Array<T> declares a �eld of type T. Therefore the generic array instantiation
Array<Function<T1, ... Tn, R>> causes a compile-time error � r-functions cannot be types of
�elds. In the same way, Function<T1, ... Tn, R> cannot be the parameter to most generic con-
tainers (yet to be made) such as Hashtable, Set, List, and so on.

This is regrettable. We cannot, for example, create an array of r-functions:

var sum Float = 0;

var prod Float = 0;

var sumSqr Float = 0;

mySet applyAll: [{ (: Float it :) sum = sum + it },

{ (: Float it :) prod = prod*it },

{ (: Float it :) sumSqr = sumSqr + it*it }];

Of course, this restriction applies to a version of Cyan that uses the functions as de�ned in this section.
The current version of Cyan allows this array.

The rules for checking the use of r-functions are embodied in metaobject rf. The compiler passes the
control to this metaobject when type checking r-functions. It then implements the above rules.

9.5.2 Examples

In this example, an r-function is passed as a parameter. There is no runtime error.

184

object A

func aMethod {

var Int x;

x = In readInt;

Out println: (anotherMethod: { (: Int y :) ^y + x });

}

func anotherMethod: (Function<Int, Int> b)) -> Int {

return yetAnotherMethod: b;

}

func yetAnotherMethod: (Function<Int, Int> b) -> Int {

return b eval: 0;

}

...

end

Method aMethod calls anotherMethod which calls yetAnotherMethod. No reference to function { (: Int y :) ^y + x }

last longer than local variable x.
A parameter of type Any cannot receive an r-function as real argument. If it could, a runtime error

would occur.

object Test

func test {

{ var n = 0;

// function passed as parameter. The

// real argument has type Any

do: { ++n }

} eval;

makeError

}

func do: (Any any) {

self.any = any

}

func makeError {

// access to local variable n

// that no longer exists

any ?eval

}

Any any

end

9.5.3 Why Functions are Statically-Typed in Cyan

This section does not present a proof that functions in Cyan are statically typed. It just gives evidences
of that.

To introduce our case we will use functions B0, B1, ..., Bn in which Bi is de�ned at level i and Bi+1

is de�ned inside Bi. So there is a nesting
Bn ⊂ Bn−1 ⊂ . . . ⊂ B1 ⊂ B0

It was used ⊂ to mean �nested in�. Function Bj declares a local variable vj . Note that B0 is the body of
a method (functions of level 0 are always methods).

185

Suppose Bn uses external local variables vi1 , vi2 , ..., vik of functions Bi1 , Bi2 , ..., Bik with i1 < i2 <
. . . ik−1 < ik. It is not important whether Bn uses or not more than one variable of each function.

Let us concentrate on Bik which de�nes variable vik accessed by Bn. Since there is a nesting structure,
functions Bik+1, Bik+2, ..., Bn−1 also have references to vik (because Bn is nested inside these functions).
This fact is used in the following paragraph.

Bn can be assigned to a function variable of Bj with ik ≤ j < n. This does not cause a runtime error
because a function Bj with ik ≤ j < n is only called when Bik is in the stack. Bj cannot be assigned to
a variable bt of level t with t < ik because Bj also has a reference to vik and, by the rules, it can only be
assigned to variables that appear in function Bt with ik ≤ t < j.

Bn also has a reference to variable vik−1
of Bik−1

. Therefore Bn could not be assigned to function
variables of functions Bj with j < ik−1. Considering all cases, Bn cannot be assigned to function variables
of functions Bj with

j < i1
j < i2
. . .
j < ik−1

j < ik

Since i1 < i2 < . . . ik−1 < ik, we conclude that Bn cannot be assigned to a function variable of function
Bik . Then Bn can only be assigned to a function variable of function Bj with j ≥ ik. This is what one of
the rules of Section 9.5.1 says. Therefore these rules prevent any runtime errors of the kind �access to a
function variable that does not exist anymore� related to the assignment of r-functions to local variables.
It is not di�cult to see that the other rules prevent all of the other kinds of errors related to r-functions
such as the passing of parameters, assignment of functions to Any variables, assignment of r-functions to
�elds (not allowed), and so on.

9.5.4 Adding Methods to Objects

This sections describes a possible future feature of Cyan, the possibility of adding methods to an object.
We add a grammar method to prototype Any (Section 4.15) for dynamically adding methods to

prototypes. It is necessary to specify each keyword, the types of all parameters, the return value type,
and the method body. This grammar method has the signature

func (addMethod:

(keyword: String (param: (Any)+)?

)+

(returnType: Any)?

body: Any)

Suppose we want to add a print method dynamically to prototype Box:

object Box

func get -> Int { return value }

func set: (Int other) { value = other }

var Int value = 0

end

We want to add a print method to every object created from Box or that has already been created using
this prototype using new or clone (with the exception to those objects that have already added a print

method to themselves). This method, if textually added to Box, would be

186

func print { Out println: get }

Note that Any already de�nes a print method. However, the method print we de�ne has a behavior
di�erent from that of the inherited method.

A �rst attempt would to add print dynamically would be

Box addMethod:

keyword: #print

body: { Out println: get };

However, there is a problem here: it is used get in the function that is parameter to keyword body:. The
compiler will search for a get identi�er in the method in which this statement is, then in the prototype,
and then in the list of imported prototypes, constants, and interfaces. Anyway, get will not be considered
as a method of Box, which is what we want. A second attempt would be

Box addMethod:

keyword: #print

body: { Out println: (Box get) };

Here it was used Box get instead of just �get�. But then the print method of every object created from
Box will use the get method of Box:

var myBox = Box new;

myBox set: 5;

Box set: 0;

// prints 0

Box ?print;

// prints 0 too !

myBox ?print;

Since the print method was dynamically added, it has to be called using ?. In this example, both calls
to print used the get method of Box, which returns the value 0.

This problem cannot be solved with regular functions. It is necessary to de�ne a new kind of function,
context function to solve it. A context function is declared as

{ (: T self, parameters and return type :) body }

Part �T self� is new. It means that inside the method body self has type T. The identi�ers visible inside
the function body are those declared in the function itself, those accessible through T (but using �self�),
external parameters, and external constant local variables. For each parameter or constant the function
declares a variable with the same type and name. At the function creation, the values of the external
parameters and constants are copied to these function variables. �super� cannot be used inside a context
function. All restrictions given above apply to regular function nested inside a context function.

var cf = { (: Person self, Int n :)

var f = { get print // error: should use "self get"

super println; // error: 'super' cannot be used in a context function

};

n println;

};

Methods of the current object can be accessed by means of a local variable:

let mySelf = self;

var b = {

(: Any self :)

187

Out println: (myself age)

};

Fields of the current object can be indirectly accessed by means of get and set methods of local variables
such as mySelf.

With context functions, the print method of one of the previous example can now be adequately
added to Box.

Box addMethod:

keyword: #print

body: { (: Box self :) Out println: (self get) };

The �self� before �get� is mandatory. Now the print method will send message get to the object that
receives message print:

var myBox = Box new;

myBox set: 5;

Box set: 0;

// prints 0

Box ?print;

// prints 5

myBox ?print;

Method addMethod: ... checks whether the context object passed in keyword body: matches the
keywords, parameters, and return value.

// error: function with parameter, keyword without one

Box addMethod:

keyword: #print

body: { (: Box self, Int n :) Out println: n };

// error: function has no Int parameter

// and return value should be Int

Box addMethod:

keyword: #add

param: Int

returnType: Int

body: { (: Box self -> String :) ^(self get) asString };

The type of the context function

{ (: S self, T1 t1, T2 t2, ..., Tn tn -> R :) ... }

is

ContextFunction<S, T1, T2, ..., Tn, R>

Interface ContextFunction is de�ned as

interface ContextFunction<S, T1, T2, ..., Tn, R>

func bindToFunction: S -> UFunction<T1, T2, ..., Tn, R>

end

Therefore the type of

{ (: S self, T1 t1, T2 t2, ..., Tn tn :) ... }

is

188

ContextFunction<S, T1, T2, ..., Tn, Nil>

Assuming that there is no statement �^ expr� in the body of the context function or there is such a
statement but the type of expr is Nil.

The compiler creates a context object3 from a context function. From

{ (: S self, T1 t1, T2 t2, ..., Tn tn -> R :) ... }

that uses local variables and parameters v1, v2, ... vk the compiler creates

object ContextFunction001(V1 v1, ..., Vk vk)

implements ContextFunction<S, T1, T2, ..., Tn, R>

func bindToFunction: (S newSelf) -> UFunction<T1, T2, ..., Tn, R> {

return { (: T1 t1, T2 t2, ..., Tn tn -> R :)

// body of the context function with

// self replaced by newSelf

...

}

}

end

For example, from the context function of the code

let Int i = 0;

var b = { (: Box self :) Out println: (i + (self get)) };

(b bindToFunction: Box) eval;

the compiler creates a regular object

object ContextObject001(Int i)

implements ContextFunction<Box, Nil>

func bindToFunction: Box -> UFunction<Nil>

return {

Out println: (i + (newSelf get));

}

}

end

And

var b = { (: Box self :) Out println: (i + (self get)) };

becomes

var b = ContextObject001(i);

As another example, consider

var Person p = Person("Carol", 5);

let Int otherAge = 8;

var cf = { (: Person self, Int age2 -> Boolean :)

self name println;

3Chapter 10 de�ne context objects, which are a generalization of functions.

189

self name prototypeName println;

^ (self age) == age2 && (self age) == otherAge;

};

The compiler generates, for this context object, the following prototype:

object CFun_1__(Int otherAge)

implements ContextFunction<Person, Int, Boolean>

func bindToFunction: (Person newSelf__) -> UFunction<Int, Boolean> {

return { (: Int age2 -> Boolean :)

newSelf__ name println;

newSelf__ name prototypeName println;

^ (newSelf__ age) == age2 && (newSelf__ age) == otherAge;

}

}

end

A context function with multiple keywords is a context function with multiple eval: keywords:

{ (: S self, eval: T11 t11, ... T1n t1n eval: T21 t21, ... T2m t2m,

... eval: ... Tkp tkp -> R :)

...

}

The type of this context function is

interface ContextFunction<S, T11, ..., T1n><T21, ... T2m>...<Tk1, ... Tkp, R>

func bindToFunction: S -> UFunction<T11, ..., T1n><T21, ... T2m>...<Tk1, ... Tkp, R>

end

The UFunction returned by bindToFunction: is de�ned in Section 9.2. The type of a context function
with multiple keywords that does not return a value is de�ned similarly.

In what follows, we will specify the checks made when calling addMethod: to add a method with a
single keyword. In a call

obj addMethod:

keyword: sel

param: T1 param: T2 ... param: Tn

returnType: R

body: expr

metaobject checkAddMethod checks whether:

(a) the parameters to all keywords of addMethod: ... but body: are literals;

(b) the keyword sel is a valid method name;

(c) the keyword sel ends with �:� if n > 0;

(d) the keyword sel does not end with �:� if n == 0;

(e) the type of expr is subtype of ContextFunction<S, T1, T2, ..., Tn, R> in which S is supertype
of typeof(obj) (the compile-time type of obj).

190

Even with these checkings there may be an error when the method addMethod: ... is called. For
example, obj may refer to a B object although typeof(obj) is A. There is a �nal method sel in B that
is not de�ned in A. The metaobject cannot detect that a �nal method is being changed. In case of error,
method addMethod: ... throws exception ExceptionAddMethod.

It is possible that in future versions of Cyan all checking be postponed to runtime. At least if some
of the parameters are not literals.

Let us see more examples of use of context functions.

var myContextFunction = { (: Box self, Int p -> Int :) ^(self get) + p };

Box set: 5;

var Function<Int, Int> b = myContextFunction bindToFunction: Box

assert: (b eval: 3) == 8;

var anotherBox = Box new;

anotherBox set: 1;

b = myContextFunction bindToFunction: anotherBox;

assert: (b eval: 3) == 4;

In one of the examples given above, a print method is added to prototype Box through �addMethod:
...�. When this grammar method is called at runtime, method print will be added to all instances of
Box that have been created and that will created afterwards. However, if an instance of Box has added
another print method, it is not a�ected:

var myBox = Box new;

myBox set: 10;

myBox addMethod:

keyword: #print

body: { (: Box self :)

Out println: "value = ", self get;

};

Box addMethod:

keyword: #print

body: { (: Box self :) Out println: (self get) };

// will print "value = 10" and not just "10"

myBox print;

Another method that takes a parameter and returns a value can be added to Box:

Box addMethod:

keyword: #returnSum

param: Int

returnType: Int

body: { (: Box self, Int p -> Int :) ^(self get) + p };

The metaobject whose annotation is attached to this grammar method checks whether the number of
keywords (one), the parameter type, and the return value type matches the context function. It does in
this case.

var myBox = Box new;

myBox set: 5;

assert (myBox ?returnSum: 3) == 8;

As another example, one can add methods to change the color of a shape:

191

object Shape

@property Int color

abstract func draw

...

end

...

var colors = ["blue", "red", "yellow", "white", "black"];

// assume that hexadecimal integer numbers can

// be given in this way

var colorNumbers = [ff_Hex, ff0000_Hex, ffff00_Hex, ffffff_Hex, 0];

var i = 0;

colors foreach: {

(: String elem :)

Shape addMethod:

keyword: elem

body: { (: Shape self :) self color: colorNumbers[i] };

++i;

};

Methods blue, red, yellow, white, and black are added to Shape. So we can write

var Shape myShape;

...

myShape ?blue;

// draws in blue

myShape draw;

myShape ?red;

// draws in red

myShape draw;

// Square is a subprototype of Shape

var Square sqr = Square new;

...

sqr ?black;

// draws in black

sqr draw;

Assume that draw of subprototypes use the color de�ned in Shape.
We could have got the same result as above by adding all of these methods to Shape textually. For

example, method blue would be

func blue { color: ff_Hex }

Regular objects may be used as parameters to keyword �body:�.

Box addMethod:

keyword: #print

body: PrintBox;

PrintBox is a regular prototype.

object PrintBox

implements ContextFunction<Box, Nil>

192

func bindToFunction: (Box newSelf) -> UFunction<Nil> {

return { Out println: (newSelf get) }

}

end

There could be libraries of context objects that implement methods that could be added to several
di�erent prototypes. For example, there could be a Sort context object to sort any object that implements
an interface

interface Indexable<T>

func at: Int -> Int

func at: Int put: T

func size -> Int

end

A context object used to add a method to an object could have more methods than just bindToFunction:.

object PrintFormatedBox

implements ContextFunction<Box, Nil>

func bindToFunction: (Box newSelf) -> UFunction<Nil> {

return { Out println: (format: (newSelf get)) }

}

/* one could declare a context function

with one more method like format:

this method fills the first positions

with 0. Then

format: 123

should produce "0000000123"

*/

private func format: (Int n) -> String {

var strn = (n asString);

return ("0000000000" trim: (10 - strn size)) ++ strn

}

end

After PrintFormatedBox is added to Box as in

Box addMethod:

keyword: #print

body: PrintFormatedBox;

the print method puts zeros before the printed number, if necessary. format: is a method that can only
be used by the method print added to Box. It is like a private method of print.

Suppose you want to replace a method by a context function that calls the original method after
printing a message. Using the Box prototype, we would like something like this:

object Box

func get -> Int { return value }

func set: (Int other) { value = other }

var Int value = 0;

193

end

...

Box set: 0;

Box addMethod:

keyword: #get

returnType: Int

body: { (: Box self :)

Out println: "getting 'value'";

self get

};

It is a pity this does not work. In a call �Box get� made after the call to addMethod: ..., the context
function will be called. It prints

getting 'value'

as expected but them it calls get, which is a recursive call. There is an in�nity loop. What we would
like is to call the original get method. That cannot be currently achieved in Cyan. However, it will
be possible if context functions are transformed into � literal dynamic mixins� (LDM) or � literal runtime
metaobjects� (LRM). This feature is not yet supported by Cyan. But the description of it would be as
follows.

The syntax of LRM's would be the same as that of context functions except that �super� could be
used as receiver of messages. Calls to super are calls to the original object. Then the code above can be
written as

Box set: 0;

Box addMethod:

keyword: #get

returnType: Int

body: { (: Box self :)

Out println: "getting 'value'";

super get

};

In this way a call �Box get� would print �getting 'value'� and the original get method would be called.
Exactly what we wanted.

We are unaware of any language that allows literal runtime metaobjects.
This feature has not been introduced into Cyan because:

(a) it seems to be di�cult to implement (which may not be a good reason). The compiler being built
generates Java code and literal runtime metaobjects probably demand code generation at runtime,
which would be di�cult with Java (although not impossible);

(b) there are some questions on what is the type of a LDM/LRM. This is the same question of �what is
the type of a mixin prototype?�.

194

Chapter 10

Context Objects

A Cyan function becomes a closure at runtime for it can access variables from its context as in the
example:

// sum the vector elements

var sum = 0;

v foreach: { (: Int x :) sum = sum + x };

Here the sum of the elements of vector v is put in variable sum. But sum is not a local variable or parameter
of the function. It was taken from the environment. Then to use a function it is necessary to bind (close
over) the free variables to some variables that are visible at the function declaration. self is visible in
the function and messages can be sent to it:

v foreach: { (: Int x :) sum = sum + (self calc: x) };

Although functions are tremendously useful, they cannot be reused because they are literal objects. A
function that accesses local and �elds is speci�c to a location in the source code in which those variables
are visible. Even if the programmer copy-and-past the function source code it may need to be modi�ed
because the variable names in the target environment may be di�erent. A generalization of functions
would make the free variables and the message sends to self explicit. That is what context objects do.

In Cyan it is possible to de�ne a context object with free variables that can be bounded to produce a
workable object. For example, the context object

object Sum(Int &sum) extends Function<Int, Nil>

override

func eval: (Int x) {

sum = sum + x

}

end

de�nes method eval: and uses a free Int variable sum which is binded in the object creation.

var v = [1, 2, 3];

var Int s = 0;

v foreach: Sum(s);

assert: (s == 6);

The syntax Sum(s) means the same as
(Sum new: s)

which is the creation of an object from Sum passing s as a parameter. However, this is not a regular
parameter passing � it is passing by reference as we will soon discover.

195

A context object cannot de�ne init, init:, or clone methods. The only way of creating a context
object is by using a new: method created by the compiler.

When the type of a context object parameter is preceded by &, the real argument should be a local
variable or �eld. It cannot be a parameter of the current method. Context objects can be inherited. In
the code that follows, Manager extends Employee. In Employee, the context parameters name and age

are not transformed into �elds because they are passed as parameters to the constructor of Person. The
same happens with all context parameters of Manager.

package people

open

object Person

func init: String name, Int age {

self._name = name;

self._age = age

}

func name: String name age: Int age {

self._name = name;

self._age = age;

}

@property var String _name

@property var Int _age

end

open

object Employee(String name, Int age, Int salary, String companyName,

String &outp, Int &sum)

extends Person(name, age)

func getSalary -> Int = salary;

func getCompanyName -> String = companyName;

func doSum {

outp = outp ++ name;

sum = sum + salary

}

end

object Manager(String name, Int age, Int salary, String companyName,

String &outp, Int &sum)

extends Employee(name, age, salary, companyName, outp, sum)

func getSectionName -> String = sectionName;

func setSectionName: String sn { sectionName = sn }

var String sectionName = "";

end

196

10.1 Passing Parameters by Copy

When the & do not precede the parameter of a context object, a copy of the real argument is made when
creating the object. Just like in the creation of a regular object.

object DoNotSum(Int sum)

func eval: (Int x) {

sum = sum + x

}

end

...

var Int s = 0;

v foreach: DoNotSum(s);

assert: (s == 0);

Here a copy of the value of s, 0, is passed as a parameter to the context object. This �parameter� is then
changed. But the value of the original variable s remains unchanged. Parameters that are not preceded
by & will be called �copy parameters�. Parameters preceded by & will be called �reference parameters�
or & parameters.

A context object with a copy parameter may have any expression as real argument:

v foreach: DoNotSum(0);

[0, 1, 2] foreach: DoNotSum(Math fatorial: 5);

Therefore, method parameters can be real arguments to DoNotSum.

10.2 Passing Parameters by Reference

Some languages such as C++ support passing of parameters by reference. In this case, changes in the
parameter are re�ected in the real argument, which should be a variable (it cannot be an expression).
Cyan does not support directly this construct. However, it can be implemented using the generic context
object Ref:

object Ref<T>(T &v)

func value -> T { return v }

func value: (T newValue) { v = newValue }

end

Now if you want to pass a parameter by reference, use Ref:

private object CalcArea

// it is as if parameter to keyword area: were by reference

func squareSide: (Float side) area: (Ref<Float> refSqrArea) {

// by calling method value: we are changing the parameter

// of the context object

refSqrArea value: side*side

}

end

public object Program

func run {

197

var side = In readFloat;

var Float sqrArea;

/* encapsulate the reference parameter inside a

context object. That is, use "Ref<Float>(sqrArea)"

instead of just "sqrArea".

Local variable "sqrArea" is changed inside

method squareSide:area: of prototype CalcArea when message

value: is sent to refSqrArea

*/

CalcArea squareSide: side area: Ref<Float>(sqrArea);

Out println: "Square side = $side";

Out println: "area = $sqrArea"

}

end

Of course, the �passing by reference� syntax in Cyan is not straightforward. However, it has two advan-
tages:

(a) it does not need a special syntax;

(b) and, most importantly, it is type-safe. Context objects use the same rules as the static functions of
Cyan. That means, for example, that a �eld of prototype Calc cannot refer to a parameter of type
Ref<Float>. That guarantees there will never be a reference to local variable of run of Program after
this method is removed from the stack.

There will never be an error in Cyan equivalent to the following error in a C program, in which pointer
mistake refers to a local variable that has been removed from the stack.

#include <stdio.h>

const float pi = 3.141592;

float *mistake;

void calc(float radius, float *area) {

mistake = area;

*area = pi*radius*radius;

}

void run() {

float area;

calc(1, &area);

}

float useStack() { float ten = 10; return area; }

int main() {

run();

useStack();

// mistake refers to a variable that has been

// removed from the stack

// 10 is printed in some compilers

198

printf("%f\n", *mistake);

return 0;

}

10.3 Should Context Objects be User-De�ned?

An alternative de�nition of Cyan could get rid of context objects. They could not be de�ned as shown
in this text. Instead, one could use reference types like &Int to declare a restricted prototype directly. So
the programmer could de�ne a prototype like

object Sum extends Function<Nil, Int>

func init { }

func new: (Int &sum) -> Sum {

var newSum = Sum new;

newSum bind: sum;

return newSum

}

public bind: (Int &sum) {

self.sum = sum

}

Int &sum

override

func eval: (Int x) {

sum = sum + x

}

end

This new version of Cyan would have a concept called �restricted type� de�ned inductively as:

(a) a reference type is a restricted type;

(b) any prototype that declares a �eld of a restricted type is a reference type.

All the restriction on the use and type checking de�ned nowadays for context objects would apply to
reference types.

With this feature, the programmer herself would explicitly create her own context objects.

10.4 More Examples

The example of trees of page 69 can be made even more compact with context objects:

open

object Tree

end

object BinTree(@property Tree left, @property Int value, @property Tree right) extends

Tree

end

199

object No(Int value) extends Tree

end

...

var tree = BinTree(No(-1), 0, BinTree(No(1), 2, No(3)));

Out println: ((tree left) value);

When the compiler �nds a class like BinTree, it creates a regular class with �elds left, value, and
right:

object BinTree extends Tree

func init { }

func new: (Tree left, Int value, Tree right) -> BinTree {

var newObj = BinTree new;

newObj bind: left, value, right;

return newObj

}

func bind: (Tree left, Int value, Tree right) {

self.left = left;

self.value = value;

self.right = right;

}

@property Tree left

@property Tree value

@property Tree right

end

Suppose there is a sport Car prototype that has two doors, left and right. The colors of these doors
should always be the same as the main color of the car. One way of assuring that is declaring in the
CarDoor prototype a �eld that is a reference (a C-language pointer) to the �eld of the Car that keeps the
color. Since Cyan does not have C-like pointers, we can use context objects.

object CarDoor(Int &color)

func getColor -> { return color }

func setColor: Int newColor { color = newColor }

...

end

object Car

func init: Int aColor {

_color = aColor;

_leftDoor = CarDoor(_color);

_rightDoor = CarDoor(_color);

}

func color: (Int newColor) { _color = newColor }

func color -> Int = _color;

var Int _color

@property CarDoor _leftDoor

@property CarDoor _rightDoor

end

200

...

Car color: 255;

// prints "color = 255"

Out println: "color = ", Car leftDoor getColor;

(Car rightDoor) setColor: 0;

// prints "color = 0"

Out println: "color = ", Car color;

inject:into: methods in Smalltalk are used to accumulate a result over a loop. For example,
var sum = (1 to: 10) inject: 0 into: { (: Int total, Int elem :) total + elem }

accumulates the sum from 1 to 10. Initially total receives 0, the argument to the keyword inject:. Then
the function is called passing total and the current index (from 1 to 10). In each step, the value returned
from the function, total + elem, is assigned to total (Smalltalk returns the last block expression).

The basic types of Cyan support a Smalltalk-like inject method and another form made to be used
with context objects.

object InjectInto<T>(T total) extends InjectObject<T>

override

func eval: (T elem) {

total = total + elem

}

override

func result -> T = total; end

Now the total is kept in the context object and we can write

var inj = InjectInto<Int>(0);

1 to: 10 do: inj;

Out println: "Sum = ", inj result;

print the sum of the numbers from 1 to 10.

10.5 Future Enhancements

This Section describes future enhancements to context objects.

10.5.1 Type Checking Context Objects

Context objects will be type-checked as functions will be. See Section 9.5.
There are two kinds of context objects:

(a) the ones with at least one reference parameter such as Sum. These are called restricted context objects,
r-co for short;

(b) the ones with no reference parameter. These are called unrestricted context objects, u-co for short.

There is no restriction on the use of unrestricted context objects (as expected!). They can be types
of variables, �elds, return values, and parameters. u-co are a generalization of u-functions.

Restricted context objects are a generalization of r-functions. Both su�er from the same problem: a
context object could refer to a dead local variable:

201

var Sum mySum;

var b = {

var Int sum1 = 0;

mySum = Sum(sum1);

};

b eval;

mySum eval: 1;

The message send �b eval� makes mySum refer to a context object that has a reference to sum1. In the
last message send, �mySum eval: 1�, there is an access to sum1, which no longer exists.

Another error would be to return a r-co from a method:

object Program

func run {

[1, 2, 3] foreach: makeError

}

func makeError -> Sum {

var sum = 0;

return Sum(sum);

}

Here Sum(sum) has a reference to a local variable sum. When foreach: calls method eval: of the object
Sum(sum), variable sum is accessed causing a runtime error.

To prevent this kind of error, r-co have exactly the same set of restrictions as r-functions. In particular,
the compiler would point an error in the assignment �mySum = Sum(sum1)� of the example above.

A context object that does not inherit from anyone inherits from Any, as usual. Both r-co�s and
u-co�s can inherit from any prototype and implement any interface. However, there are restrictions on
assignments mixining restricted and unrestricted types. A r-co RCO that inherits from an unrestricted
prototype P or implements an unrestricted interface I is not considered a subtype of P or I. That is, if p
is a variable of type P or I, an assignment

p = RCO;

is illegal.
Apart from the rules for type checking, context objects are regular objects. For example, they may be

abstract, have shared variables, and inherit from other prototypes. Inheritance demands some explana-
tions. When a context object with a �eld or reference parameter x is inherited by another context object,
this last one should declare x in its list of parameters with the same symbol preceding the parameter
(none or &) as the superprototype. x should precede the parameters de�ned only in the subprototype.
After the keyword �extends� there should appear the superprototype with its parameters.

open

object A(Int &x)

...

end

object B(Int &x, Int y, String &z) extends A(x)

...

end

Since A is a r-co, B is a r-co too. A context object cannot be inherited by a regular prototype.
Note that context objects that use only copy parameters are regular prototypes. Therefore subpro-

totypes need not to obey the rules given above. The subprototype does not even need to be a context

202

prototype.
A context object can also be a generic object. Sum can be generalized:

object Sum<T>(T &sum) extends Function<T, Nil>

override

func eval: (T x) {

sum = sum + x

}

end

...

var intSum = 0;

var Float floatSum = 0;

var String abc = "";

[1, 2, 3] foreach: Sum<Int>(intSum);

[1.5, 2.5, 1] foreach: Sum<Float>(floatSum);

assert: (floatSum == 5);

assert: (intSum == 6);

10.5.2 Adding Context Objects to Prototypes

Section 9.5.4 (Future Enhancements) explain how to use the addMethod: ... grammar method of Any
to add methods to a prototype.

func (addMethod:

(keyword: String (param: (Any)+)?

)+

(returnType: Any)?

body: Any)

A context object can be used instead of a context function. One has just to extends the appropriate
ContextObject prototype.

object Car

func addDoorColor {

leftDoor addMethod:

keyword: #getColor

returnType: Int

body: GetColor(color);

leftDoor addMethod:

keyword: #setColor

param: Int

body: SetColor(color);

}

...

public Door leftDoor, rightDoor

Int color

end

object GetColor(Int &color)

203

implements ContextFunction<Door, Int>

func bindToFunction: (Door newSelf) -> UFunction<Int> {

return { ^color }

}

end

object SetColor(Int &color)

implements ContextFunction<Door, Int, Nil>

func bindToFunction: (Door newSelf) -> UFunction<Int, Nil> {

return { (: Int newColor :) color = newColor }

}

end

After
Car addDoorColor

the left door will share a color with the car. Changes in one will re�ect in the other.

204

Chapter 11

The Exception Handling System

The exception handling system of Cyan has underwent big changes. Now it is a regular language statement
instead of a message passing. Soon this manual will be updated.

Exception handling systems (EHS) allow the signalling and handling of errors or abnormal situations.
There is a separation from the detection of the error and its treatment which can be in di�erent methods
or modules. The exception handling systems of almost all object-oriented languages are very similar. An
exception is thrown by a statement such as �throw e� or �raise e� and caught by one or more catch
clauses. We will show an example in Java. Assume there is a MyFile class with methods for opening,
reading and closing a �le and that methods open and readCharArray of this class may throw exceptions
ExceptionOpen and ExceptionRead.

1 char []charArray;

2 MyFile f = new MyFile("input.txt");

3 try {

4 f.open();

5 charArray = f.readCharArray();

6 if (charArray.length == 0)

7 throw new ExceptionZero();

8 } catch (ExceptionOpen e) {

9 System.out.println("Error opening file");

10 }

11 catch (ExceptionRead e) {

12 System.out.println("Error reading file");

13 }

14 finally {

15 f.close();

16 }

An exception is thrown by statement throw (see line 7). We can also say that an error is signalled by a
throw statement. The class of the object following throw should be a direct or indirect subclass of class
Throwable. In this example, all statements that can throw exceptions are put in a try block (which is
between lines 4 and 7). The exceptions thrown inside the try block at runtime will be treated by the
catch clauses that follow the try block. There are two catch clauses and one finally clause. Each catch
clause accepts a parameter and treats the error associated to that parameter. Therefore

catch (ExceptionOpen e) { ... }

will treat the error associated to the operation of opening a �le.
If �le f cannot be read, method readCharArray throws exception ExceptionRead with a statement

205

throw new ExceptionRead(filename);

After that, the runtime system starts a search for an appropriate handler for this exception. A handler
is a piece of code, given in a catch clause, that can treat the exception. This search starts in method
readCharArray which does not have any catch clauses. It continues in the stack of called methods.
Therefore an appropriate handler (or catch clause) is looked for in the code above. The runtime system
checks whether the �rst catch clause can accept an object of ExceptionRead, the one thrown by the
throw statement. It cannot. Then it checks whether the second catch clause can accept this object as
parameter. Tt can. Then method readCharArray is terminated and control is transferred to the catch
clause

catch (ExceptionRead e) {

System.out.println("Error reading file");

}

Parameter e receives the object �new ExceptionRead(filename)� which was the parameter to statement
throw and the body of the clause is executed. After that the execution continues in the finally clause,
which is always executed � it does not matter whether an exception is thrown or not in the try block.
When an exception is thrown, the stack of called methods is unwound till an appropriated catch clause
is found and the control is transferred to this catch clause.

The exception handling system (EHS) of Cyan is similar in several aspects of the model just described.
However, it was based on the object-oriented exception handling system of Green [Gui04] [Gui06] and it
is object-oriented in nature. The throwing of an exception is a message send, exception treatment(catch
clauses) can be put in prototypes and inherited, and polymorphism applies to exception treatment. All the
arsenal of object-oriented programming can be used with exception signalling and treatment, which is not
possible possible, to our knowledge, in other languages but Green. The exception handling system (EHS)
of Cyan goes well beyond that of Green which is awkward to use if local variables should be accessed to
treat the error. In Cyan the EHS is both easy to use and powerful. However, it is not a checked exception
system like that of Java or Green. An exception may be thrown and not caught as in C++ or C#.

The Java example in Cyan would be

1 var Array<Char> charArray;

2 var f = MyFile new: "input.txt";

3 try

4 f open;

5 charArray = f readCharArray;

6 if charArray size == 0 {

7 throw ExceptionZero

8 }

9 catch { (: ExceptionOpen e :) Out println: "Error opening file" }

10 catch { (: ExceptionRead e :) Out println: "Error reading file" }

11 finally {

12 f close

13 }

An exception is thrown by statement throw as shown in line 7:

throw ExceptionZero

ExceptionZero is a prototype that inherits from CyException, the superprototype of all exception
objects. Since this exception does not demand any useful additional information, the prototype does not
have any �elds:

206

object ExceptionZero extends CyException

end

Every exception prototype should inherit from CyException, which inherits from Any and does not de�ne
any methods.

In the above Cyan example, the try-catch-finally statement catches the exceptions thrown during
the execution of the statements between try and the �rst catch clause (or finally, if there is no catch).
That is almost the same as in the Java code. When an exception is thrown in the function body, as
ExceptionRead, the runtime system searches for an adequate handler in the expressions of the catch

clauses. First it checks whether method eval: of the �rst function,
{ (: ExceptionOpen e :) Out println: "Error opening file" }

can accept an object of ExceptionRead as real argument. It cannot. Then the search continues in the
second catch clause. Since

{ (: ExceptionRead e :) Out println: "Error reading file" }

can accept an ExceptionRead object, message eval is sent to this function with the thrown exception as
argument. After that, the finally statements are executed and the execution continues in the statement
after try-catch-finally.

This works exactly the same as the exception system of Java/C++ and many other object-oriented
languages. In Cyan, there may be one or more catch clauses and an optional finally clause. Every
catch accepts as argument an object that has at least one method

eval: (E e)

in which E is a prototype that inherits from CyException (directly or indirectly). Functions

{ (: ExceptionOpen e :) Out println: "Error opening file" }

{ (: ExceptionRead e :) Out println: "Error reading file" }

satisfy these requirements. For example, the �rst function has a method
eval: (ExceptionOpen e) { Out println: "Error opening file" }

It is not necessary that the expression following a catch be a function or be a subprototype of any
function.

11.1 Using Regular Objects to Treat Exceptions

Each catch: keyword may receive as argument an object that has more than one eval: method.

object ExceptionCatchFile

overload

func eval: (ExceptionOpen e) { Out println "Error opening file" }

func eval: (ExceptionRead e) { Out println "Error reading file" }

func eval: (ExceptionWrite e) { Out println "Error writing to file" }

end

Prototype ExceptionCatchFile treats all errors associated to opening, reading, and writing to �les (but
not to closing a �le). This kind of object, to treat exceptions, will be called catch objects. It can be used
as in the next example.

var Array<Char> charArray;

var f = MyFile new: "input.txt";

try

f open;

207

charArray = f readCharArray;

if charArray size == 0 {

throw ExceptionZero

}

catch ExceptionCatchFile

finally {

f close

}

When an exception is thrown, the runtime system starts a search for an eval: method (a handler) in the
nearest catch clause, which is ExceptionCatchFile. Supposing that there was a read error, the correct
eval: method should accept a ExceptionRead object as argument. The runtime system searches for
the eval: method in ExceptionCatchFile using the same algorithm used for searching for a method
after a message is send to an object. That is, the runtime system tries to send message eval: with
a ExceptionRead as argument to object ExceptionCatchFile. By the regular algorithm, the second
textually declared method of ExceptionCatchFile,

func eval: (ExceptionRead e) { Out println "Error reading file" }

is found and called. After that, the statements of the finally clause are executed and computation
continues after the try-catch-finally statement.

11.2 Selecting an eval Method for Exception Treatment

A Cyan program starts its execution in a method called run of a prototype designed at compile-time. For
this example, suppose this prototype is Program. To start the execution, method run is called inside a
function that receives a catch: message:

{

Program run: args

} catch: RuntimeCatch;

Method eval: of prototype RuntimeCatch just prints the stack of called methods:

object RuntimeCatch

func eval: (CyException e) {

/* prints the stack of called methods and ends the program

*/

}

...

end

Maybe we may will add a finally: keyword to the catch: message allowing some code to be executed
before the program ends.

Let us now explain what happens conceptually when an exception is thrown and caught. The imple-
mentation need not to be as described next.

When a message with at least one catch: keyword is sent to a function, a grammar method is called.
We will call this grammar method catch-finally (this is just a name for explaining this text). Method
catch-finally pushes the parameters to catch: in a stack CatchStack in the reverse order in which
they appear in the call. So

{

...

208

} catch: c1

catch: c2

catch: c3;

pushes c3, c2, and c1 into the stack, in this order. Therefore c1 is in the top. When an exception is
thrown by the message send throw: obj, method throw: of Any searches the stack CatchStack from
top to bottom until it �nds an eval: method that accepts obj as parameter. Inside each stack object
the search is made from the �rst declared eval: method (in textual order) to the last one. CatchStack
is a prototype that just implements a stack.

Consider the catch objects1 and the example that follow. The prototypes are show as if they were in
a single �le.

// number < 0, == 0, > 1000, or even

open

object ExceptionNum extends CyException

end

// when the number is == 0

object ExceptionZero extends ExceptionNum

end

// when the number is < 0

object ExceptionNeg extends ExceptionNum

end

// when the number is > 1000

object ExceptionBig extends ExceptionNum

end

// when the number is even

object ExceptionEven extends ExceptionNum

end

// when the number is 5

object ExceptionFive extends ExceptionNum

end

object CatchZeroBig

overload

func eval: (ExceptionZero e) {

Out println: "zero number";

}

func eval: (ExceptionBig e) {

Out println: "big number";

}

end

1Objects with eval: methods that treat exceptions.

209

object CatchNeg

func eval: (ExceptionNeg e) {

Out println: "negative number";

}

end

object CatchEven

func eval: (ExceptionEven e) {

Out println: "even number";

}

end

object CatchNum

func eval: (ExceptionNum e) {

Out println: "number < 0, == 0, > 1000, or even";

}

end

object Program

let Int MaxN = 1000;

func run: Array<String> args {

// 1

var n = In readInt;

{ // 2

process: n

} catch: CatchZeroBig

catch: CatchEven

catch: CatchNum;

// 5

Out println: "this is the end"

}

private func process: (Int n) {

{ // 3

check: n;

if n > MaxN {

throw: ExceptionBig

}

} catch: CatchNeg

// 6

}

private func check: (Int n) {

// 4

if n == 0 {

throw: ExceptionZero

}

if n < 0 {

throw: ExceptionNeg

210

}

if n%2 == 0 {

throw: ExceptionEven

}

}

end

There are four exceptions, ExceptionZero, ExceptionNeg, ExceptionBig, and ExceptionEven that in-
herit from ExceptionNum and four catch objects, CatchZeroBig, CatchEven, CatchNeg, and CatchNum.
The program execution starts at point �// 1�. At line // 2, message catch:catch:catch: has been send
and the function that has just �process: n� has been called. At point // 2, CatchStack has objects
CatchNum, CatchEven, and CatchZeroBig (last on top).

Inside the function that starts at // 2, if message �throw: exc� is sent to self, the search for a
method would start at CatchZeroBig and proceeds towards CatchNum at the bottom of the stack. First
method throw: would check whether object exc is subprototype of ExceptionZero. If it is not, it would
test whether object exc is a subprototype of ExceptionBig. If it is not, the search would continue in
CatchEven.

At line marked as // 3, object CatchNeg has already been pushed into the stack CatchStack. At
point // 4 in the code, if statement

throw: ExceptionEven

is executed, there is a search for an eval: method that can accept ExceptionEven as parameter, starting
at the CatchNeg object. This method is found in object CatchEven pushed in the run: method. Therefore
control is transfered to the �rst statement after the message send

{ // 2

process: n

} catch: CatchZeroBig

catch: CatchEven

catch: CatchNum;

which is �Out println: "this is the end"�. This is exactly like the exception handling system of
almost all object-oriented languages.

Before returning, the throw: method of Any removes the objects pushed into CatchStack together
and after CatchEven.

Every function of type Function<Nil> has a method

@checkCatchParameter

func ((catch: Any)+ finally: Function<Nil>) t {

...

}

responsible for catching exceptions. The metaobject checkCatchParameter, whose annotation is attached
to this method, checks whether each parameter to a catch: keyword has at least one eval: method,
each of them accepting one parameter whose type is subprototype of CyException.

11.3 Other Methods and Keywords for Exception Treatment

Functions of type Function<Nil> have a method hideException that just eats every exception thrown
in them:

n = 0;

211

{

n = (In readLine) asInt

} hideException;

Of course, this method should be rarely used.
Keywords retry or retry: may be used after all catch: keywords in order to call the function again

if an exception was caught by any object that is argument to any of the catch: keywords. If keyword
retry: is used, it should have a function as parameter that is called before the main function is called
again.

// radius of a circle

Float radius;

{

radius = In readFloat;

if radius < 0 {

throw: ExceptionRadius(radius)

}

} catch: CatchAll

retry: {

Out println: "Negative radius. Type it again"

};

CatchAll has a method
func eval: (CyException e) { }

that catches all exceptions. This prototype is automatically included in every �le. It belongs to package
cyan.lang.

One can just write retry: without any catch: keywords. If any exception is thrown in the function,
the eval method of the argument to retry: is called and the function is called again.

// radius of a circle

var Float radius;

{

radius = In readFloat;

if radius < 0 {

throw: ExceptionRadius(radius)

}

else if radius == 0 {

// end of input

return 0

}

} retry: {

Out println: "Negative radius. Type it again"

};

Keyword tryWhileTrue: may be put after the catch: keywords in order to control how many times
the function is retrieved. The argument to tryWhileTrue: should be a Function<Boolean> function.
If an exception was thrown in the function and the argument to tryWhileTrue: evaluates to true, the
function is called again.

numTries = 0;

{

// may throw an exception ExceptionConnectFail

212

channel connect;

++numTries;

} catch: CatchAll

tryWhileTrue: {^ numTries < 5 };

The above code tries to connect to a channel �ve times. Each time the connection fails an exception
is thrown by method connect. Each time the function after tryWhileTrue: is evaluated. In the �rst
�ve times it returns true and the main function is called again. If no exception is thrown by connect,
the argument to tryWhileTrue: is not called. Again, the catch: keywords are optional. Keyword
tryWhileFalse: is similar to tryWhileTrue.

Prototype CatchIgnore could be used instead of CatchAll. This generic prototype ignores the excep-
tions that are parameters to it. Any number of exceptions can be used. An instantiation of this prototype
with parameter ExceptionConnectFail would be something like

object CatchIgnore<ExceptionConnectFail>

func eval: ExceptionConnectFail e { }

end

...

numTries = 0;

{

// may throw an exception ExceptionConnectFail

channel connect;

++numTries;

} catch: CatchIgnore<ExceptionConnectFail>

tryWhileTrue: {^ numTries < 5 };

This example can be made more compact with the use of a context object to count the number of
attempts:

object Times(Int numTries) extends Function<Boolean>

func eval -> Boolean {

--numTries;

return numTries > 0;

}

end

...

{

// may throw an exception ExceptionConnectFail

channel connect;

} tryWhileTrue: Times(5);

Using union types, we can catch several exceptions with a single function:

{

...

} catch: { (: ExceptionEmptyLine | ExceptionLineTooBig e :)

Out println: "Limit error in line " ++ line

}

catch: { (: ExceptionWhiteSpace | ExceptionRead e :)

Out println: "Other error happened"

213

};

A future improvement to the EHS of Cyan would be to make it support features of the EHS of
Common Lisp (conditions and restarts). That would be made by allowing communication between the
error signaling and the error handling. This could be made using a variable �exception�. A catch object
could have other meaningful methods besides �eval: T�. For example, a catch object could have an
�getInfo� method describing the error recovery to be chosen afterwards:

object CatchStrategy

func getInfo -> CySymbol = #retry;

end

object Test

func test {

{

connectToServer;

buildSomething

} catch: CatchStragegy

}

func connectToServer {

{

var Boolean fail = true;

...

// if connection to server failed, signal

// an exception

if fail {

throw: ExceptionConnection

}

} catch: { (: ExceptionConnection e :)

// if connection to server failed,

// consult getInfo for advice.

if exception getInfo == #retry {

connectToServer

}

}

}

...

end

Maybe there should be another method that obeys automatically instructions given by objects like
CatchStrategy. Maybe catch itself should automatically retry when �exception getInfo� demands
it:

func connectToServer {

{

var Boolean fail = true;

...

// if connection to server failed, signal

// an exception

if fail {

214

exception eval: ExceptionConnection

}

} catch: CatchIgnore<ExceptionConnection>

}

11.4 Why Cyan Does Not Support Checked Exceptions?

Cyan does not support checked exceptions as Java in which the exceptions a method may throw are
described in its declaration:

// this is how method "check" of Program

// would be declared in Java

private void check(int n)

throws ExceptionZero, ExceptionNeg,

ExceptionEven {

// 4

if (n == 0)

throw new ExceptionZero();

if (n < 0)

throw new ExceptionNeg();

if (n%2 == 0)

throw new ExceptionEven();

}

Here method check may throw exceptions ExceptionZero, ExceptionNeg, and ExceptionEven. We could
add a syntax for that in Cyan following language Green [Gui04]:

private func check: (Int n)

EvalZeroNegEven exception {

// 4

if n == 0 {

exception eval: ExceptionZero

}

if n < 0 {

exception eval: ExceptionNeg

}

if n%2 == 0 {

exception eval: ExceptionEven

}

}

Pseudo-variable exception would be declared after all regular method parameters. Inside the method
this variable is type-checked as a regular variable. Then there would be an error if there was a statement

exception eval: ExceptionRead

in method check because there is no eval: method in EvalZeroNegEven that can accept a ExceptionRead
object as parameter. Interface EvalZeroNegEven2 is

interface EvalZeroNegEven

2Note that currently Cyan does not support the declaration of overloaded methods in interfaces.

215

func eval: ExceptionZero

func eval: ExceptionNeg

func eval: ExceptionEven

end

Green employs a mechanism like this, which works perfectly in a language without functions.
But think of method ifTrue: of functions of types Function<Boolean, Nil>:

func ifTrue: (Function<Nil> b)

T exception {

if self == true {

b eval

}

}

What is the type T of exception? In

(i < 0) ifTrue: {

throw: ExceptionRead;

}

T should be

interface InterfaceExceptionRead

func eval: ExceptionRead

// possibly more methods

end

But in another call of this method T should be di�erent:

(i <= 0) ifTrue: {

if openError {

throw: ExceptionOpen

}

else if i == 0 {

throw: ExceptionZero

}

}

In this case T should be

interface InterfaceOpenExceptionZero

func eval: ExceptionOpen

func eval: ExceptionZero

// possibly other methods

end

Then the type of T depends on the exceptions the function may throw. We have a solution for that but
it is too complex to be added to a already big language. Without explaining too much, method ifTrue:

would be declared as

func ifTrue: (Function<Nil> b)

(b getMethod: "eval") .exception exception {

if self == true {

b eval

216

}

}

The declaration means that the type of exception in ifTrue: is the type of variable exception of the
method eval of function b at the call site. If ifTrue: could throw exceptions by itself, these could
be added to the type �(b getMethod: "eval") .exception� using the type concatenator operator �++�
(introduced just for this use here).

For short, we could have checked exceptions in Cyan but it seems they are not worthwhile the trouble.

11.5 Synergy between the EHS and Generic Prototypes

Package cyan.lang de�nes two generic prototypes that accept any number of prototype parameters:
CatchExit and CatchWarning. The �rst one is used to catch exceptions and end the program. The later
just issues a warning message. If they had just one parameter, they would be as shown below.

object CatchExit<T>

func eval: (T e) {

Out println: "Fatal error: exception " ++ T prototypeName ++

" was thrown";

System exit

}

end

object CatchWarning<T>

func eval: (T e) {

Out println: "Exception " ++ T prototypeName ++ " was thrown"

}

end

These prototypes can be used to exit the program for some exceptions or just issue a message for others.

...

{

line = In readLine;

if line size == 0 {

throw: ExceptionEmptyLine

} else if line size > MaxLine {

throw: ExceptionLineTooBig(line)

}

Out println "line = " ++ line

} catch: CatchExit<ExceptionLineTooBig>

catch: CatchWarning<ExceptionEmptyLine>;

Object CatchExit<ExceptionLineTooBig> treats exception ExceptionLineTooBig because it has an
eval: method that accepts this exception as parameter. This method prints an error message and
ends the program execution.

Object CatchWarning<ExceptionEmptyLine> treats exception ExceptionEmptyLine. Method eval

of this object just prints a warning message.
Generic object CatchIgnore accepts any number of parameters. The eval: methods of this object

do nothing. The de�nition of CatchIgnore with two parameters would be

217

object CatchIgnore<T1, T2>

func eval: T1 e1 { }

func eval: T2 e2 { }

end

If we want to ignore two exceptions and treat a third one, we can write something like

{

line = In readLine;

if line size == 0 {

throw: ExceptionEmptyLine

} else if line size > MaxLine {

throw: ExceptionLineTooBig(line)

} else if line[0] == ' ' {

throw: ExceptionWhiteSpace

}

Out println "line = " ++ line

} catch: CatchIgnore<ExceptionLineTooBig, ExceptionEmptyLine>

catch: { (: ExceptionWhiteSpace e :)

Out println: "line cannot start with white space";

System exit

};

With generic prototypes, it is easy to implement the common pattern of encapsulating some exceptions
in others. That is what prototype ExceptionConverter does. This prototype is de�ned in package
cyan.lang and accepts any number of even parameters. With two parameters it would be equivalent
to:

object ExceptionConverter<Source, Target>

func eval: (Source e) {

throw: Target()

}

end

In the example that follows, when an exception ExceptionNegNum is thrown, a catch: method captures
it and throws a new exception from prototype ExceptionOutOfLimits.

...

{

if i < 0 { throw: ExceptionNegNum };

s = v[i];

s println;

} catch: ExceptionConverter<ExceptionNegNum, ExceptionOutOfLimits>;

Another common pattern of exception treatment is to encapsulate exceptions in an exception container.
This is what does generic prototype ExceptionEncapsulator. It takes any number of parameters (but
at least two). The last one should be the container. ExceptionEncapsulator with two parameters would
be:

object ExceptionEncapsulator<Item, Container>

func eval: (Item e) {

throw: Container(e)

}

218

end

This prototype could be used as in this example.

...

{

if i < 0 { throw: ExceptionNegNum(i) };

s = v[i];

s println;

} catch: ExceptionEncapsulator<ExceptionNegNum, ExceptionArithmetic>;

Whenever ExceptionNegNum is thrown in the function, it is packed into an exception of ExceptionArithmetic
and thrown again.

11.6 More Examples of Exception Handling

One can design a MyFile prototype in which the error treatment would be passed as parameter:

object MyFile

func new: (String filename) { ... }

func catch: (ExceptionCatchFile catchObject) do: (Function<String, Nil> b) {

{

open;

// readAsString read the whole file and put it in a String,

// which is returned

b eval: readAsString;

close;

} catch: catchObject

}

end

Context object Throw of package cyan.lang has an init: method that throws the exception that is
its parameter.

object Throw

func init: CyException e {

throw: e

}

end

It makes it easy to throw some exceptions:

{

line = In readLine;

if line size == 0 { Throw(ExceptionEmptyLine) }

else if line size > MaxLine { Throw(ExceptionLineTooBig(line)) }

else if line[0] == ' ' { Throw(ExceptionWhiteSpace) }

Out println "line = " ++ line

} catch: CatchIgnore<ExceptionLineTooBig, ExceptionEmptyLine>

219

catch: { (: ExceptionWhiteSpace e :)

Out println: "line cannot start with white space";

System exit

};

Prototype CatchWithMessage catchs all exceptions. It prints a message speci�c to the exception
thrown and prints the stack of called methods:

object CatchWithMessage

func eval: (CyException e) {

Out println: "Exception ", e prototypeName, " was thrown";

System printMethodStack;

System exit

}

end

An exception prototype may de�ne an eval: method in such a way that it may be used as a catch
parameter:

object ExceptionZero extends CyException

func eval: (ExceptionZero e) {

Out println: "Zero exception was thrown";

System exit

}

end

...

// inside some method

{

n = In readInt;

if n == 0 { throw: ExceptionZero }

...

} catch: ExceptionZero;

This is confusing. But somehow it makes sense: the exception, which represents an error, provides its
own treatment (which is just a message). Guimarães [Gui13] suggests that a library that may throw
exceptions should also supply catch objects to handle these exceptions. It could even supply an hierarchy
of exceptions for each set of related exceptions. For example, if the library has a prototype for �le handling,
it should also has a catch prototype with a default behavior for the exceptions that may be thrown. And
subprototypes with alternative treatments and messages.

Since exceptions and theirs treatment are objects, they can be put in a hash table used for choosing
the right treatment when an exception is thrown.

object CatchTable

func init {

table = [

Any -> Any, // just to set the type of the table

ExceptionZero -> CatchWarning<ExceptionZero>,

ExceptionNeg -> CatchAll,

ExceptionBig -> { (: ExceptionBig e :)

Out println: "Number " ++ e number ++ " is too big"

},

220

ExceptionNum -> CatchNum

];

}

func eval: (CyException e) {

type table[e prototype]

case Any any {

any ?eval: e

}

case Nil nil {

throw: ExceptionStr("Exception " ++

(e prototypeName) ++ " is not supported " ++

"by table")

}

}

IMap<Any, Any> table

end

CatchTable can be used as the catch object:

// inside some method

{

...

} catch: CatchTable;

If an exception is thrown in the code �...�, method eval: of CatchTable is called (its parameter has
type CyException, the most generic one). In this method, the hash table referenced by variable �table�
is accessed using as key �e prototype�, the prototype of the exception. As an example, if the exception
is an object of ExceptionTriangle, �e prototype� will return ExceptionTriangle. By indexing table

with this value we get CatchTriangle. That is,
assert: table[e prototype] == CatchTriangle

in this case. Here table[elem] returns the value associated to elem in the table.
Message ?eval: e is then sent to object CatchTriangle. That is, method eval: of CatchTriangle

is called. The result is the same as if CatchTriangle were put in a catch: keyword as in the example
that follows.

object ExceptionTriangle(public Double a, public Double b, public Double c)

end

object CatchTriangle

func eval: (ExceptionTriangle e) {

// "e a" is the sending of message "a" to object "e"

// that returns the side "a" of the triangle

Out println: "There cannot exist a triangle with sides ", e a, ", ", e b, ", and

", e c

}

end

// inside some method

221

{

...

if a >= b + c || b >= a + c || c >= a + c {

throw: ExceptionTriangle(a, b, c)

}

...

} catch: CatchTriangle;

Then we can replace catch: CatchTriangle in this code by �catch: CatchTable�. However, if an
exception that is not in the table is thrown, exception ExceptionTable is thrown. Assume that Nil is
returned by indexing the hash table when the key is not found. That is, �table[e prototype]� returns
Nil if the prototype is not found in the table.

Exception ExceptionStr of package cyan.lang is used as a generic exception which holds a string
message.

package cyan.lang

object ExceptionStr(String _message) extends CyException

public func eval: ExceptionStr e {

Out println: (e message);

}

func message -> String = _message;

end

It can be used as

{

var s = In readLine;

if s size < 2 {

throw: ExceptionStr("size should be >= 2")

} else if s size >= 10 {

throw: ExceptionStr("size should be < 10")

}

} catch: ExceptionStr;

222

Chapter 12

The Cyan Language Grammar

This Chapter describes the language grammar. The reserved words and symbols of the language are
shown between � and �. Anything between

� { and } can be repeated zero or more times;

� { and }+ can be repeated one or more times;

� [and] is optional.

The program must be analyzed by unfolding the rule �CompilationUnit�. ScriptCyan programs are pro-
duced by rule �ScriptCompilationUnit�.

There are two kinds of comments:

� anything between /* and */. Nested comments are allowed.

� anything after // till the end of the line.

Of course, comments are not shown in the grammar.
The rule CharConst is any character between a single quote '. Escape characters are allowed. The

rule Str is a string of zero or more characters surrounded by double quotes ". The double quote itself
can be put in a string preceded by the backslash character \. Rule AtStr is @" followed by a string ended
by double quotes. The backslash character cannot be used to introduce escape characters in this kind of
string.

A literal number starts with a number which can be followed by numbers and underscore (_). There
may be a trailing letter de�ning its type:

35b // Byte number

2i // integer number

There should be no space between the last digit and the letter. User-de�ned literal numbers start with a
digit and may contain digits, letters, and underscore:

100Reais 2_3_5_7_prime_0_2_4_even

All words that appear between quotes in the grammar are reserved Cyan keywords. Besides these
words, there are other keywords cited in Section 3.3 that are not currently used by the language.

Id is an identi�er composed by a sequence of letters, digits, and underscore, beginning with a letter
or underscore. But a single underscore is not a valid identi�er. IdColon is an Id followed by a �:�,
without space between them, such as �ifTrue:� and �ifFalse:�. InterIdColon is an Id followed by a
�:� and preceded by �?� as in �?at:� (dynamic unchecked message send). InterId is an Id preceded by
�?� such as �?name�. TEXT is a terminal composed by any number of characters. Symbol ` is terminal

223

BACKQUOTE, ASCII 96. InterDotIdColon is an Id followed by a �:� and preceded by �?.� as in �?.at:�.
(nil-safe message send). InterDotId is an Id preceded by �?.� as in �?.name�.

LeftCharString is any sequence of the symbols

= ! $ % & * - + ^ ~ ? / : . \ | ([{ <

Note that >,),], and } are missing from this list. RightCharString is any sequence of the same symbols
of LeftCharString but with >,),], and } replacing <, (, [, and {, respectively. The compiler will check
if the closing RightCharString of a LeftCharString is the inverse of it. That is, if LeftCharString is

(*=<[

then its corresponding RightCharString should be
[>=*)

SymbolLiteral is a literal symbol (see page 42 for de�nition). There are limitations in the sequences
of symbols that are considered valid for literal objects. They cannot start with ((,)), ([,]), [[,]],
(:, {(:, >(, {^, :[, :(, {., and ::. For short, they cannot start with any sequence of symbols which can
appear in a valid Cyan program. For example, [(: is illegal because we can have a function declared as

{ (: Int n :) ^ n*n }

CompilationUnit ::= PackageDec ImportDec { AnnotList ProgramUnit }
ScriptCompilationUnit ::= [ImportDec] (StatementList | { SlotDec })
PackageDec :: �package� QualifId [�;�]
ImportDec ::= { �import� IdList [�;�] }
ProgramUnit ::= [QualifProgUnit] (ObjectDec | InterfaceDec)
QualifProtec ::= �private� | �public� | �protected�
QualifProgUnit ::= �public� | �package�
AnnotList ::= { Annotation }
Annotation ::= �@� Id

[�(� ExprLiteral [�,� ExprLiteral] �)�]
[LeftCharString TEXT RightCharString]

ObjectDec ::= [�abstract� | ��nal�]
�object� Id { TemplateDec }
[ContextDec]
[�extends� Type [�(� IdList �)�]]
[�implements� TypeList]
{ SlotDec }
�end�

TemplateDec ::= �<� TemplateVarDecList �>�
TemplateVarDecList ::= TemplateVarDec { �,� TemplateVarDec }
TemplateVarDec ::= Id [�+�]
ContextDec ::= �(� CtxtObjParamDec { �,� CtxtObjParamDec }�)�
CtxtObjParamDec ::= AnnotList [�public� | �protected� | �private�] Type

[�&�] Id
Type ::= SingleType { �|� SingleType }
SingleType ::= QualifId { �<� TypeList �>� } | BasicType |

�typeof� �(� QualifId [�<� TypeList �>�] �)�

224

BasicType ::= [�cyan.lang�] BasicTypeNoPackage
BasicTypeNoPackage ::= �Byte� | �Short� | �Int� | �Long� |

�Float� | �Double� | �Char� | �Boolean�
SlotDec ::= AnnotList QualifProtec (ObjectVariableDec

| MethodDec)
ConstDec ::= [�shared�] �let� Type Id �=� Expr [�;�]
MethodDec ::= [��nal�] [�override�] [�abstract�]

[�overload�] �func� MethodSigDec
(MethodBody | �=� Expr �;�)

MethodSigDec ::= (MetSigNonGrammar | MetSigUnary |

MetSigOperator) [�->� Type]
MetSigNonGrammar ::= { SelecWithParam }+
MetSigUnary ::= Id
MetSigOperator ::= UnaryOp | BinaryOp (ParamDec | �(� ParamDec �)�)
SelecWithParam ::= IdColon |

[�[]�] IdColon ParamList
TypeOrParamList ::= TypeList | ParamList
TypeList ::= Type { �,� Type }
ParamList ::= ParamDec { �,� ParamDec } |

�(� ParamDec { �,� ParamDec } �)�
ParamDec ::= [Type] Id
MethodBody ::= �{� StatementList �}�
ObjectVariableDec ::= [�shared�] �var� Type Id { �,� Id } [�;�] |

[�shared�] �var� Type Id [�=� Expr] [�;�] |
[�shared�] [�let�] Type Id [�=� Expr] [�;�] |
[�shared�] [�let�] Type Id [�,� Id] [�;�]

FunctionDec ::= �� [�(:� FuncSignature �:)�] StatementList ��
FuncSignatureRet ::= FuncSignature [�->� Type]
FuncSignature ::= (Type Id | Type �self�) { �,� Type Id } [�->� Type] |

[Type �self� �,�] IdColon { Type Id } { �,� Type Id }
QualifId ::= Id { �.� Id }
IdList ::= Id { �,� Id }
InterfaceDec ::= �interface� Id [TemplateDec] [�extends� TypeList]

{ �func� InterMethSig }
�end�

InterMethSig ::= InterMethSig2 [�->� Type]
InterMethSig2 ::= Id |

{ IdColon [InterParamDecList] }+ |

UnaryOp |

BinaryOp (SingleInterParamDec | �(� SingleInterParamDec �)�)
InterParamDecList ::= WithoutParentDecList | WithParentDecList
WithoutParentDecList ::= ParamTypeDecList { �,� ParamTypeDecList }
ParamTypeDecList ::= Type [Id]
WithParentDecList ::= �(� WithoutParentDecList �)�
SingleInterParamDec ::= Type Id
StatementList ::= Statement { �;� Statement } | ϵ
Statement ::= ExprAssign | ReturnStat | VariableDec | Annotation |

IfStat | WhileStat | ForStat | NullStat

225

PlusPlusStat | MinusMinusStat | CastStat |
TypeStat | TryStat | ThrowStat

VariableDec ::= �var� [Type] Id [�=� Expr] { �,� Type Id [�=� Expr] } |

�let� [Type] Id �=� Expr { �,� Type Id �=� Expr }
ReturnStat ::= �return� Expr | �^� Expr
ForStat ::= �for� Id �in� Expr StatListBracket
IfStat ::= �if� Expr StatListBracket

{ �else� �if� Expr StatListBracket }
[�else� StatListBracket]

CastStat ::= �cast� [Type] Id �=� Expr { [Type] Id �=� Expr } StatListBracket
[�else� StatListBracket]

WhileStat ::= �while� Expr StatListBracket
TryStat ::= �try� StatementList { �catch� Expr } [��nally� StatListBracket]
ThrowStat ::= �throw� Expr �;�
TypeStat ::= �type� Expr { CaseClause } [�else� StatListBracket]
CaseClause ::= �case� Type [Id] StatListBracket
StatListBracket ::= �{� StatementList �}�
NullStat ::= �;�
PlusPlusStat ::= �++� Id
MinusMinusStat ::= ��� Id
ExprAssign ::= Expr [Assign]
Assign ::= { �,� Expr } �=� Expr
Expr ::= ExprOr [MSendNonUn] |

[Annotation] MSendNonUn |

MSendNonUn ::= { [BACKQUOTE] IdColon [RealParameters] }+ |

{ InterIdColon [RealParameters] }+ |

{ InterDotIdColon [RealParameters] }+
BinaryOp ::= ShiftOp | BitOp | MultOp | AddOp | RelationOp |

�~||� | �..� | �..<�
RealParameters ::= ExprOr { �,� ExprOr }
ExprOr ::= [Annotation] ExprXor { �||� ExprXor }
ExprXor ::= ExprAnd { �~||� ExprAnd }
ExprAnd ::= ExprEqGt { �&&� ExprEqGt }
ExprEqGt ::= ExprExc { (�=>� | �=>�) ExprExc }
ExprExc ::= ExprRel { �&&� ExprRel }
ExprRel ::= ExprMSendNonUn [RelationOp ExprMSendNonUn]
ExprMSendNonUn :: = MSendNonUn

ExprOrGt [MSendNonUn]
�super� MSendNonUn

ExprOrGt ::= ExprBPP { �|>� ExprBPP }
ExprBPP ::= ExprInter { (�++� | ���) ExprInter }
ExprInter ::= ExprAdd [(�..� | �..<�) ExprAdd]
ExprAdd ::= ExprMult { AddOp ExprMult }
ExprMult ::= ExprBit { MultOp ExprBit }
ExprBit ::= ExprShift { BitOp ExprShift }
ExprShift ::= ExprColonColon [ShiftOp ExprColonColon]
ExprColonColon ::= ExprDotOp { �::� ExprDotOp }
ExprDotOp ::= ExprUnaryUnMS { DotOp ExprUnaryUnMS }

226

DotOp ::= �.*� | �.+�
ExprUnaryUnMS ::= ExprUnary { UnaryId }
UnaryId := [BACKQUOTE] Id | InterId | InterDotId
ExprUnary ::= [UnaryOp] ExprPrimaryIndexed
ExprPrimaryIndexed ::= ExprPrimary { Indexing }
Indexing ::= �[� Expr �]� | �?[� Expr �]?�
UnaryOp ::= �+� | �−� | �!� | �~�
ExprPrimary ::= �self� [�.� Id] |

�self� |
�super� UnaryId |

QualifId { �<� TypeList �>� }+ [ObjectCreation] |
�typeof� �(� QualifId [�<� TypeList �>�] �)�
ExprLiteral | �(� Expr �)�

ObjectCreation ::= �(� [Expr { �,� Expr }] �)�
ExprLiteral ::= ByteLiteral | ShortLiteral | IntLiteral |

LongLiteral | FloatLiteral | DoubleLiteral | CharLiteral |
BooleanLiteral | Str | AtStr | SymbolLiteral | �Nil� |
LiteralArray | FunctionDec
LeftCharString TEXT RightCharString | LiteralTuple

BooleanLiteral ::= �true� | �false�
LiteralArray ::= �[� [Expr �,� { Expr }] �]�
LiteralTuple ::= �[.� TupleBody | UTupleBody �.]�
TupleBody ::= (IdColon | Id �:�) Expr { �,� IdColon Expr }
UTupleBody ::= Expr { �,� Expr }
ShiftOp ::= �<.<� | �>.>� | �>.>>�
BitOp ::= �&� | �|� | �~|�
MultOp ::= �/� | �∗� | �%�
AddOp ::= �+� | �−�
RelationOp ::= �==� | �<� | �>� | �<=� | �>=� | �! =�

227

Chapter 13

Opportunities for Collaboration

There are many research projects that could be made with Cyan and on Cyan:

(a) to implement metaobjects dynOnce and dynAlways and to design algorithms that help the transi-
tion of dynamically-typed Cyan to statically-typed Cyan. There are a great deal of work here, at
least several master thesis. This work can involve the discovery of types statically (at least most of
them), the use of a pro�ler to discover some types at runtime, the combination of static and dynamic
type information, refactorings directed by the user (he/she chooses the type of each troublesome
variable/parameter/return type, for example), help by the IDE, etc.

It would be very important to have a language in which the programmer could develop a program
without worrying about types in variables/parameters/return values and then convert this program
to statically-typed Cyan. I would say that this is one of the central points of the language;

(b) implement some Design Patterns using compile-time metaobjects;

(c) implement some literal objects which are the code of some small languages such as AWK and SQL.
It would be nice if Cyan code could be used inside the code of the language;

(d) to use Cyan to implement a lot of small Domain Speci�c Languages;

(e) to use Cyan to investigate language-oriented programming [War95];

(f) to add parallelism to the language and to design a library for distributed programming. That includes
the implementation of patterns for parallel programming;

(g) to design code optimization algorithms for Cyan;

(h) to program the Cyan basic libraries for handling �les, data structures, and so on;

228

Chapter 14

Future Enhancements

Some Cyan features may be changed and others may be added. This is a partial list of them:

1. more methods to intervals:

(2..500 but: 100..200, 37 select: Prime) print;

Prime here is a context object:

object Prime extends Function<Int, Boolean>

func eval: Int elem -> Boolean {

return elem prime

}

end

2. intervals with Floats and Doubles:

1.0..5.0 step: 0.01 repeat: { (: Float elem :)

graphFun plot: elem, (sin: elem);

};

-1.0..1.0 but: 0.0 step: 0.1 repeat: { (: Float elem :)

graphFun plot: elem, (sin: elem);

};

"-1.0..10 but: 0.0" is an object of Interval<Float>. So is "-1.0..10 but: 0.0" and "-1.0..10 but: -0.1..0.1".
This prototype has methods step:repeat:, but:step:repeat:, contains:, etc (see prototype Int).
Maybe but: should be replaced by binary minus ("-").

With GraphFun there could be supplied a context object:

object Plot<FunToPlot>(GraphFun graphFun) extends Function<Float, Nil>

func eval: Float elem {

graphFun plot: elem, (FunToPlot: elem);

}

end

A literal object could be aware of the context:

229

var GraphFun graphFun = GraphFun new;

graphFun x: -10, 10 y: -40, 40;

1.0..5.0 step: 0.01 repeat: @plot(sin);

@plot would produce

Plot<sin>(graphFun)

It would discover that there is a local variable graphFun of the correct type. If there are two, plot
would sign a compilation error;

3. private generic prototypes, which are currently illegal;

4. package quali�er for prototypes and methods. These could only be used in the current package;

5. typeof may be legal as a real argument in a generic prototype instantiation:

var Int count = 0;

var Stack<typeof(count)> intStack; // ok

6. A finally: keyword may be added to the initial function that starts the program execution. That
would allow �nalizers, code that is called when the program ends. There could be a list of methods
to be called when the program ends. This is odd, but someone will certainly like it.

{

} catch: RuntimeCatch

finally: {

DoomsdayWishList foreach: { (: Function<Nil> elem :) elem eval };

};

In some other place:

DoomsdayWishList add: { "Good bye!" print };

The features given below were removed from Cyan. They may be added later maybe in a di�erent
form.

14.1 Runtime Metaobjects or Dynamic Mixins

Mixin prototypes can also be dynamically attached to objects. Returning to the Window-Border example,
assume Window does not inherit from Border. This mixin can by attached to Window at runtime by the
statement:

Window attachMixin: Border;

E�ectively, this makes Border a metaobject with almost the same semantics as shells of the Green language
[Gui98]. Any messages sent to Window will now be searched �rst in Border and then in Window. When
Window is cloned or a new object is created from it using new, a new Border object is created too.

As another example, suppose you want to redirect the print method of object Person so it would call
the original method and also prints the data to a printer. This can be made with the following mixin:

230

mixin(Any) object PrintToPrinter

override func print {

super print;

// print to a printer

Printer print: (self asString)

}

end

�self asString� returns the attached object as a string, which is printed in the printer by method
print:. This mixin can be added to any object adding a print method to it:

object Person

@property String name

@property Int age

override func asString -> String {

return "name: $name age: $age"

}

end

...

var p = Person new;

p name: "Carol";

p age: 1;

p attachMixin: PrintToPrinter;

// prints both in the standart output and in the printer

p print;

Person name: "fulano";

Person age: 127;

// print only in the standard output

Person print;

Note that attachMixin is a special method of prototype Any: it is added by the compiler and it can
only be called by sending messages to the prototype. These dynamic mixins are runtime metaobjects.
Probably they can only be e�ciently implemented by changing the Java Virtual Machine (but I am not
so sure). Maybe e�cient implementation is possible if the metaobjects (dynamic mixins) that can be
attached to an object are clearly identi�ed:

object(PrintToPrinter) Person

@property String name

@property Int age

override func asString -> String {

return "name: $name age: $age"

}

end

Then only PrintToPrinter metaobjects can be dynamically attached to Person objects.
The last dynamic mixin attached to an object is removed by method popMixin de�ned in prototype

Any. It returns true if there was a mixin attached to the object and false otherwise. Therefore we can
remove all dynamic mixin of an object obj using the code below.

while obj popMixin {

}

231

The above de�nition of runtime mixin objects is similar to the de�nition of runtime metaobjects of
Green [Gui98]. The semantics of both are almost equal, except that Green metaobjects may declare a
interceptAll method that is not supported by mixin objects (yet).

14.2 Multiple Assignments

Cyan supports a restricted form of multiple assignments. There may be any number of comma separated
assignable expressions in the left-hand side of �=� if the right-hand side is a tuple (named or unnamed)
with the compatible types. That is, it is legal to write

v1, v2, ..., vn = tuple

if tuple is a tuple with at least n �elds and the type of �eld number i (starting with 1) is a subtype of
the type of vi.

var Float x, y;

x, y = [. 1280, 720 .];

var tuple = [. 1920, 1080 .];

x, y = tuple;

However, a variable cannot be declared in a multiple assignment:
var x, y = [. 1280, 720 .]

The compiler would sign an error in this code.
The assignment �v1, v2, ..., vn = tuple� is equivalent to

// tuple may be an expression

var tmp = tuple;

vn = tmp fn;

...

v2 = tmp f2;

v1 = tmp f1;

A multiple assignment is an expression that returns the value of the �rst left-hand side variable, which is
v1 in this example.

A method may simulate the return of several values using tuples.

object Circle

func getCenter -> Tuple<Float, Float> {

return [. x, y .]

}

...

private Float x, y // center of the circle

private Float radius

end

...

var Float x, y;

x, y = Circle getCenter;

232

Bibliography

[Bla94] G. Blaschek. Object-oriented programming with prototypes. Monographs in Theoretical Com-
puter Science - An Eatcs Series. Springer-Verlag, 1994.

[CYH04] Jien-Tsai Chan, Wuu Yang, and Jing-Wei Huang. Traps in java. J. Syst. Softw., 72(1):33�47,
2004.

[Fir12] Writing your �rst domain speci�c language, 2012.

[GJS+06] Douglas Gregor, Jaakko Järvi, Jeremy Siek, Bjarne Stroustrup, Gabriel Dos Reis, and Andrew
Lumsdaine. Concepts: Linguistic support for generic programming in c++. SIGPLAN Not.,
41(10):291�310, October 2006.

[GJS+14] James Gosling, Bill Joy, Guy L. Steele, Gilad Bracha, and Alex Buckley. The Java Language

Speci�cation, Java SE 8 Edition. Addison-Wesley Professional, 1st edition, 2014.

[Gui98] José de Oliveira Guimarães. Re�ection for statically typed languages. In Eric Jul, editor,
ECOOP, volume 1445 of Lecture Notes in Computer Science, pages 440�461. Springer, 1998.

[Gui04] José de Oliveira Guimarães. The green language exception system. Comput. J., 47(6):651�661,
2004.

[Gui06] José de Oliveira Guimarães. The Green language. Comput. Lang. Syst. Struct., 32(4):203�215,
December 2006.

[Gui13] José de Oliveira Guimarães. The Green language, May 2013.

[Sei12] Peter Seibel. Practical Common Lisp. Apress, Berkely, CA, USA, 1st edition, 2012.

[Str13] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Professional, 4th edi-
tion, 2013.

[US87] David Ungar and Randall B. Smith. Self: The power of simplicity. SIGPLAN Not., 22(12):227�
242, December 1987.

[War95] M. P. Ward. Language oriented programming. Software � Concepts and Tools, 15:147�161,
1995.

233

Appendix A

The Compiler

The Cyan site, www.cyan-lang.org, has a download tab from which �le lib.zip can be downloaded.
Put this �le in a directory, say, C:\Dropbox\Cyan. Uncompress it resulting in directory

C:\Dropbox\Cyan\lib

Directory lib contains several jar �les, the Cyan runtime libraries, the compiler (saci.exe), and the source
code of the basic libraries.

Set the system environment variable CYAN_HOME to directory lib. Set the system environment variable
JAVA_HOME_FOR_CYAN to the JDK directory of Java 8. Then the value of this variable can be

C:\Program Files\Java\jdk1.8.0_241

The compiler should be called as follows.

saci projectDirectoryOrName compilerOptions

The compiler name is saci.exe. projectDirectoryOrName is the �le name of the project or the directory
name in which the project is. If projectDirectoryOrName is a �le name, it should have extension �.pyan�.
Its contents should be as described in Section 2. If projectDirectoryOrName is a directory, the compiler
will create a project �le �projectDirectoryOrName\project.pyan�. It will consider that the program
consists of all directories inside projectDirectoryOrName. Each directory given origin to a package. The
.cyan �les inside each directory contain the prototypes of the package.

The easy way of compiling a Cyan program is to put all packages in the same super-directory � see
the examples in the Cyan site. Then this directory should be projectDirectoryOrName.

compilerOptions is a list of options. The valid options are:

� -noexec, the Java code produced by saci is compiled by the Java compiler but it is not executed;

� -nojavac, the Java compiler is not called for compiling the Java code produced by the Cyan compiler;

� -args argList, arguments to the Cyan program. The arguments that follow '-args', argList, will be
passed to the Cyan program if it is to be executed. It is not an error to have both options -noexec
and -args argList. Of course, this should be the last option in the command line;

� -sourcePath aPath for supplying 'aPath' for the Java compiler. This option can appear any number
of times. Each time can be composed by multiple paths, separated by ';'.

� -cp aPath for supplying 'aPath' for the Java interpreter. This option can appear any number of
times. Each time can be composed by multiple paths, separated by ';';

234

www.cyan-lang.org

� -es filename for interpreting the remaining arguments as Cyan code. After the interpretation, the
compiler exits;

� -ef filename for interpreting the statements of �le '�lename'. After the interpretation, the compiler
exits. Example:

saci -ef "C:\Dropbox\tests\first.syan"

The recommended �le extension is �tyan� which stands for �inTerpreted cYAN�.

As an example of calling the compiler, we can have Example:

saci "C:\Dropbox\Cyan\cyanTests\simple"

-cp "C:\Dropbox\Cyan\externalLibs"

-args 0 "C"

The compiler can be also be called programmatically by calling methods parseSingleSource and
compileProject of a saci.Saci object � see the source �les of the Cyan compiler. These methods are
usually called by the IDE. An IDE plugin should create a single object of class Saci for each Cyan project.
It is important that a single Saci object is used because this object will keep information from the last
compilation that will speed up the next one.

The IDE can call method compileProject to compile the whole project. The parameters to this
method correspond to the parameters passed in the command line when calling the compiler. The source
�les will be read from the �le system.

public void compileProject(String projectDirectoryOrName,

String cyanLangDir,

String javaLibDir,

boolean exec, boolean callJavac, boolean parseOnly)

Before calling this method, the IDE plugin should save all source �les associated to this project that are
being edited.

To simulate incremental compilation, the compiler should be called whenever the user changes the
source code being edited. However, the Cyan compiler goes through a long and complex compilation
process and it is not feasible to compile a project or even a single source �le after each editing command.
However, an IDE plugin can call the Cyan compiler to parse the source being edited several times a
second. That will take just a few miliseconds.

To parse a single source �le the IDE plugin should call method parseSingleSource. Only parsing
will be done.

public boolean parseSingleSource(String cyanLangDir, String javaLibDir,

String packageName, String prototypeName, char []sourceCodeToParse,

String projectDirectoryOrName,

char []sourceCodeProject,

boolean loadProjectFromFile)

Most of the parameters speak for themselves. sourceCodeToParse is the source code of prototype
prototypeName of package packageName. The IDE plugin should not read it from disk. It should be
retrieved from the IDE editor to make parsing faster. projectDirectoryOrName is the directory of
the project or the project �le name (ending in �.pyan�). The source code of the project is given by
sourceCodeProject. It is the contents of the project �le which is either projectDirectoryOrName or
projectDirectoryOrName\project.pyan.

packageName, prototypeName, and sourceCodeToParse cannot be null. If sourceCodeProject is
null, loadProjectFromFile is true, or the Saci object has not kept the �project object� from the last

235

compilation, then the project �le is reload from disk to memory and compiled, producing a saci.Project
object (see classes of the Cyan compiler). This object can be retrieved by calling method getProject()

of Saci. Through this object one can get the source code of the project that should be passed to the call
to parseSingleSource in the next time it is called. The �ow of control would be:

// flow, not source code --- you got the idea

Saci aSaci = new Saci();

char []sourceCodeProject = null;

...

aSaci.parseSingleSource(..., sourceCodeProject, true);

// now the project does exist, if there was not any errors

Project p = aSaci.getProject();

if (p != null)

sourceCodeProject = p.getText();

aSaci.parseSingleSource(..., sourceCodeProject, false);

...

The IDE plugin should call parseSingleSource of Saci when the text is changed by adding or
removing characters (and after the user pauses typing). Method eventChangeSourceCodeBeingEdited

of Saci should be called by the IDE plugin whenever the source code being edited is changed to a new
one. For example, the user was editing a �le Program.cyan and she changes the focus to �le Test.cyan.
The new �le is parsed and old data is discarded.

After the IDE plugin calls parseSingleSource, it can retrieve information on the symbols produced
by the lexical analyzer. This is made by calling method getSymbolList() of Saci. This list has
size getSizeSymbolList() and it can be used to highlight keywords, change the color of strings, etc.
getSymbolList() returns an object of Symbol[]. See package lexer of the Cyan compiler for subclasses
of Symbol. In general, symbol.getSymbolString() returns the symbol as a String.

When the mouse is over the source code being edited, the IDE should call method
searchCodegAnnotation(int line, int column)

or
searchCodegAnnotation(int offset)

of Saci. The parameters of the �rst method are the line and column of the text over which the mouse
pointer is. The parameters of the second method is the o�set in the text over which the mouse pointer is. If
the mouse is over a Codeg, any of these methods will return an object of CyanMetaobjectWithAtAnnotation
of package meta of the Cyan compiler (or null if the mouse is not over a Codeg). This is a class of the
AST and the object represents an annotation, the Codeg annotation. This object should be passed to
method eventCodegMenu(Saci, CyanMetaobjectWithAtAnnotation) of Saci that is responsible to call
method getUserInput of the Codeg. This method should open a menu and accept user input through
the mouse and keyboard. After the input is done, button "Ok" should be pressed (there should be
such a button). If moAnnotation is a reference to the Codeg passed as parameter to eventCodegMenu,
moAnnotation.getUserInput(...) returns a byte array that is the information of the Codeg (after show-
ing a menu and getting user input). That is, user input through mouse and keyboard is translated into
a byte array that is returned by getUserInput. This byte array is written to a special �le in disk that
is managed by the compiler. This array may be a DSL when converted to text (a String) � or it may
be not. The IDE plugin should not call getUserInput(). This method is called by the compiler inside
eventCodegMenu(). The byte array returned by getUserInput is passed as the second parameter in the
next time this method is called on the same Codeg. In this way the Codeg has the previous information
� the previous chosen color of Codeg color, for example. In the �rst time getUserInput is called, the
second parameter is null.

236

After calling eventCodegMenu, the byte array returned by getUserInput can be retrieved by the IDE
plugin by calling method getCodegInfo() of the Codeg annotation object. The �ow of control would be
like

CyanMetaobjectWithAtAnnotation moAnnotation = searchCodegAnnotation(line, column);

if (moAnnotation != null) {

eventCodegMenu(moAnnotation);

byte []codegInfo = moAnnotation.getCodegInfo();

...

}

The IDE plugin may show a list of Codegs of the current source �le in a window. By clicking in one
Codeg of the list, eventCodegMenu could be called.

To avoid access to the hard disk, information on the Codegs of the current source �le is kept in memory
as well as in �les. When the information is updated by calling getUserInput it is written to disk. But
when the information in only read it is read from memory. Then if some external source changes the
Codeg �les the compiler will not know that. It will continue to use the values that are in memory. A
complete recompilation is necessary. When a source code is parsed the compiler reads Codeg information
that is in �les. The �le associated to a Codeg annotation has the name composed by the annotation name
and the �rst parameter to the annotation. It is created in a directory --prototypeName of the directory
of the project. Only the compiler knows where it keeps these �les.

Method parseSingleSource read Codeg information from the �les in the �rst time it is called. From
the second time on it reads the information from a hash table the compiler keeps with Codeg information
of the current source code. Whenever the graphical interface of a Codeg changes the information a disk
�le is updated. When the Codeg information is just read it is read from the hash table in memory.

It is time to give some low-level details of handling Codegs and symbols.
Symbol sym = aSaci.getCodegList().get(0).getFirstSymbol();

sym is the �rst symbol of the �rst codeg of the last source code parsed (if there is one Codeg in the last
source code parsed). By ��rst� we mean the Codeg with smaller (line, column) in the text of the last
source code parsed. �sym.getLineNumber()� is the line of the Codeg call and �sym.getColumnNumber()�
is the column of the �@� symbol. �sym.getSymbolString()� will return �color� if the Codeg call is that
of the line

var Int c = (@color(red));

Although the type of sym is Symbol, the runtime class of it is lexer.SymbolCyanMetaobjectAnnotation.
The call

aSaci.getCodegList().get(0).getLastSymbol()

returns a object describing the symbol) in the Codeg call @color(red). Then the IDE plugin have
su�cient information to highlight the Codeg call.

Assume method parseSingleSource of object referenced by aSaci has been called. Then the list of
symbols of the current source code is

aSaci.getSymbolList()

The IDE should color symbol referenced by variable sym with color sym.getColor(), that returns an
int. The symbol is in line sym.getLineNumber() and column sym.getColumnNumber(). Its number of
characters is usually

sym.getSymbolString().length()

In some cases, method getSymbolString() does not return the string of characters of the symbol. For
example, this happens in a metaobject annotation. Some metaobject annotations may be represented as
symbols but getSymbolString does not return the whole text of the call.

237

Metaobjects are used to implement Domain Speci�c Languages (DSL) that may need speci�c color
schemes.

@demands{*

T in ["Int", "Short", "Byte", "Char", "Long"],

U implements Savable,

R subtype Person

*}

object Proto<T, U, R>

...

end

To allow that, a metaobject class may rede�ne the inherited method

ArrayList<Tuple4<Integer, Integer, Integer, Integer>>

getColorList()

This method returns a list of tuples. Each tuple has the format
(colorNumber, lineNumber, columnNumber, size)

It means that the characters starting at lineNumber and columnNumber till columnNumber + size should
be highlighted with color colorNumber.

The line number is relative to the �rst character of the metaobject annotation. Any metaobject
class may rede�ne method getColorList, including number literals (example: 0101bin) or string literals
(example: r"[a-z]+0*").

The compiler class saci.IDEPluginHelper de�nes a method getColorList that returns a list of tuples
that can be used for syntax highlighting of the last source �le parsed (method parseSingleSource should
have been called �rst). getColorList takes a Saci object as parameter.

After compiling a Cyan program or parsing a Cyan source �le, the errors can be retrieved by calling
two Saci methods: getProjectErrorList() and getCyanErrorList(). The �rst method returns a list
of errors of class ProjectError. A ProjectError is an error that occurs outside a Cyan source �le. For
example, an error in the project �le (�.pyan�), in the arguments of parseSingleSource, and so on.

Method getCyanErrorList() return a list of errors of class UnitError. Every object of this class
describes an error that occurred inside a Cyan source �le.

238

Index

++, 45
�, 45
?., 109
?[, 109
[], 45

abstract, 14, 96
AddFieldDynamicallyMixin, 145
addMethod, 188
annot, 142
anonymous function, 167
anonymous functions, 21, 165
Any, 10, 92
arithmetical operator, 43
Array, 55
array, 18
assignment, 40

declaration, 61
multiple, 232
tuple, 232

attachMixin, 231

block, 21, 165
Boolean, 10, 40
Byte, 10, 40

catch, 29
catch clause, 205
catch object, 207
catch objects, 207
CatchIgnore, 213, 217
Char, 10, 40
clone, 6, 9, 62
closure, 21, 166
comment, 39
Common Lisp, 214
constructor, 12
context functions, 186
context object, 23
context objects, 195

copy parameters, 197

reference parameters, 197
copy parameters, 197
curry, 167
CyException, 29, 206
CySymbol, 15

decision statement, 48
Domain Speci�c Language, 162
Double, 10, 40
DSL, 162
DTuple, 144
dynamic typing, 18, 111

EHS, 205, 206
Elvis operator, 108
eq:, 10
exception, 28

checked, 215
unchecked, 215

Exception Handling System, 205
exception handling system, 28
exit, 140

�eld, 58
�le, 32
�nal, 81
Float, 10, 40
formal parameters of generic prototype, 116
func, 61
Function, 182
function

context, 186
multiple keywords, 170
r-function, 182
restricted-use, 182
u-function, 182
unrestricted-use, 182

function return, 166
functions, 21, 165

generic prototype, 20

239

generics, 116
grammar method, 24, 148
grammar, Cyan, 223
graphical user interfaces, 173
Green, 206
GUI, 173

handler, 206
hideException, 211
Hindley-Milner, 61

identi�er, 38
identi�er parameter, 122
if, 49
ifFalse:, 48
ifNil, 109
ifTrue:, 48
import, 33
In, 140
indexing, 45
inheritance, 8, 78
init, 12, 63
initShared, 63
instantiation, 117
instantiation of a generic prototype, 117
Int, 10, 40
interface, 9, 83
intervals, 145

keyword, 75
abstract, 96
func, 61
super, 80
var, 60

keyword message, 13

language
Omega, 63

Lisp, 214
literal

tuple, 20, 141
literals, 40
local variable, 60
logical operator, 43
Long, 10, 40
loop, 54

Map, 56
message

grammar, 24
keyword, 13
non-checked, 19

message selector, 96
message send, 13, 62
Meta-Object Protocol, 30
metaobject, 30
method, 13, 62

grammar, 24, 148
hideException, 211
init, 63
initShared, 63
keyword, 61, 75
multi, 87
new, 63
object, 27
overloading, 16, 86
primitive, 182
private, 59
protected, 59
public, 59
retry, 212
return, 74
return value, 62
signature, 75
tryWhileFalse, 213
tryWhileTrue, 212
unary, 61

MOP, 30
multi-methods, 87

new, 9, 63
Nil, 10, 11

object, 57
abstract, 96
catch, 207
CatchIgnore, 213, 217
context, 23, 195
CyException, 206
�nal, 81
generic, 116
method, 27
slot, 57
type, 98

Omega, 63
Out, 140
overloaded methods, 16, 86
override, 8

240

package, 32
parallelism, 228
parameter, 75
precedence, 47
primitive method, 182
primitive methods, 182
program unit, 32

r-functions, 182
real parameter to generic prototype, 117
reference parameters, 197
repeat:, 54
repeatUntil, 54
retry, 212
return, 74
return value, 62
runtime search, 17

scope, 76
ScriptCyan, 36
selector, 6, 13
self, 62
shared variable, 71
Short, 10, 40
signature, 75
String, 6, 10
subtype, 16, 98
super, 80
Symbol, 15
System, 140

throw, 29, 205
to:do:, 54
try block, 205
tryWhileFalse, 213
tryWhileTrue, 212
Tuple, 20
tuple, 141, 232

dynamic, 144
type, 98

u-function, 182

var, 60
variable, 8

local, 60
parameter, 75
shared, 71

while, 49

whileFalse:, 49, 174
whileTrue:, 49, 174

241

A.1 Separate Compilation

A Cyan package can be packed into a jar �le except its generic prototypes, which should continue to be
in the package directory. To force the compilation of package cyan.lang, attach the following annotation
to program in the project �le:

@feature("compilePackageCyanLang", true)

program

...

Unless this annotation is in the project �le, the compiler will look for a cyan.lang.jar �le in directory
given by the environment varible CYAN_HOME.

To compile a package named aaa.bbb that is not cyan.lang for separate compilation, create a project
with the following contents:

program

@annot("compilePackage")

package aaa.bbb

// possibly other packages

Now call the Java compiler to compile all of the Java �les for the package. Saci will call the Java compiler
but only the �les reachable from the main class will be compiled. Therefore it is necessary to call the
Java compiler again. Finally, call the jar program to create a jar �le. More instructions are given in the
Cyan site.

The jar �le should be in the base directory of the package. That is, for package aaa.bbb, the directory
structure should be as shown below.

aaa.bbb.jar

aaa\

bbb\

// package prototypes

Whenever a package is referenced, the Cyan compiler will look for a jar �le in the base directory of the
package. That is, if the the project �le is

program

package ccc.ddd at "C:\Dropbox\tests\00\ccc\ddd"

// possibly other packages

then the compiler will look for
C:\Dropbox\tests\00\ccc.ddd.jar"

If there is no such �le, Saci will compile the �les of the package directory. Note that even if there is a jar
�le, generic prototypes of package ccc.ddd should be kept in the package directory. They will be searched
for in that directory.

A.2 Known Compiler Errors

This is a list of known compiler errors.

1. a Java class that is not imported can be used if it is in �le �rt.jar�;

2. The code

242

var Int n;

repeat

if true {

break

}

else {

n = 0

}

n println

until true;

should not cause the error �local variable n may not have been initialized� in line
n println

However, it does.

3. literal hash tables (maps, dictionaries) with union types cause a Java compilation error.

let Int|String is95 = 0;

let myMap = [is95 -> is95, "zero" -> 0, 0 -> "zero"];

4. the line number of the error below is incorrect because of annotation insertCode

package main

object Program

@insertCode{*

for num in [2, 3, 4, 5] {

insert: " func multBy$num: Int n -> Int = n*$num;"

}

*}

func test {

zeroTen = 11; // no variable zeroTen

}

end

243

	An Overview of Cyan
	The Compiler, Packages, and File organization
	Future Enhancements

	Basic Elements
	Identifiers
	Comments
	Keywords
	Assignments
	Basic Types
	Operator and Keyword Precedence
	Loops, Ifs, and other Statements
	Arrays
	Maps

	Main Cyan Constructs
	self
	clone Methods
	init and new Methods
	Limitations on the Use of Prototypes as Objects
	Shared Variables and Method initShared
	Shared Methods
	Keyword Methods and Selectors
	Operator Methods
	On Names and Scope
	Operator []
	Inheritance
	Downcasting with type-case and cast statements
	Interfaces
	Method Overloading
	Nil and Any, the superprototype of Everybody
	Abstract Prototypes
	Types and Subtypes
	Union Types
	Tagged Unions
	Interoperability with Java
	Future Enhancements

	Dynamic Typing
	Generic Prototypes
	Generic Prototypes with real arguments
	Generic Prototype with a Varying Number of Parameters
	Multiple Parameter Lists
	Source File Names
	Combining Generic Prototypes
	Concepts
	Message Sends To Generic Prototype Instantiations
	Future Enhancements

	Important Library Objects
	System
	Input and Output
	Tuples
	Future Enhancements

	Dynamic Tuples
	Intervals

	Grammar Methods
	Matching Message Sends with Methods
	Unions and Optional Keywords
	Refining the Definition of Grammar Methods
	Domain Specific Languages

	Functions
	Problems with Anonymous Functions
	Functions with Multiple Keywords
	Methods as Functions
	Methods of Functions for Decision and Repetition
	Future Enhancements
	Type Checking Functions
	Examples
	Why Functions are Statically-Typed in Cyan
	Adding Methods to Objects

	Context Objects
	Passing Parameters by Copy
	Passing Parameters by Reference
	Should Context Objects be User-Defined?
	More Examples
	Future Enhancements
	Type Checking Context Objects
	Adding Context Objects to Prototypes

	The Exception Handling System
	Using Regular Objects to Treat Exceptions
	Selecting an eval Method for Exception Treatment
	Other Methods and Keywords for Exception Treatment
	Why Cyan Does Not Support Checked Exceptions?
	Synergy between the EHS and Generic Prototypes
	More Examples of Exception Handling

	The Cyan Language Grammar
	Opportunities for Collaboration
	Future Enhancements
	Runtime Metaobjects or Dynamic Mixins
	Multiple Assignments

	The Compiler
	Index
	Separate Compilation
	Known Compiler Errors

