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The compilation of a program can be changed by a metaprogram that acts as a compiler plugin. The
process of creating such a metaprogram is called compile-time metaprogramming. The interface between
the compiler and the metaprogram is ruled by a metaprogramming system or a Metaobject Protocol
(MOP). Ametaprogram can change the compilation process in several ways: it can add or remove program
code, do additional checks, and intercept operations such as object creation, message passing, and field
access. Sufficiently powerful metaprogramming systems have several drawbacks. The metaprogram can
have low-level interactions with the compiler, expose private source code information to other files, and
introduce non-expected dependencies among language entities. The view of the program by a metacode,
which is a snippet of the metaprogram, may be different from the view of other metacode. The calling
metacode order, by the compiler, may have unexpected consequences. This article presents the MOP
of the prototype-based object-oriented language Cyan. Although the Cyan MOP has all of the main
functionality of other metaprogramming systems, it addresses all of the metaprogramming problems
cited previously.
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1 Introduction

Metaprogramming is the coding of programs, called metaprograms, that treat code as data. The
program that is treated as data is called the base program or simply program. Ametaprogram can
generate new code, change existing programs, or do checks in them. Metaprogramming offers
mechanisms for code reuse that go beyond that offered by traditional software libraries. It can
generate families of related code, as in the case of C++ [Str13] templates, separate functional
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Fig. 1. The program and the metaprogram

and nonfunctional concerns, as in AspectJ [KHH+01], generate code based in specifications, as
ANTLR 4 does [Par13], support new syntax (macros as in Scala [Bur13]), detect program bugs
through static analyzers [Spo20] [Err20], implement new type systems using a pluggable type
system [Bra04], run a program in multiple stages [Tah07], each stage generating and running a
new program, change the program at runtime [RC02] [KCJ03], and support embedded Domain
Specific Languages [RAM+12] [BIS16].
In this paper, themain focus is language support for Compile-TimeMetaprogramming (CTMP),

which is the handling of a program by a metaprogram at compile-time. Therefore, this text does
not deal with metaprogramming using tools like ANTLR 4 [Par13] and SpotBugs [Spo20]. Or
with metaprogramming made at a preprocessing-time (changes made in the source code before
the program is parsed), loading time (changes in the program are made when the binaries
or bytecodes of a virtual machine are loaded in the computer memory), or runtime. Runtime
metaprogramming occurs during the program execution with the consequence that there are
few or no static guarantees relating to the metaprogram.
To discuss specific characteristics of compile-time metaprogramming supported by pro-

gramming languages, we will define some terms. The program is the code that implements
the desired functionality for the application. A metacode is each of the pieces of code that
compose the metaprogram. The metacode work as compiler plugins that interchange data with
the compiler, in both directions, and can change the compilation process. The compiler calls
metacode at specific points of compilation. Therefore, metacode can replace the type checker,
code generator, parser, and any other algorithm used by the compiler. They can also add, delete,
or replace code of the program. In practice, languages restrict what metacode can do to a few
things. The metaprogram is designed to help the program achieve the desired functionality.
Metacode can be mixed with the base program or defined externally to it. External metacode

may be linked to a source code by syntactic elements called annotations like “@property”. The
compiler calls metacode in one or more compilation phases. A protocol specifies which part
of each metacode is called in a given compilation phase. For example, a function1 or method
duringParsing may be called during the compilation phase parsing. The function or method
may do checks or add code to the program.

1Function as in language C
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Languages supporting CTMP have many problems caused by interactions between the
metaprogram and the compiler and conflicts among the metacode. The metaprogram needs
to access and change low-level compiler data structures, a dangerous operation. Changes in
compile data by metacode are not recorded. Consequently, if there is a compilation error, the
compiler cannot point out which metacode produced invalid code. Metacode may have different
views of the program and they often access private information on source files that are not
the ones in which they are. Changes in the order of annotations or metacode embedded in the
source code may change the compilation process, making the code fragile. Checks made by
one metacode may be invalidated by code later added by other metacode. Metacode associated
with one source file may change another source file. As a result, the semantics of a source file
may depend on every metacode in the metaprogram. Metacode may generate metacode, which
may cause infinite loops: a metacode generates metacode that generates metacode and so on.
Finally, there may be a cycle of information dependency among metacode. In its simplest case,
a metacode depends on information produced by another and vice-versa.
The goal of this article is to present the Metaobject Protocol of the Cyan language [Gui24].

This is a statically-typed, prototype-based, object-oriented language that supports Java-like
interfaces, generic prototypes, optional dynamic typing, anonymous functions, non-nullable
types, and an object-oriented exception system. Cyan language allows the definition of proto-
types, which are the counterpart of classes of class-based languages as C++ [Str13] or Smalltalk
[GR83]. The compile-time Metaobject Protocol (MOP) of Cyan specifies the relationships be-
tween the compiler, the metaprogram, and the program.Metaobjects from the metaprogram can
add code to the program, which includes new prototypes, fields and methods to prototypes, and
statements and expressions to methods. Besides that, they can intercept message passing, field
access, subprototyping, method overriding, etc. Metaobjects in Cyan have limited power, they
cannot delete program code or replace any compiler algorithm as the type checker. Additional
checks can be added to a program but no one can be bypassed. The code of Cyan metaobjects
are what we called previously metacode. A metaobject is an object that exists at compile-time
with methods called by the compiler at one or more compilation phases. An annotation in the
source code, as @property, is associated with a metaobject.
The contribution of this article is to show how the Cyan MOP addresses total or partially each

of the problems with Compile-time metaprogramming described previously. The characteristics
of the Cyan MOP follow, relating them to the problems.
Metaobject methods return source code, as strings, added to the program by the compiler. The

compiler traces which metaobject asked for code to be added to the program. If the generated
code has errors, the compiler will knowwhom to blame. Code is only added by returning strings
in metaobject methods, the Abstract Syntax Tree (AST) is never changed directly. An innovative
fixed-point algorithm guarantees that, in an important compilation phase, metacode order in
the base code is not important and that there are no circular information dependencies among
metaobjects associated with the same prototype. The textual order of the annotations in the
code is largely non-important. After the semantic analysis, metaobjects cannot change the code
and, therefore, checks made after this phase are never invalidated by other metaobjects. The
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compiler has a security mechanism preventing metaobjects from accessing private information
of prototypes of other source files. Code added by metaobjects in one compilation phase may
have annotations. However, these will only be activated in the next compilation phase. The
finiteness of the number of phases prevents a possible infinite compilation process.
The paper organization is as follows. The problems with metaprogramming, sketched in this

section, are detailed in section 2. They are the motivation for this work. Section 3 is a brief
introduction to the Cyan language. The Metaobject Protocol of Cyan is explained in Section 4.
Section 5 compares the metaprogramming systems of other languages with the Cyan MOP.
The last section concludes.

2 Motivation

To compare Cyan with other languages, we describe some problems with metaprogramming,
mainly CTMP which is the main topic of this paper. The problems are those considered general
enough to be applied to various metaprogramming systems; specific drawbacks are not listed.
Each problem has a name, placed in boldface. Cyan jargon is used in the descriptions: a prototype
is a template from which objects are created. A prototype belongs to a package as in Java. A
metacode associated with a source file is either inside source file, as A in Figure 1, or is linked
to an annotation that is inside the source file, as B in the figure. A metacode associated with a
prototype (or method) is inside the prototype or linked to an annotation inside the prototype
(or method).

MessWithOthers A metacode associated with a source file changes another source file, which
is called obliviousness [CL03]. That makes it difficult to reason about a prototype because we
do not know its code by looking at the source file in the IDE or text editor. It is not enough to
read the documentation of the metacode it uses because other source files can change it. There
is no way the developer can know, looking at the source code, which other source files can
change it. A light version of this problem happens even inside a prototype because a metacode
associated with a method could change another method; add statements to it, for example.
Non-local changes like those described make it hard to understand the code.

WhoDependsOnWho The compiler of an object-oriented language typically builds a prototype
dependence graph representing the relations between its prototypes. In a prototype-based
language, suppose there is a one-to-one correspondence between source files and prototypes.
In the prototype dependence graph, vertices are prototypes and there is an edge from R to S if S
has to be recompiled whenever R changes. This is the case if S inherits from R or declares a
variable whose type is R.
Metacode have to be taken into account to build the prototype dependence graph. Whenever a

metacode associated with prototype S uses information about prototype R, there should be an
edge from R to S. This cannot be done if metacode acts in the compiler data structures directly,
as when an AST node is passed to a metacode function or method. The handling of the AST
node by the metacode is unknown to the compiler and, therefore, it cannot build a prototype
Manuscript submitted to ACM
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dependence graph based on it. As an example, suppose a metacode associated with S generates
a method that returns the number of public methods of prototype R. Prototype S depends on R

but the compiler does not know that.

KnowsFriendsSecrets A metacode associated with a prototype S may generate code or do
checks based on private information of prototype R as its list of fields, its list of private methods,
or even statements of its methods. The use of private information from other source files
destroys modularity because prototype S cannot be understood without the knowledge of
private information of R.

Compiler-Interactions A metacode interacts with the compiler using low-level compiler data
structures, like the AST, in several compilation phases. This approach has several drawbacks
[SZN15]:

(a) it demands a deep knowledge of the design and implementation of the compiler, which
includes details of all the compilation phases and the data structures used. The metacode
may require complex AST transformations that should keep compiler invariants (often
undocumented);

(b) incorrect AST handling may crash the compiler or make it generate incorrect code;
(c) metacode may bypass compiler checks causing the acceptance of flawed source code. That

is, metacode may add code after the compiler does some checks that will never be done in
the added code.

Moreover, metacode become tied to the compiler data structures. Changes to these data struc-
tures, like the AST classes, invalidate metaprograms.

WhoDidWhat A metacode that handles the compiler data structures directly leaves no traces
of its activities. Therefore, if a metacode generates invalid code, detected in later compilation
phases, the compiler will issue an error. But it will be unable to point out the metacode that
generated the invalid code.

OrderMatters
If a prototype has many metacode associated with it, they can be called in an order that is

not clear to the metaprogrammer [PS11] or they may be called in an order that prevents them
from producing correct code or doing the intended checks.
An example, cited by Palmer and Smith [PS11], considers a metacode A that adds to a class X

a field for every class in the same source file. The field name is the class name in lower-case (y
for Y). Initially, there is only class X in the file but a metacode B adds another class Y. If A is
run before B, metacode A adds only field x to class X. If it is run after B, it adds fields x and y. If
the semantics of metacode A is “adds a field to X for every class in the final source file, after all
code addition made by metacode”, then metacode A should be the last one to run. But many
languages with support to metaprogramming cannot guarantee that.
There are two subproblems of OrderMatters. One is DifferentViews: different metacode

may have different views of the base program, as happens in the previous example, caused by
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metacode calling order. When one metacode adds code to the base program, other metacode
can view the added code. This is a problem because the calling order may not be clear and also
because a change in the metacode textual order in a source file may change the calling order.
The developer does not expect that such subtle changes cause drastic code modifications.
Other subproblem of OrderMatters is InvalidateChecks. A metacode checks the program

that is later changed by another metacode, invalidating the check. For example, metacode A
issues a compilation error if any prototype field uses underscore in its name. Metacode B, run
after A, introduces a field color_name. The check made by A is invalidated.

InfiniteMetaLoop Metacode may generate metacode added to the source code, which in turn
may generate metacode and so on, creating an infinite loop. As an example, a metacode may
generate itself as code, which is the equivalent of a function that just calls itself.

Nontermination
Metacode are called by the compiler. Therefore, if a metacode does not finish its computation,

the compiler does not finish either.

NondeterminismMetacode are not limited to interact with the source code or the compiler.
They can interact with the file system, the network, and other running programs. This means
metacode may be nondeterministic. Two different compilations of the program with the same
source code may result in two different behaviors: checks may be different and the code added
by metacode to the program may differ.

NoGeneratedCodeGuarantees
Metacode may generate defective code if they are given full freedom relating to what to

generate.

NoContracts
A metacode may demand specific features from the base code it is attached to and vice-

versa [LE16]. For example, the metacode may demand the base prototype T declares a method
for comparing two T objects. And the base code may demand that the metacode adds to the
prototype a method sort (built with the comparison method). Ideally, there should be a contract
DSL2 to specify the agreements between the metacode and the base code. The contract could
be enforced by the compiler. If there is no contract DSL, metacode can check by themselves
the demands they places on the base code. However, these demands would be more precisely
described using a DSL code that is easily examined by the developer. Without a contract,
the demands that the base code places on metaobjects are not verified. Thus, the causes of
compilation errors are more difficult to discover. Errors may appear only in the final version
of the source code which is a mix of base code with that added by metacode. To discover the

2Domain Specific Language
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Fig. 2. Two graphs: one showing metacode generation and the other showing which metacode uses
information produced or changed by others

errors, the developer has to examine the source file and scrutinize code generated by metacode,
which exposes their implementation details.

CircularDependency To explain this problem, we use two graphs whose vertices are metacode.
A code generation graph is a tree and there is a directed edge from A to B if metacode A generates
code containing embedded metacode B or an embedded annotation linked to metacode B.
Therefore, if there is an edge from A to B, the compiler runs metacode A that generates B and,
then, the compiler runs metacode B. In a dependence graph, there is a directed edge from A to B
if base-program information produced or changed by metacode A is used by metacode B. This
information is any characteristic of the base program such as the number of prototype fields,
the superprototype, or the presence or absence of a given method. This graph may have cycles.
This results in a problem, CircularDependency. Let us explain that.
The compiler has to chose a first metacode in a cycle to be the first to be run. Suppose the

first one is metacode B. Since this vertex is in a cycle, there will be an ingoing edge from
another vertex, say A, to B. By the definition of dependence graph, A produced or changed
information used by B. The problem is that the compiler first runs B generating code or doing
checks based on information that will be later changed when the compiler runs metacode A.
The CircularDependency problem cannot be solved by an adequate choice of a vertex in a cyle.
Figure 2 shows an example of a code generation tree, using dashed edges, and of a dependence

graph, using solid edges. The simplest cycle3 has only two vertices as that composed of A and F
in the figure. Therefore, metacode A depends on information produced by F and vice-versa. The
one that runs first will produce bad code because it does not have the information produced
by the other. Note the F metacode produces code without embedded metacode, as there is no
dashed arrow coming out of it. The problem CircularDependency is an extended version of
OrderMatters in which there is no adequate order of annotations.
We will give an example of circular dependence involving two annotations, rr and ss (the

metacode here are annotations). rr is in the source code of prototype P that does not declare
any fields (instance variables). This annotation generates

3A vertex that has an edge to itself is a cycle. There is a problem only if the metacode was not correctly implemented.
If it was, the metacode would consider the consequences of the code it produces in itself. Thus, we consider that
the simpleste cycle having this problem has two vertices.
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@ss

var Int numFields = 1;

Field numFields is initialized with the number of fields of prototype P (including numFields).
Annotation ss generates the declaration of field fieldCount initialized with the number of
fields of P, which is now 2. The resulting code produced by rr and ss is

@ss

var Int fieldCount = 2;

var Int numFields = 1;

This is wrong because the number of fields of P, in the final code, is 2 and, therefore, both
fields should be initialized with 2. The problem here is that metacode associated with rr and
ss depend on information, the number of fields, changed by both. Graphically, this is shown by

Note that a cycle can be more complex, like A-C-E of Figure 2.

Other Problems
There are other problems with metaprogramming that this paper will not further discuss. One

of them is the unintended capture of identifiers by the code generated by metacode [KFFD86].
The generated code uses identifiers already in use in the environment where the code is inserted.
Their semantics is equaled by accident. An example, cited by Duba et al. [KFFD86], is the macro
expansion of

(or e1 e2)

made by
(let v e1 (if v v e2))

The expansion of
(or nil v)

results in
(let v nil (if v v v))

The last v in this expression was supposed to be different from the other occurrences of v. This
problem is solved by renaming identifiers. When the metacode is a Lisp-like macro, this is
called macro hygiene.
The language may not enforce a direct link between annotations in the program and the

metacode. In Java [Dar06], annotation processors (AP) are passed in the compiler command
line. They can do checks in the program. Each annotation in the program is passed to each
AP. If the processing method of one AP returns false, the annotation is passed to the next
annotation processor. Therefore there is not a hard link between annotations and APs, making
it difficult to associate semantics to an annotation.
A sufficiently powerful metaprogramming system permits deep changes in the program by

the metaprogram. For example, the metaprogram can remove methods and fields, alter the
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superprototype of a prototype, remove implemented interfaces, remove method statements,
add or remove method parameters, change method return type, and rename prototypes, fields,
or methods. Profound changes make code unreadable. The developer has to know the meaning
of every metacode in a source file before assuring very basic facts about that code. Therefore,
the developer cannot be sure that a method that is in the source code does exist in the final
code, produced after all changes made by the metacode. She or he cannot be sure a statement
in a method will remain there in the final code.
Few metacode need to do deep changes, in our own experience. And they can be properly

documented, lessening their impact on code readability. An example of a powerful Metaobject
Protocol is that of CLOS [KdRB91], created to simulate several Lisp dialects. In this paper, we
do not consider a too powerful metaprogramming system as a problem but as a design decision
that, if abused, can bring problems.

3 The Cyan Language

Cyan is a statically-typed prototype-based object-oriented language. A prototype is a template
from which other objects may be created, the same role played by classes in Java [GJS+14],
C++ [Str13], C♯ [Csh24], and Smalltalk [GR83]. The difference is that the prototype itself is
an object like any other if it declares a constructor without parameters. This restriction is
unique to Cyan and it is requirely to properly initialize the prototype fields, made with the
no-argument constructor. In all other prototype-based languages, any prototype is an object.
The look and feel of Cyan is that of a class-based language. The compiler translates Cyan

to non-legible Java code. Thus, many language constructs are directly translated into Java, as
inheritance, method overriding, message passing, assignment, and prototype declaration (each
prototype is translated to a Java class). The two languages interoperate: Cyan code can import
Java packages and classes and vice-versa.
The basic types of Cyan are Short, Int, Long, Char, Boolean, Float, Double, and String.

They are all reference types: their instances are dynamically-allocated and variables refer to the
objects. All basic types inherit from Any, the top-level prototype.
Listing 1 shows the declaration of prototype Student of package university. A package

in Cyan is a named set of prototypes and has no important conceptual differences from Java
packages. A compilation unit is a single source file composed of import declarations, with
the imported packages for this file, and a single prototype. The file name is composed of the
prototype name and extension “cyan”. Fields that can change their values are declared with
keyword var, as number in the example. The type precedes the field name. Read-only fields
are declared with let, as name. If neither var or let is used, let is assumed. Fields are always
private to their prototypes.
Student is declared with word open before object. Without open, it would be a final proto-

type, it could not be inherited. Inheritance is done with the Cyan keyword extends. A prototype
that does not explicitly inherits from any other prototype inherits from Any, the superprototype
of every other prototype but Nil. Hence, Nil cannot be assigned to a variable whose type is
Student. There is no sub or superprototype of Nil, which means there is no type relationship
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Listing 1. Prototype Student

package university

open
object Student

let String name
var Int number

func init: String name, Int number {
self.name = name;
self.number = number;

}

func getName -> String = name;

func getNumber -> Int { return number }
func setNumber: Int number { self.number = number }

end

between Any and Nil. A variable that can be either a non-Nil value of type T or Nil should
have type T|Nil as in

var Student|Nil s;

T|Nil is a union type. Variable s can receive objects of Student or Nil in assignments. There
is a type-case statement to safely retrieve the value of s.
Cyan employs a syntax for method declaration and message passing in some way similar to

Smalltalk. Methods are declared with theCyan keyword func. A unarymethod is a parameterless
method like getName and getNumber from the example. Its name does not end with “:”. The
return type is given after “->”. If missing, the return type is considered to be Nil and it is
optional to return a value in the method. The method body is a list of statements between { and
} or an expression after “=”. See methods getNumber and getName. A method is public unless
one of the following Cyan keywords are used before func: private, package, or protected.
A non-unary method, called a keyword method, has one or more method keywords or just

keywords. Each keyword is composed of an identifier ending with “:” followed by zero or more
parameter declarations. Method setNumber: of prototype Student is a keyword method with
one keyword, setNumber:. There may be more than one keyword, each one with zero or more
parameters:

func add: String password

at: Int line, Int column

doc: String docStr { /* code */ }

This is a single method with three keywords, add:, at:, and doc:.
A unary message passing is composed of a receiver and an identifier that should be the name

of a unary method:
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aStudent getName

aStudent is the message receiver. A keyword message passing is composed of a receiver and one
or more message keywords or just keywords with their parameters:

var Box t = Box new; // creates an object

// t is the message receiver

t get println; // the same as (t get) println

t add: "xyZ#8Z" at: 5, 7 doc: "Password for NotSecretAnymore";

Both method keywords and message keywords are called keywords. To avoid confusion, Cyan
keyword is used for reserved words of the language.
self is a pseudo-variable that refers, inside a method, to the object that received the mes-

sage that caused the method execution. The same concept as Smalltalk’s self and this of
C++/Java/C♯. Constructors are methods with names init (no parameters) or init: (with pa-
rameters). They are used to create objects of a prototype. The compiler adds to the prototype a
new: method for each init: method, with the same parameters. And a new method for a init
method. The return type of the new or new: method is the prototype in which it is defined.
Thus, for Student the compiler creates method

func new: String name, Int number -> Student { ... }

A Student object is created as
Student new: "Newton", 1

or just Student("Newton", 1).
There are Java-like interfaces declared with the Cyan keyword interface instead of “object”.

The method bodies should not be given and a prototype may implement an interface using
keyword implements. It then should define all methods inherited from the interface. By con-
vention, interface names in Cyan start with the letter I like IMachine. Interfaces are prototypes
whose method bodies are not given explicitly. The compiler supplies the method bodies, which
are statements that throw exceptions.

var m = IMachine;

// throws an exception at runtime

m turnOn;

It is illegal to send a message to an interface like “IMachine turnOn”.
Cyan supports gradual typing [ST07]. The type of a method parameter, if omitted, is con-

sidered to be Dyn, a virtual type supertype of every other type. The compiler does not check
a message passing if the receiver type is Dyn. Therefore, if every variable, field, and method
return type is Dyn, Cyan becomes a dynamically-typed language. Whenever a non-Dyn type is
expected and a Dyn expression is supplied, the compiler inserts a runtime type check. Amessage
keyword preceded by ? disables the compiler typechecker. Thus, “obj ?getName” typechecks
and method getNamewill be searched for only at runtime. An anonymous function is a nameless
literal function. This is the same concept of Smalltalk blocks, Lisp lambda expression, and Java
lambda abstraction. An anonymous function has the type
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Listing 2. The generic prototype with varying number of parameters Tuple

package cyan.lang
@createTuple
object Tuple<T+>
end

Function<T1, T2, ..., Tn, R>

in which the Ti’s are the parameter types and R is the return type. This is the syntax of the
instantiation of a generic prototype Function with the real parameters Ti’s and R.
Generic prototypes in Cyan take one or more parameters.

object GroupList<T> ... end

T is a generic parameter used, inside GroupList, in any place a type is expected: as the type
of variables, parameters, fields, return type of methods, and inside expressions.4 A generic
prototype is instantiated when real arguments are supplied to it:

var GroupList<GroupElem> groupList;

Assume GroupElem is a prototype. The instantiation is the process of creating a new prototype
by replacing, textually, the generic parameters by the real arguments. In this example, T is
textually replaced by GroupElem. A new source file is created and compiled. Therefore, the
semantics of Cyan generic prototypes is close to class templates of C++.
The Cyan compiler parses the generic prototype GroupList<T>, before any instantiations,

but it is unable to do the semantic analysis because T is an unknown type. Therefore, semantic
errors are possible after an instantiation like GroupList<GroupElem> when the newly-created
source file is fully compiled.
As an example of error, suppose a local variable p, inside GroupList, has type T replaced by

GroupElem in the instantiation GroupList<GroupElem>. A message passing p getName causes
a compilation error if GroupElem does not define a unary method getName. This kind of error
is difficult to understand if the user of the generic prototype is not the same developer that
instantiates it.
A generic prototype with a varying number of generic parameters has just one parameter

followed by +, as shown in Listing 2. This is the real code of prototype Tuple. Parameter T
cannot be used inside the prototype using the Cyan syntax. But the metaobject associated
with annotation createTuple generates code using the real arguments. The language supports
literals of arrays, tuples, and maps:

var Array<Int> primes = [ 2, 3, 5 ];

var Tuple<String, Int> nameAge = [. "Newton", 85 .];

var IMap<String, Int> map = [ "one" -> 1, "two" -> 2 ];

Cyan is similar to statically-typed class-based languages and to the statically-typed prototype-
based language Omega [Bla94]. Thus, at runtime, there is no structural reflection: methods
4T can be used in other places like method keywords but this is irrelevant in this paper.
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Listing 3. Prototype Person that uses metaobject annotations

1 package human
2

3 @init(name)
4 object Person
5 @property var String name
6 func test {
7 let Array<String> list = @compilationInfo("field list");
8 list println;
9 }

10 end

and fields cannot be added to a prototype at runtime, inheritance cannot be changed, and so
on. This is unlike other dynamically-typed prototype-based languages like Self [US87]. The
preferred way of creating an object in Cyan is using method new, not to call the clone method.
There are other features of the Cyan language that are not presented in this section: anony-

mous functions, the exception handling system (made only with message passing), safe object
initialization (fields are initialized before used, except in a few circumstances), and a general-
ization of anonymous functions called context objects.

4 The Cyan Metaobject Protocol

The Cyan Metaobject Protocol (MOP) describes the interactions between the Cyan code being
compiled, the compiler, the MOP library, the metaprogram, and annotations in the Cyan
code that tells the compiler which metacode should be called during the compilation. The
metaprogram in Cyan is composed of Java classes, Cyan prototypes, or a mixture of both. The
compiler is implemented in Java making it convenient to use Java classes as the metaprogram.
But since the compiler translates each Cyan prototype into a Java class, Cyan can also be used
as the metaprogramming language.
The following subsection shows a complete example using the Cyan Metaobject Protocol. It

fixes the terminology and explains how theMOPworks. Subsection 4.2 shows all Cyan interfaces
that can be implemented by metaobjects to implement their desired functionality. Subsection 4.3
explains how the Cyan MOP addresses the problems of section 2. Some shortcomings of MOP
are presented in subsection 4.3.

4.1 A Complete Example Explained

An annotation or metaobject annotation is the syntax element that links the program to a
metacode. Listing 3 shows a prototype Person that uses three annotations: property, init,
and compilationInfo, each one preceded by “@”. Annotation compilationInfo takes a string
as parameter and init takes as parameter an identifier that is, for practical purposes, also a
string. property is attached to the declaration of field name and init is attached to prototype
Person. init creates a constructor with field name, property creates get and setmethods for
name, and compilationInfo generates a literal array with the prototype fields.
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Listing 4. Prototype Student

// this is a comment
// the delimiters for 'doc' are {* and *}
// the delimiters for 'replaceCallBy' are {:< and >:}

@doc{* returns the double of the argument *}
@replaceCallBy(once){:< 2*n >:}
func twice: Int n -> Int = n + n;

Fig. 3. Relation between metaobjects, annotations, metaobject classes, MOP interfaces, and compilation
phases

Basic values (3, 3.14, ’A’), literal arrays, literal tuples, literal maps, and any combination of
these can be parameters to annotations. An annotation may be followed by a text given between
two delimiters, as shown in Listing 4. This text will be called attached text or attached DSL5

code. In this example, the attached DSL code of doc and replaceCallBy are documentation
in English and an expression, respectively. There are many possible variations of delimiters,
described by Guimarães [? ], so that the DSL and the delimiters do not clash. As a rule, the
right delimiter should mirror the left one. Annotations replaceCallBy and doc are attached
to method “twice:”. replaceCallBy takes one parameter.
When parsing source code, the Cyan compiler creates, for each annotation, three objects:

an object of the AST private to the compiler, a wrapper object of the AST object, and a
metaobject. The wrapper object is a read-only version of the compiler AST object that represents
the annotation. A metaobject is an object of a Cyan prototype that inherits from prototype
CyanMetaobjectAtAnnot.6 We will soon describe how the compiler links an annotation to the
metaobject prototype in Cyan. A metaobject can also be implemented in Java. In this case, it
will be an object of a Java class. Throughout this paper, we will refer to both “prototype of a
5Domain Specific Language
6Suffix “AtAnnot” means “annotation that starts with an @”. Some annotations do not use this syntax, but they
are not described in this paper.
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Fig. 4. The relation to the compiler to the MOP libraries

metaobject” and “class of a metaobject” to indicate that a metaobject can be implemented in
either Cyan or Java.
Figure 3 shows the relationships among all of the previously explained elements. On the

left, there is an “AST object” representing the annotation. It is wrapped by another object,
which is represented by a rectangle with round borders around another rectangle. The in-
ner AST object is used by the compiler and the outer, by the MOP. Both are called “AST
objects”. The outer one is a read-only wrapper object. This figure also shows that the AST
object and the metaobject refer to each other. There are two one-to-one relationships: be-
tween metaobjects and wrapper objects and between wrapper objects and their annota-
tions. CyanMetaobjectProperty is the Java class of the metaobject associated with anno-
tation property. This class can be used to create any number of metaobjects. It inherits
from CyanMetaobjectAtAnnot and implements interface IAction_afterResTypes, overrid-
ing the interface method afterResTypes_codeToAdd. This is the method that creates the get
and set methods for field name. Although CyanMetaobjectProperty could be user-defined,
it is supplied with the Cyan basic libraries. A metaobject prototype should inherit from
CyanMetaobjectAtAnnot. Appendix A shows the complete code, in Cyan, of metaobject
myproperty that is a simplified version of property.
We will use “metaobject property” when no confusion may arise. If there are two property

annotations in a code, “metaobject property” will be ambiguous because it may refer to
metaobjects associated with both annotations. In our example, there is only one annotation for
each metaobject and therefore there is no confusion.
A Cyan package contains one or more prototypes in a directory with the name of the package.

A special subdirectory of the package may contain the compiled version of a Java metaobject
class or a Cyan metaobject prototype — a “.class” file. Whenever the package is imported,
the annotations associated with the package’s metaobject classes or prototypes can be used
in the source file. Every metaobject class or prototype has a getName method that returns
the annotation name. This links the annotation to the metaobject class or prototype. All the
metaobjects used in Listing 3 belong to package cyan.lang imported automatically by every
Cyan source file.
“MOP library” is a name used for two packages: one in Cyan and the other in Java. The

MOP library in Cyan (Java) contains prototypes (classes) imported by the compiler and
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Fig. 5. The compilation phases and their links to methods of metaobjects at compile-time

used for building metaobject prototypes (classes). Prototypes CyanMetaobjectAtAnnot and
IAction_afterResTypes belong to the Cyan MOP library. There are classes in the Java MOP
library with these same names. If a metaobject is implemented in Java, there is a Java class for
it and therefore the Java package representing the MOP library is used. The same applies to
Cyan. The Cyan MOP library mirrors the Java MOP library as shown in Figure 4. The compiler
knows and is capable of interacting with the two libraries.
The Cyan compiler goes through six compilation phases for each source file, shown inside

the rectangle with dashed lines in the left of Figure 5. The flow of control is from the top
to bottom. Phase parsing does the syntactical analysis and builds the Abstract Syntax Tree
(AST) of the source file. Some AST objects are associated with a type and have a type field,
initially set to null. For example, AST objects representing method parameters, prototype
fields, implemented interfaces, the superprototype, message passings, and expressions have a
type field.
There are two kinds of AST objects associated with types: those representing expressions,

which are always inside method bodies, and those outside method bodies. The type field of
the later AST objects is set in phase resTypes (resolving types). Thus, field name of Person of
Listing 3 is represented by an AST object whose field type is null at the beginning of phase
resTypes. During this phase, the compiler sets the type field to the AST object representing the
prototype String. Phase resTypes, therefore, does part of the semantic analysis of the source
code. The compiler goes through phase resTypes on a source file only after parsing all source
files referenced in this file or loading the jar file with the referenced prototypes.
Phase afterResTypes means after resolving types, which is used only by the Cyan MOP.

Some methods of metaobjects are called in this phase. For example, the method of metaobject
property that adds the get and set methods to the prototype. AST objects that represent
expressions in the Cyan code have a type field set in phase semAn (semantic analysis),
which is the remainder of the semantic analysis. The compiler also does the remainder checks,
demanded by the language, in this phase. Phase afterSemAnmeans after semantic analysis. It is
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Fig. 6. The compilation phases and their links to the interfaces of the MOP library

used only by the MOP: some metaobject methods are called in this phase. The last compilation
phase is code generation. Currently, no metaobject method is called in this phase.
The non-dashed rectangles of Figure 5 represent phases parsing, afterResTypes, semAn, and

afterSemAn associated with interfaces of the MOP library. The interfaces associated with each
phase are depicted in Figure 6. A phase is associated with multiple interfaces but each interface
is associated with just one phase. The interface name ends with the phase it is associated with.
During the parsing of prototype Person of Listing 3, the compiler creates a metaobject for

each annotation. Then, in each of the phases parsing, afterResTypes, semAn, and afterSemAn,
the compiler calls all of the metaobject methods, of all metaobjects, declared in interfaces of
that phase. In the Person example, the dashed rectangle in the right of Figure 5 shows a list of
metaobjects created for this prototype. There are three metaobjects represented by rectangles
with the annotation name (init, property, and compilationInfo). In the compilation phase
afterResTypes, shown in the left, the compiler calls methods afterResTypes_codeToAdd of
metaobjects init and property. Method afterResTypes_codeToAdd is declared in interface
IAction_afterResTypes. In the same way, the compiler calls method semAn_codeToAdd in
phase semAn.
There is a missing point: at which point in each compilation phase does the compiler call

each method? It depends on the interface the method is declared. Some interfaces are associated
with triggers. For example, methods of

IActionMethodMissing_semAn

are called whenever the compiler is not able to find a method that matches a message passing.
The “missing method” error triggers the calling of the interface methods. The compiler calls
methods of interface IAction_afterResTypes in phase afterResTypes regardless of any trigger.
Or we may consider that the trigger is simply the processing of the prototype in this phase.
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Listing 5. Prototype Person that uses metaobject annotations

1 package human
2

3 object Person
4 var String name
5 func test {
6 let Array<String> list = [ "name" ];
7 list println;
8 }
9 func getName -> String = name;

10 func setName: String name { self.name = name }
11 func init: String name {
12 self.name = name
13 }
14 end

Metaobjects always generate code as strings. The code is added to a copy in memory of the
prototype source code — the original file is not changed. In Listing 3, metaobject property
generates methods “getName” and “setName:”. Metaobject init generates code for a method
“init:”, a constructor, setting field name. The compiler inserts the code generated by the two
metaobjects in the Person prototype that goes through the parsing and resTypes phases again.
Phase afterResTypes is skipped, the compilation proceeds to phase semAn. Then, metaobject
compilationInfo generates a string whose contents is

[ "name" ]

This is the code of a literal string array with one element: the name of the Person field. The
compiler inserts the code produced just after the annotation. The resulting prototype Person
is equivalent to the one shown in Listing 5. It is not exactly equal because some auxiliary
annotations introduced by the compiler are not shown.
After the code insertion in phase semAn, the whole source code is compiled again. But phase

afterResTypes is skipped and the metaobjects that act in phase semAn are not used. A planed
optimization of the compiler is to compile just the inserted code in phases afterResTypes and
semAn. Note the compiler does not allow an infinite loop of metaobjects producing annotations
that produce annotations, and so on. The number of compilation phases is fixed even when
metaobjects generate code. For example, if property generated a @property annotation, it
would not be used because the compiler skips phase afterResTypes in the recompilation. And
this annotation only acts in this phase.

4.2 The Interfaces of the MOP Library

This subsection explains how metaobjects direct the compilation of Cyan code. That is, how
the compiler chooses methods of metaobject classes/prototypes to be called at specific phases
of the compilation. Although metaobjects can be implemented in either Java or Cyan, this
subsection assumes they are implemented in Cyan. Therefore, theMOP library used is composed
of prototypes, including CyanMetaobjectAtAnnot and the Cyan interfaces of Figure 6.
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Fig. 7. The information available in each compilation phase

In the following text, we will use current prototype for the prototype in which the annotation
is. Therefore, for all of the metaobjects associated with the annotations of Listing 3, the current
prototype is Person. The current compilation unit is the compilation unit of the current prototype.
Base methods are methods of the current prototype, which will be called justmethods. Methods

of the metaobject prototypes or methods of the interfaces of the MOP library will be called
metamethods or just methods if no confusion arises.
The design of a metaobject prototype starts by defining its goals. Then, the programmer

chooses one or more interfaces to satisfy these goals. If the metaobject should add fields and
methods to the current prototype, it should implement interface IAction_afterResTypes. If
it should intercept access to a prototype field, the metaobject prototype should implement
interface IActionFieldAccess_semAn. And so on. This is very important: the functionality of
a metaobject prototype is driven by the interfaces it implements. In some other languages, a
metacode decides what to do during its execution, which is at compile-time of the base program.
This is more prone to errors since what to do depends on runtime decisions.
The metaobject prototype should override the interfaces’ methods. These methods may need

information on:

(a) the annotation. A method inherited from CyanMetaobjectAtAnnot returns the AST object
representing the annotation (see the right arrow labeled “refer to” in Figure 3). Through
this object, one can retrieve all information related to the annotation: its parameters, the
attached DSL code, and the declaration it is attached to (as the AST object of Person for
annotation init). The annotation AST object also has a method returning the metaobject
(the arrow “refer to” in the left of the figure);

(b) the environment in which the metaobject annotation is. The information is encapsulated in
a parameter passed to each method overridden from the interfaces. Through this parameter,

Manuscript submitted to ACM



20 José de Oliveira Guimarães

the metaobject method discovers the details of the Cyan source code in which the annotation
is: the current method, the current prototype, the imported packages, the AST of the current
prototype or method, and so on. The type of the parameter with this information varies
according to the phase of the corresponding interface. The parameter type restricts the
amount of information available. For example, the AST of method statements is not available
in methods declared in IAction_afterResTypes. But it is in methods of IAction_semAn.
The most important information a metaobject has in each compilation phase is shown in
figure Figure 7.

The following subsections describe the interfaces of theMOP library that can be implemented
by metaobject prototypes. Some interfaces described by Guimarães [? ] are missing because
they are either marked as deprecated or are irrelevant to the paper conclusions.

4.2.1 Interfaces for Creation of New Prototypes. There are three interfaces to create new
prototypes during phases parsing, afterResTypes, and semAn (the interface names are composed
of IActionNewPrototypes_ and the phase name). In each interface, the sole interface method,
when overridden in the metaobject prototype, should return a tuple consisting of a prototype
name and code. Both as strings. The new prototype is created in the same package as the
prototype in which the annotation is.
Why do three interfaces for prototype creation are needed? Why not just one? There are two

reasons: (a) the semantic analysis is made in phases, first resTypes (outside method statements)
and then semAn (method statements); (b) The latter phases provide more information than the
former ones. Therefore, a prototype used, for example, as the type of a method parameter should
exist in phase resTypes. It either exists in the original program or is created by a metaobject
in phase parsing. Consider a prototype that is the type of a local variable whose declaration
does exist at the start of phase semAn. That is, the local variable declaration was not added by
metaobjects acting in phase semAn. This prototype should exist at the start of phase semAn. It
either exists in the original program or it was created in phases parsing or afterResTypes.
A local variable declaration could have been created by metaobjects acting in phase semAn.

If the variable type (a prototype) did not exist before phase semAn, it can be created in this
phase. Ideally, a prototype is created as late as possible because more information is available
in later phases. However, it may be necessary to create it earlier because it is used in early
compilation phases.

4.2.2 Interfaces of Phase parsing. The interfaces of this phase are used to parse the attached
DSL code of an annotation, generate code after the annotation, and pass information, like
documentation, from the annotations to declarations.
Interface IParseWithCyanCompiler_parsing has a method with a parameter that is a re-

stricted view of the Cyan compiler. The parameter has methods for lexical analysis and parsing
of Cyan types, expressions, and statements. It is the ideal tool to use when the attached DSL
code is similar to Cyan. Interface ICompilerInfo_parsing is used to pass information, like
documentation, from the annotations to declarations. As an example, metaobject doc, cited in
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subsection 4.1, uses this interface. Interface IAction_parsing declares a method to add code
after the annotation (it will be removed in the next MOP version).

4.2.3 Interfaces of Phase afterResTypes. Interface IAction_afterResTypes declares four meth-
ods. One is used to add statements at the beginning of methods of the current prototype.
Another method is used to rename methods.
It should return a list of tuples, each one with the old name and the new name.
However, whenever a method is renamed, the metaobjects should add another base method

with a name equal to the old base method name. This is to prevent difficult-to-understand
compilation errors caused by the renaming of methods.
The other two methods of IAction_afterResTypes need the concept of signature. Amethod

signature is the method declaration without its body. Parameter names are optional. Hence,
the signatures of the method getName of Student (Listing 1) and method add:at:doc: of
section 3 are

func get -> T

func add: String

at: Int, Int

doc: String

The signature of a field is composed of its declaration, preceded by var or let, without the
optional expression assigned to it. For example, a field signature can be “var String name”.
Method afterResTypes_codeToAdd: of interface IAction_afterResTypes returns a tuple

composed of the code of base fields and methods (to be added to the current prototype) and the
signatures of these base fields and methods (separated by “;”).

func afterResTypes_codeToAdd: ICompiler_afterResTypes compiler,

Array<

Tuple<WrAnnotation,

Array<ISlotSignature>>> infoList

-> Tuple<String, String>

The first parameter is a restricted version of the compiler. It has methods to return the current
prototype, the current compilation unit, methods and fields of the current prototype, and so on.
The second parameter, infoList, is an array of tuples, each one composed of an annotation
and an array of base method and field signatures.7 The compiler passes an empty array, as the
second argument, in the first time thismetamethod is called. This parameter is only useful when
the metaobject depends on code generated by other metaobjects. That is, the code generated
by other metaobjects acting in the same prototype should change the code generated by the
metaobject. An example will be used to explain that.

7A slot is either a method or a field. Interface ISlotSignature represents a field or method signature.
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Metaobject addFieldInfo adds to the current prototype a field whose name is the first
parameter, initialized with the number of prototype fields. The metaobject class8 implements
interface IAction_afterResTypes and defines a method afterResTypes_codeToAdd. In pro-
totype TestField, there are two annotations addFieldInfo.

@addFieldInfo(fieldNum)

@addFieldInfo(numOfFields)

object TestField

var Int one = 1;

func sumAll -> Int = one + fieldNum + numOfFields;

end

The associated metaobjects should create two fields initialized with 3:

let Int fieldNum = 3;

let Int numOfFields = 3;

However, that is notwhat happens in the first time the compiler callsmethod afterResTypes_codeToAdd
of each of the metaobjects passing an empty array as the second argument, infoList. Both
methods return 2 because they view the original prototype, without base fields and methods
added by other metaobjects.
To work correctly, the metaobject class should define a method runUntilFixedPoint return-

ing true. This method and afterResTypes_codeToAdd: act together. If runUntilFixedPoint
returns false, then the compiler calls afterResTypes_codeToAdd: just one time. Otherwise,
this method is called multiple times according to the algorithm FixMeta of Listing 6.
This algorithm takes two lists as input. The first, fullList is the list of all metaobjects of the

current prototype that implement IAction_afterResTypes. The second, roundList, is a sublist
of the first containing the metaobjects whose methods runUntilFixedPoint return true. The
algorithm first collects all base method and field signatures generated by all metaobjects into a
list infoList. This is made by the for statement of lines 3-9. Then it makes rounds of calls (lines
12-30), each round composed of calls to method afterResTypes_codeToAdd: of all metaobjects
of roundList (lines 16-26). The rounds end when all metaobjects produce the same code as in
the previous round or the number of rounds is greater than 5. In the later case, the compiler
issues an error because the metaobjects were not able to reach an agreement in five rounds.
This number can be changed by a compiler option.
The flow of control of algorithm FixMeta when used with two metaobjects is shown in

Figure 8. The output of one round, the dashed rectangle with the signatures, is given as
input to all methods called in the next round. Each afterResTypes_codeToAdd: method also
generates code (base fields and methods) that will be added to the current prototype after phase
afterResTypes.
Let us return to the addFieldInfo example.Method runUntilFixedPoint of themetaobjects

returns true. Because of this, the compiler calls all methods afterResTypes_codeToAdd: again.
8This metaobject is implemented in Java.
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Listing 6. Algorithm FixMeta

1 Algorithm FixMeta(fullList , roundList)
2 infoList = empty list
3 for every metaobject in fullList {
4 call method afterResTypes_codeToAdd of the metaobject
5 passing an empty array as the second parameter.
6 This method returns a tuple. Add the slot
7 signatures of the second tuple element to
8 list infoList.
9 }
10 somethingChanged = true;
11 count = 1;
12 while somethingChanged {
13 newInfoList = empty list
14 // each 'while ' loop is a round
15 somethingChanged = false;
16 for every metaobject in roundList {
17 call method afterResTypes_codeToAdd of the metaobject
18 passing infoList as the second parameter.
19 This method returns a tuple. Add the slot
20 signatures of the second tuple element to a
21 list newInfoList.
22 if the code produced by this call are
23 different from the code produced by the
24 same metaobject in the previous round , stored
25 in infoList , set somethingChanged to true
26 }
27 infoList = newInfoList;
28 ++count;
29 if count > maxNumRoundsFixMetaDefaultValue { issue error; }
30 }

Fig. 8. Flow of control in algorithm FixMeta with two metaobjects

In this round, parameter infoList is an array of tuples, each one composed by the AST object
of an annotation and a list of base field and method signatures. The metaobject associated with
the annotation, first tuple element, generated the base fields and methods described in the
second tuple element. In the example, infoList refers to an array with two tuple objects, one
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for each metaobject. The second element of each tuple is an array with just one element, the
description of field fieldNum or numOfFields.
In this second round of calls to all afterResTypes_codeToAddmethods, the metaobjects can

adjust their generated code. The number of fields is that of the original prototype, one, plus all
the fields described in the list infoList. The resulting number is 3. There is a third round of
calls to all afterResTypes_codeToAdd methods. Now each method returns exactly the same
code as in the second round. Because the generated code is equal, the algorithm FixMeta ends.
The compiler makes a new round of calls even if just only one metaobject returns a code
different from that of the previous round.
The Cyan compiler checks whether the elements of the tuple returned by

afterResTypes_codeToAdd:

match. Thus, the compiler checks if the base fields and methods of the first tuple element are in
the second tuple element and vice-versa. Method afterResTypes_codeToAdd: should return
a tuple with empty strings, if used only for checks.

4.2.4 Interfaces of Phase semAn. The sole method of interface IAction_semAn returns a string
with code to be added after the annotation. If used only for checks, the method should return
an empty string. Some annotations are expressions, like compilationInfo of Listing 3. Their
associated metaobject prototypes should inherit from IAction_semAn.
Annotations associated with metaobject prototypes implementing interface

IActionVariableDeclaration_semAn

should be attached to local variable declarations. The sole interface method adds code after the
variable declaration and has access to the variable name, type, and expression used to initialize
the variable (if any).
Message passings are intercepted by metaobjects that implement interface

IActionMessageSend_semAn

The associated annotations should be attached to base methods. This interface is useful to
intercept message passings when the compiler finds an adequate base method. The metaobject
associated with the annotation, which is attached to a base method, may check the message
arguments, at compile-time, and replace the message passing by another expression.
For every message passing, the compiler collects the base methods that match it considering

the compile-time type of the message passing receiver. If this type is T, the compiler initially
collects the base methods in T. Then, the compiler collects the metaobjects associated with
these base methods implementing interface IActionMessageSend_semAn. The metamethods of
these metaobjects are called. There are three possibilities based on the number of metaobject
methods returning a non-empty code string:

(1) more than one. The compiler issues an error because there is an ambiguity here;
(2) exactly one. The returned code replaces the message passing. This replacement is visible

in the next compilation phase, afterSemAn;
(3) none. The same search for a base method is done in the superprototypes and superinter-

faces of T, in this order.
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The items above lead us to the conclusion that the order of the annotations of a prototype is
not important for interface IActionMessageSend_semAn. Metaobject replaceCallBy shown
in Listing 4 implements this interface.
The Cyan MOP offers a mechanism for introducing virtual methods in prototypes; that

is, methods that do not exist but whose existence is simulated by metaobjects. Whenever a
method for a message passing is not found, a metaobject can replace the message passing by
an expression. Therefore, a metaobject could simulate the existence of a large number of get
methods that return the values of virtual fields. The field values could be created on-demand or
retrieved from a database.
When the compiler analyzes a message passing in phase semAn, it first finds the type of the

receiver expression. Suppose it is T. If there is no adequate method for the message passing, the
compiler collects into a list all metaobjects that implement interface IActionMethodMissing_semAn
and whose annotations are in prototype T. This interface declares two metamethods, one for
unary and the other for keyword messages. Then, a metamethod of each metaobject is called.
The metamethod is declared in the interface and overridden in the metaobject prototype.
Each metamethod called may return code (an expression), as a string, to replace the original

message passing. Again, there are three possibilities based on the number of metaobject methods
returning a non-empty code string:

(1) more than one. The compiler issues an error;
(2) exactly one. The returned code replaces the message passing. This replacement is visible

in the next compilation phase, afterSemAn;
(3) none. The same algorithm is applied to the superprototype of T (implemented interfaces

are not taken into account).

Metaobjects whose prototypes implement interface IActionFieldAccess_semAn intercept
field access. This interface has a method called when the value of the field is retrieved and
another one called when the field is set. Each metamethod returns code that replaces the get
and set of the field. The annotation should be attached to the prototype field whose access is
intercepted.
There may be more than one annotation attached to a field whose associated metaobject

prototype implements interface IActionFieldAccess_semAn. In this case, the compiler calls
all appropriate metamethods. If more than one metamethod returns a non-empty code string,
the compiler issues an error.
Prototypes may have virtual fields that are used as the regular ones. This is achieved by

metaobjects whose prototypes implement interface IActionFieldMissing_semAn. Annota-
tions of these metaobjects should be attached to prototypes. If multiple metaobjects are entitled
to handle a missing field event, only one of them should return a non-empty code string.
Otherwise, the compiler issues an error message.
In phase semAn, the Cyan compiler resolve types in a method’s body in the textual order of

statement declarations. The metaobject associated with an annotation has access to the types
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resolved in lines that come before the annotation. This information can be used for checks or
code generation.
Metaobjects have access to Abstract Syntax Tree (AST) objects from parameters passed to

overridden interface methods and from the associated annotations. By calling methods of
AST objects, metaobjects have access to information on the current prototype, method, etc.
AST objects can be visited using the Visitor Design Pattern [GHJV95]. Every metaobject has
a method replaceStatementByCode for replacing a statement (which includes expressions)
by a code given as string. The statement is given as an AST object. As an example of the
use of this metamethod, the demonstration metaobject shout visits the AST objects of the
current prototype and replaces all strings by the equivalent ones in upper case. Because of the
safety features of the Cyan compiler, replaceStatementByCode can only be used to replace
statements of the current prototype.

4.2.5 Interfaces of Phase afterSemAn. The compilation phase afterSemAn comes after semAn.
In it, no code can be changed. Therefore, this is the ideal phase for checks because they will
not be invalidated by metaobjects that change the code already checked.
Inheritance should be planned [Blo18] because of the interrelationships among the methods

of a prototype, revealed by message sends to self. These relationships are one of the reasons
inheritance violates encapsulation [Sny86] — the subprototype designer should know internal
details of the superprototype methods.
Interface ICheckSubprototype_afterSemAn is used to partially solve this problem.
Annotations of metaobjects whose prototypes implement interface

ICheckSubprototype_afterSemAn

can only be attached to prototypes. Whenever the prototype is inherited, even indirectly,9 the
sole method of this interface is called. That is, the compiler calls the sole metamethod of the
interface overridden in the metaobject prototype. A parameter of the metamethod is the AST
object representing the subprototype inheriting the prototype with the annotation. Through it,
the metaobject can do checks. For example, the metaobject may require that an interface be
implemented only by prototypes that also inherit from another class, as done by a feature of
language Hack [Hac20].
A metaobject annotation whose prototype implements interface

ICheckOverride_afterSemAn

can only be attached to a base method. Whenever the base method is overridden, even
in a sub-subprototype, the compiler calls the metaobject metamethod that overrides the
sole ICheckOverride_afterSemAn method. The compiler passes, as an argument to this
metamethod, the AST object of the subprototype base method.
Interface ICheckDeclaration_afterSemAn is used for checks in phase afterSemAn. An-

notations associated with metaobjects whose prototypes implement this interface should be
attached to a declaration, which is a prototype, method, field, or local variable.

9If prototype C inherits from B that inherits from A, thus C indirectly inherits from A.
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Message passings can be checked in phase semAn using interface
IActionMessageSend_semAn

However, this is flawed because metaobjects can introduce new code in this same phase
and this new code will not be checked by the metaobject whose prototype implements
IActionMessageSend_semAn. The correct procedure for message passing checks is to make the
metaobject prototype implement interface ICheckMessageSend_afterSemAn. The metaobject
methods are called as described for interface IActionMessageSend_semAn except that methods
of all metaobjects are called, including those of superprototypes.

4.2.6 Interface for Metaobject Communication at Compile-Time. Metaobjects of the same pro-
totype whose prototypes implement interface

ICommunicateInPrototype_afterResTypes_semAn_afterSemAn

can communicate before phases afterResTypes, semAn, and afterSemAn. When analyzing
a prototype and before any of these phases, the compiler collects in a list all metaobjects
whose classes or prototypes implement this interface. Then, by calling a metaobject method,
overridden from the interface, it collects the objects each of these metaobjects want to share.
After that, the compiler calls another metaobject method with the list of shared objects.

4.3 The Cyan MOP and the Problems with Metaprogramming

This subsection shows how the Cyan MOP deals with the problems with metaprogramming
described section 2. The problem name is in boldface and a short description of it is in italics.

MessWithOthers A metacode in a file changes another source file.
Metaobjects can create new prototypes, each one in a new source file. This does not cause

this problem because it only occurs when there are two or more source files created by the
developer and one changes the other.
Ametaobject whose prototype implement interfaces IActionMessageSend_semAn or IActionMethodMissing_semAn

causes non-local changes. That is, a metaobject whose annotation is in prototype Pmay replace
a message passing that is in prototype Q. However, this is not a bad characteristic of the Cyan
MOP. The message passing is replaced to obey the semantics of the associated P method or the
virtual method. The replacement of the message passing in Q by a metaobject of P is expected.
The problem with MessWithOthers are the unexpected changes that the developer cannot
conjure up. Therefore, we consider that these two interfaces do not cause this problem.
A metaobject that does not implement the interfaces cited in the previous paragraph can

only replace or add code to its associated prototype. That is, a metaobject whose annotation is
inside a prototype can only replace or add code to this prototype. This is assured by several
mechanisms:

(a) the AST is read-only. Therefore, even if a metaobject has a reference to the AST object
representing a prototype that is in another source file, it cannot change it;

(b) metaobjects define methods that return source code as strings. For example, method
afterResTypes_codeToAdd: declared in interface IAction_afterResTypes return code
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of fields and methods to be added to the current prototype. There is no method in any
interface to add code to an external prototype;

(c) method replaceStatementByCode, described in subsection 4.2.4, asks the compiler to
replace a statement by a code given as a string. The statement is an AST object. This method
can only change the current prototype because there is no way of a metaobject whose current
prototype is P has a reference to an AST object representing a statement that is in another
prototype Q. That happens because some methods of the AST classes have security checks
that prevent access to private parts of other prototypes.

As an example, suppose the metaobject inside P has a field whose type is Q. Therefore it can
ask for the field type, resulting in the Q AST object. The metaobject can now ask for the AST
object of a public method of Q. This is fine. There is a method in the AST class representing
a Cyan method called getStatementList. If the metaobject in P calls this method on the Q
public method, it throws an exception. At the start of getStatementList there is a check that
compares the prototype of the Cyan method, Q, with the prototype in which the metaobject
annotation is, P. Since they are different, this method throws an exception. Note that is an
exception thrown at compile-time of the Cyan program being compiled and at runtime of the
metaprogram.
There is no need to put this type of test on all AST methods. For example, there are no checks

in method getStatementList of the AST class of Cyan statement while. If a metaobject has
a reference to an AST object representing a while statement, it has already passed a check
previously.

WhoDependsOnWho Metacode are not taken into account when the compiler builds the depen-
dency graph among source files.
Suppose a metaobject annotation is inside prototype P. Whenever the metaobject gets a

reference to another prototype, the compiler adds the dependency from P to the prototype in a
dependency table.10 This is made with checks at the start of several methods of the MOP library,
including AST methods.
For example, an environment object is passed as an argument to some metaobject methods.

This object has a method that searches for a prototype given its name as a string. If prototype
Q is found, the compiler adds the dependency from P, the prototype in which the metaobject
annotation is, to Q. As another example, the metaobject inside P may walk in its AST and, after
calling several AST methods, get a reference to another prototype R. The compiler will add the
dependency to the table. All AST methods that are related to dependencies between prototypes
have statements to add entries to the dependency table.

KnowsFriendsSecrets Metacode in one source file know private information of another file.
Metaobjects whose annotations are in a prototype have the same program view as this

prototype. This assures that a metaobject whose annotation is inside a prototype does not
know the secrets of other prototypes. This is enforced by two techniques:

10Currently, this table is not used by the compiler. It will be in future versions.
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(a) methods of the AST return more or less information according to who is asking for it.
The information degree varies to match the current prototype view of the program. For
example, class WrProgramUnit of the AST represents a prototype and declares a method
getMethodDecList returning the list of methods of the prototype. Suppose a metaobject
whose annotation is in prototype P sends message getMethodDecList to an AST object
representing prototype Q. This method takes an argument that is a compilation environment.
Through it, the method can identify prototype P. getMethodDecList returns a list of Cyan
methods that includes the Q public methods and: (a) the package11 methods of Q if P and Q

are in the same package; (b) the protected12 methods of Q if P is a subprototype of Q.
(b) methods of the AST throw exceptions if the metaobject is trying to retrieve private infor-

mation of other prototypes; that is, a metaobject whose annotation is in P tries to retrieve
private information of Q.
An example of that was given inMessWithOtherswithmethod getStatementList. Another
example is method getFieldList of WrProgramUnit. It also takes an argument that is a
compilation environment. If a metaobject whose annotation is inside a prototypes calls this
method of the AST object representing another prototype, it throws an exception.

The checks cited above are made with a compilation environment object of class WrEnv that
is passed as an argument to metaobject methods or retrieved from other metaobject method
arguments. It cannot be user-created because its constructor takes an object of a class hidden
to metaprogrammers. If a developer could create an object of WrEnv, she or he could build it to
falsify the original object. Hence, a metaobject whose annotation is inside P could call, without
errors, method getFieldList of a Q AST object because it pretended to be inside Q.

Compiler-Interactions Metacode interact with compiler low-level structures.
Metaobjects do not use the Cyan compiler data structures. They use wrapped versions of

these structures, including a wrapped version of the compiler AST. We consider that this
problem is addressed in Cyan for several reasons:

(a) the wrapped data structures are a simplified version of the compiler structures. Thus, the
developer does not need to know very complex structures. The wrapped AST classes mirror
the language features they represent. That means they are not highly subject to change.
They are modified only when the language change;

(b) the wrapped data structures are read-only. There is no way of crashing the compiler by
calling the wrong methods;

(c) metaobjects do not add code by handling the AST (calling its methods or changing fields).
Therefore, metaobjects cannot bypass a compiler check by adding code after the compiler
does that check.

WhoDidWhat The compiler does not link an inserted code to the metacode that made the insertion.

11A method preceded by the Cyan keyword package. It is visible in all package prototypes.
12Methods preceded by the Cyan keyword protected, visible in all subprototypes.
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Metaobjects never replace or add code to the base program directly. They ask the compiler to
do the changes in the source program. And, when the compiler does that, it keeps track of the
annotation associated with the metaobject that asked for replacement or addition of code. If
there is an error in the source code replaced or added by a metaobject, the compiler can point
out the line and the source file of the annotation associated with the metaobject.

OrderMatters The order metacode is called inside a source file changes metacode behavior.
For each prototype, the Cyan compiler processes the metaobjects in the textual order of their

annotations. To explain that, the term metaobject metaprototype will refer to the prototype
of the metaobject (it is in the metaprogram). In each compilation phase, for each prototype
and for each metamethod mm of each interface II of the MOP library of that phase, the Cyan
compiler calls metamethod mm of every metaobject of the current prototype. The calling order
is the textual order of the metaobject annotations in the source code of the current prototype.
Assume the metaobject metaprototype implements interface II.
If we can prove that the order of metamethod calls is not important, we can conclude that

the annotation order in the source code is also irrelevant. In the following paragraphs, we will
examine all interfaces and their methods to discover if the order of calls is important or not.
Metaobjects can generate new prototypes but these are created in a new file. Therefore,

their creation order is irrelevant. If two metaobjects try to create prototypes with the same
name, the compiler issues an error. The calling order of metaobject methods in phase parsing
is not important for two reasons: (a) metaobjects can add code which will be visible by other
metaobjects only in the next phase and (b) metaobjects can add information to declarations
(such as documentation) but this data cannot be read in phase parsing.
In phase semAn, metaobjects can only add code, in the current prototype, after the annotation.

The code added by other metaobjects in this phase will only be visible in the next phase,
afterSemAn. Thus, the calling order of the methods is not important concerning code generation.
The sole method of interface IActionVariableDeclaration_semAn can add code after a

local variable declaration. If several annotations add code to the same local variable declaration,
the code added follows the textual annotation order. However, this is not a serious problem
because the annotations and the added code are textually very close to each other.
Methods of interfaces IActionMessageSend_semAn, IActionMethodMissing_semAn, IActionFieldAccess_semAn,

and IActionFieldMissing_semAn replace a message passing or field access by some other
code. The calling order is not important because at most one metaobject can replace the message
passing or field access. If two or more try to do that, the compiler issues an error.
Methods of interfaces of phase afterSemAn do checks in an immutable program. Since they

cannot add code, the calling order of their methods is irrelevant.
A method of interface IAction_afterResTypes is used to rename methods. The order of

calls is not important because the compiler issues an error if two metaobjects try to rename the
same base method. Another metamethod of this interface adds statements at the beginning of
base methods of the current prototype. There may be two or more metaobjects that try to add
statements to the same base method. In this case, the textual order is important, the statements
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are added in the textual order of the metaobject annotations. If necessary, a metaobject may
demand it is the only one to add statements to a given method.
The other twomethods of IAction_afterResTypes, afterResTypes_codeToAdd: and runUntilFixedPoint,

work together. Algorithm FixMeta of Listing 6 calls method afterResTypes_codeToAdd: in
rounds. In each round, every method can view the information produced by all of the calls of
the previous round. Thus, the call order is not important.
Subproblem DifferentViews only happens in phase semAn. In this phase, a metaobject

knows the types of all expressions that come before its annotation in a method body. Hence, if
there are two annotations in the same method, the one that comes textually after has more
information than the first.
The information available to metaobjects, in phase parsing, cannot be changed by them and

therefore all metaobjects have the same program view. In phase afterResTypes, all methods view
the AST build in the previous compilation phase, resTypes. And afterResTypes_codeToAdd:

methods of metaobjects that participate in algorithm FixMeta view also what other methods
have produced in each round of the algorithm. Therefore, all of them share the same program
view. Some metaobjects chose not to participate in this algorithm because the code produced
by other metaobjects is unimportant for them. In phase afterSemAn, all metaobjets view the
AST produced in the previous phase. Therefore, all have the same program view.
The subproblem InvalidateChecks of OrderMatters happens only if a metaobject does

checks in compilation phases different from afterSemAn. This means the metaobject is poorly
designed, which is not a flaw of the Cyan MOP. Checks should be done in phase afterSemAn
when code is in its final form.

InfiniteMetaLoop Metacode can generate metacode that, in its turn, generate metacode, and so
on.
The Cyan MOP prevents this error by enforcing drastic rules: annotations added to the base

program, by metaobjects, in a compilation phase are only active in the next phase.

Nontermination Metacode may not finish its computation.
Metaobject methods may not finish their computations. An easy and costly solution to this

problem does exist: metacode would be called in a new thread and given a time limit for
execution. Each metaobject would supply to the compiler a maximum execution time, subject
to a limit given as a compiler option.

Nondeterminism Metacode is nondeterministic.
Metaobjects are regular Cyan objects which can interact with external libraries. Therefore

they can be nondeterministic.
Metaobjects can read and write to files, get the current time, call a random number generator,

interact with the network, and so on. That makes metaobjects nondeterministic. There is no
easy way to make them deterministic. That could only be done if they use a special language
in which any interactions with the world are prohibited. A restricted version of interpreted
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Fig. 9. Dependencies among prototypes

Cyan could be used for that. However, this would place such great limitations on metaobjects
that we prefer not to use this solution.

NoGeneratedCodeGuarantees Metacode may generate defective code.
Metaobjects in Cyan can produce defective code. However, the compiler will point out the

errors because, whenever code is added to a prototype, it is compiled again.

NoContracts The contract between the metacode and the base code is explicitly stated.
There is no way of specifying a contract between base code and metaobjects in the Cyan

MOP. Note that NoContracts is similar to the problem that motivated the creation of concepts
[GJS+06] for C++ templates (See subsection B.3). Concepts are predicates on generic prototype
parameters. They restrict what a parameter can be, like “parameter T should have a unary
method init”.
A solution to problem NoContracts would be to add a concept-like DSL to specify: (a) the

restriction a metaobject expect from the current prototype and (b) the code a metaobject should
generate. This DSL will certainly be more complex than concept DSLs because the diversity of
code generation and checking of metaobjects is much greater than that of generic prototypes.
Thus, we have chosen not to add this contract DSL to the Cyan MOP.

CircularDependency Metacode may depend on information produce or changed by other
metacode. This dependency relation may be circular.
Metaobjects cannot access any information produced by other metaobjects in phase parsing,

preventing this problem from occurring. In phase afterResTypes, circular dependencies are
dealt with algorithm FixMeta of Listing 6. This algorithm assures that all metaobjects that
participate in the algorithm have the same information on the current prototype. However,
FixMeta is not useful for some exotic metaobjects. For example, suppose a metaobject generates
a field for each prototype method and another generates a method for each field. This results
in an endless loop, FixMeta does not solve this problem.
FixMeta only considers information on the current prototype. There may be dependencies

among metaobjects associated with annotations of different prototypes as shown in the example
of Figure 9. Assume that, if annotation createMethod(Y) is in prototype X, the metaobject
adds to X the method
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func numMethodsY -> Int = numMet;

in which numMet is the number of methods of Y (a literal). In the figure, an arrow from prototype
X to Y means metaobject createMethod whose annotation is in X uses information about Y
(its number of methods). There is a circular dependency among the prototypes shown in
Figure 9. Each one depends on another prototype for generating code. Currently, a metaobject
whose annotation is associated with a prototype has a view of other prototypes, in phase
afterResTypes, that do not consider methods added in this phase. Therefore, in the current
compiler version, the createMethod metaobjects of prototypes A, B, and C would generate
incorrect code. In a future version of the compiler, methods added to a prototype in phase
afterResTypes will be visible to other prototypes in this same phase. This is the correct strategy
because other prototypes should know the final version of a prototype as soon as possible.
However, the problem would persist. If one of the prototypes of the figure, say A, undergoes
phase afterResTypes before the others, then metaobject createMethod associated with A will
generate wrong code: num will be 1 less than the real number of methods of B (the method
created by createMethod in B would not be considered).
Circular dependency among metaobjects of different prototypes in phase afterResTypes

could be addressed by extending algorithm FixMeta to deal with all prototypes of a dependency
cycle. But how to build this cycle? It could be the dependency graph built by the compiler,
before phase afterResTypes, based on the types used by the prototypes (considering every
type appearing outside method bodies in the prototype). This would not work in the example
of Figure 9. Metaobject createMethod adds a dependency from its current prototype and its
parameter. This dependency is not discovered by the compiler in phase resTypes because the
parameters to the annotations are just symbols, they do not represent the types with the same
name. The dependency would be discovered in phase afterResTypes during the execution of
algorithm FixMeta, when it should be added to the algorithm data. The dependencies added
during FixMeta execution could be removed in the next round of calls. Any language solution
to this complex mesh would make the Cyan MOP too complex for regular use.
There is no circular dependency in phase semAn because changes caused by metaobjects are

only visible in the next compilation phase. In phase afterSemAn, all metaobjects view the same
code and, therefore, there cannot be any circular dependency.
A metaprogramming system with severe restrictions on how it changes the code and does

checks will have few or none of the problems described in this section. This is not the case
with the Cyan MOP. It is powerful enough to implement complex metaobjects as demonstrated
in Appendix B which presents some non-trivial metaobjects that could not have been done in a
limited metaprogramming system.

4.4 Shortcomings of the Cyan MOP

A metaobject cannot generate code with annotations whose metaobjects generate code in the
same compilation phase. The metaobject must generate by itself all of the source code. As an
example, suppose a metaobject propertyAll takes pairs (name, Type) and generates fields
with that name and type and get and set methods for them. This metaobject cannot generate
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@property var Type name

for each pair, in phase afterResTypes, because metaobject property would be used only in the
next phase, semAn (when it does nothing). However, the generation of get and set methods
could be put in a library and imported by both metaobjects. This is how metaobjects can be
composed.
Some MOP features are missing in Cyan, as to intercept compiler error messages and code

generation. These features are planned to be added soon. Currently, there is no interface for
adding code to a subprototype whenever the current prototype is inherited. Although this would
be an intrusive feature, it may be added to the Cyan MOP.
Some metaobjects cannot be done with the Cyan MOP because metaobjects, in phase semAn,

cannot view the code generated by others. For example, suppose two annotations are inside
the same method. In phase semAn, a metaobject associated with one of them may generate “n
println;” in which n is the number of statements of that method. The other may generate
“let numStat = n;”. Each one will generate wrong code because it does not consider the code
added by the other, visible only in the next phase. This could be resolved if algorithm FixMeta
were adjusted to work in phase semAn. However, we think it would add a lot of complexity to
MOP in terms of the benefits it would bring.

5 Comparison with Related Work

This section presents some metaprogramming systems and how they are related to Cyan.
The first subsection describes mechanisms for code generation, the benefits and drawbacks
of each. Subsections 5.2 and 5.3 compare Cyan with runtime metaprogramming and static
analysis tools, respectively. Some metaprogramming languages and systems are presented in
subsection 5.4. They are analyzed, with relation to the metaprogramming problems of section 2,
in subsection 5.5. The last subsection presents some problems with the Cyan MOP.

5.1 How Code is Generated and Represented

Metaprograms generate code in many representations using several mechanisms [SBF15],
described next.

As text. Code is generated in string format. Metaobject mypropery of Appendix A exemplifies
how this works. The metaprogram does not usually check that the generated code is error-free.
Therefore, the code may have lexical, syntactic, and semantic errors. This is the mechanism
used by Cyan which will be compared with the following ones.

Handling of the program Abstract Syntax Tree. Code is generated by creating objects of the
AST representing it, if the compiler is implemented in an object-oriented language. Therefore,
the developer has to know a great number of classes (more than one hundred in Cyan). Code
generation is difficult because it demands the mapping, by the metaprogrammer, of human
legible source code into the creation of AST objects. AST handling has the advantage that
the metaprogram compiler catches usually all syntactic errors of the generated code. The
remainding errors, if any, are caught by the base compiler. If the metacode inserts the generated
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AST objects directly into the AST, the base compiler will not be able to point out the metacode
that generated the offending code. Cyan generates code as strings and any errors in them are
not caught either at compile-time or runtime of the metaprogram (metaobject code). However,
errors are discovered in the next Cyan compilation round of the base program. The compiler
will give precise error messages, pointing out exactly which annotation is associated with the
metaobject that produced the offending code.

Quoting. A special language syntax transforms text into AST objects. Therefore, the metapro-
gram handles text that is converted into AST objects. The later are passed to the compiler. The
quoting mechanism will be presented using examples in Converge [Tra08], a Python-based
language. A quasi-quoted expression [| code |] builds the AST of code. Inside code there
may appear annotation ${ code2 }meaning that code2 is to be inserted into code. Annotation
$< code3 > evaluates code3 at compile-time, generating an AST that replaces the annotation.
It is as if the result of the evaluation were inserted in the source code. Any variables visible
are renamed to ensure there is no variable capture from the environment. In the next example
[LS15], the AST of 5 is assigned to code in the first line. In line 2, code, an AST object, is used
twice to build the AST of a multiplication expression. Thus, square refers to the AST of 5 * 5.
In line 3, square is evaluated at compile-time, resulting in 25, assigned to result.

1 code := [| 5 |]

2 square := [| ${code} * ${code} |]

3 result := $<square > // 25

In Cyan, the result equivalent of quasi-quoting would be to use strings in metaobject methods.
The insertion of a quasi-quote into another, using [| ${ ... } |] in Coverge, is translated
into string concatenation in Cyan. Therefore, the two first lines of the above code in Cyan
would be

var String code = "5";

var String square = code ++ " * " ++ code;

The last line of the previous example demands the interpretation of square by the Cyan
interpreter, supplied as a prototype in package cyan.reflect. An alternative mapping of
this example is to use metaobject insertCode of Appendix B. Since the attached DSL code to
insertCode is interpreted at compile-time, there is no need of quasi-quotes.

1 @insertCode{*

2 var Int code = 5;

3 var Int square = code * code;

4 insert: "result = " ++ square ++ ";"

5 *}

The code this annotation produces is "result = 25;", inserted after the annotation. Using
the Cyan syntax, a quasi-quote with the contents “var Int n;” would be ambiguous because
it could represent the declaration of a field or a local variable. This is addressed by some
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metaprogramming systems by supplying several different kinds of quasi-quotes [BLS98] [Tra08].
There is no ambiguity in Cyan because generated code is represented as strings. Therefore,
"var Int n;" becomes a field if it is inserted outside a method, in phase afterResTypes, or a
local variable if it is inserted in phase semAn.
Quasi-quotes are, therefore, simulated with string handling in Cyan, which is much simpler

for two reasons. First, because it uses operations known by every programmer (string handling).
Second, there is no confusion between metacode with base code, the base code is wrapped in
strings and it is not an AST object. The downside of the Cyan approach is that any checks
are delayed until the compilation of the code produced by a metaobject method. This code is
inserted into a prototype which is compiled again and errors in code inserted by metaobjects
are detected. Code within quasi-quotes is checked at compile-time, although usually only for
syntactical errors.
The code snippets produced by metaobject methods, which are just strings, are not checked

when the method is running. Thus, the code below is perfectly valid in Cyan, even considering
dec is returned as the code generated by the metaobject method.

var String partial = "var Int n =";

var String dec = partial ++ " 0;";

In languages that use quasi-quotes, the equivalent code would cause a parsing error in line
1 because the literal string would be represented using quasi-quotes and the compiler would
check if this is a valid statement or expression. It is not because the expression assigned to n is
missing.

Macros. Macros in high-level languages were first introduced in Lisp [Har63]. In this language,
a macro is a function called at compile-time13 to produce code that then replaces the macro
call. This is the definition of “macro” used in this paper. Currently, there are more sophisticated
versions such that of Nemerle [SMO05], Rust [KN22], and Scala [Bur13].
Skalski, Moskal, and Olszta [SMO05] give an example of a for statement added to Nemerle

using a macro. The macro defines the syntax and how code is to be generated to a for statement.
Quasi-quotes are used to express the generated code.

macro for (init, cond, change, body)

syntax ("for", "(", init, ";", cond, ";", change, ")", body)

{

// generate code here using quasi-quotes

}

Macros are used for local changes only, a macro call is replaced by code. They are not
capable of the other code modifications and checks allowed by Cyan: add fields and methods to
prototypes, intercept several operations, and check the final prototype code.

13At compile-time means “when the code is compiled”, which may be at runtime of a previous existing program.
That is, a macro may be created at runtime and called using the Lisp function eval.
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Cyan does support macros which are metaobjects with most of the power of other kinds of
metaobjects. However, this feature is not discussed in this paper. Macros of Nemerle, Rust, and
Scala can be roughly simulated in Cyan by metaobjects whose prototypes implement interface

IActionMethodMissing_semAn

If the compiler cannot find an adequate method, a metaobject method is called. It can then
apply any transformation to the message passing parameters and produce any code. Just like
a macro whose syntax is that of a message passing. Metaobject grammarMethod presented in
subsection B.2 does just that.

Generic classes, functions, and prototypes. This encompasses C++ class templates [Str13] in
which a new class is created for each new instantiation of the class. That is, for each new set of
class parameters, a new class is created. This is also what Cyan does with generic prototypes.
This mechanism does not include generic classes of languages such as Java in which all generic
instantiations share the same class code. The C++ template mechanism offers a compile-time
Turing-complete functional language for template generation [Vel03]. In Cyan, metaobjects are
used for generating base code for generic prototypes. Metaobject insertCode of Appendix B,
for example, takes an interpreted Cyan code as attached DSL text, interprets it, and adds the
code it produces to the current prototype.

Specialized languages. Domain Specific Languages are used to generate code. AspectJ [KHH+01]
[Asp23] is a Java extension forAspect-Oriented Programming (AOP) [KLM+97]. In this paradigm,
code for an aspect of a program, like error handling and logging, is grouped and put in just
one place instead of being scattered in the program. In AspectJ, several operations can be
intercepted like method calls, field access, and creation of objects. This is specified through an
aspect language, a DSL, resembling Java. The AspectJ compiler, directed by user-code, can add
methods, fields, and constructors to classes and change inheritance and implemented interfaces.
Genoupe [DLW05b] [DLW05a] is a C♯ extension whose generic classes can make use of a

language for code generation. There are a foreach and if statements used to generate code.
In the example, adapted from [DLW05b], C declares a field for each field of S

1 class C(Type S) {

2 @foreach(F in S.GetFields ()) {

3 @F.FieldType@ @F.FieldName@;

4 }

5 }

Genoupe cannot add code to existing classes. It also does not guarantee the generated code
is well-typed, although it offers a high degree of type safety at compile-time.
Generators written in SafeGen [HZS05], a metalanguage for Java, produce only well-formed

Java code. SafeGen uses a theorem prover fed with first-order logical sentences representing
properties of the generated code. If the prover cannot assure the generated code is well-formed
Java code, an error is issued. SafeGen statements #foreach and #when are used for repetition
and decision, much like the equivalent statements of Genoupe.
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CTR [FCL06] extends C♯ with transformers which are constructs combining patterns and
generation templates. Whenever a transformer matches a code, like a class, the generation
template is applied. It can, for example, add a method to the class or create new classes. The
well-formedness of the generated code is checked both by CTR and the compiler. In Cyan, just
the compiler checks the generated code.
Generic classes in MorphJ [HS11] specify how to build other classes based on the fields and

methods of their type parameters. This technique is called morphing. The classes instantiated
from the same generic class may have different structures. MorphJ generic classes are checked
without the knowledge of their real parameters. Hence, not well-formed code is detected
early. The language offers positive and negative patterns for code generation. In the following
example [HS11], class Logging<A> extends A and declares a method for every method in A

that matches the pattern R meth (Y). R and Y can match any non-void type and meth, any
identifier. The Logging<A> method calls the superclass method and prints a message.

1 class Logging <class X> extends X {

2 <R,Y*>[meth]for(public R meth (Y) : X.methods)

3 // method below is added to class Logging <X>

4 public R meth (Y a) {

5 R r = super.meth(a);

6 System.out.println (" Returned: " + r);

7 return r;

8 }

9 }

MorphJ cannot add code to existing classes, it can only create new classes.
Trait functions in the model MTJ [RT07] take parameters and are composed of requires and

provides clauses. A trait function is called on a class when real arguments are supplied. Then
the fields and methods of the provides clause are added to the class. The requires clause
impose constraints on the real arguments. The calling of a trait function works similarly to an
annotation in Cyan whose metaobject adds fields and methods to the current prototype. PTFJ
[MS12] extends MTJ with patterns borrowed from MorphJ. Miao and Siek [MS14] extend PTFJ
introducing pattern-based code generation at the statement level. That is, method statements
can be generated based on pattern matching. For example, a statement is generated only if a
class has a given method.
cJ [HZS07] is a Java extension with predicates on the type parameters of generic classes.

A predicate works as a static if for code generation. For example, a method is added to the
generic class only if the parameter X is subclass of class Y. The type-checking of a generic class
is modular, it can be made before any instantiations.
Cyan has none of the safety guarantees of Genoupe, SafeGen, CTR, MorphJ, or MTJ. Metaob-

jects can generate code with not only type errors but also with lexical and syntactical errors.
However, the creation of new classes in these languages can be emulated in Cyan using generic
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prototypes. Metaobjects have access to the parameters of a generic prototype and can use them
to generate code as in prototype Tuple of Listing 2. Some safety guarantees would result from
the use of metaobject concept of subsection B.3. This metaobject can be used to check if the
arguments to a generic prototype obey predicates, thus preventing future compilation errors.
Identifiers starting with a lowercase letter are not considered types when passed as a param-

eter to a generic prototype. Therefore they can be used to give information to metaobjects. For
example, a metaobject associated with prototype MyList could create a list optimized for space
when instantiated with identifier space as in MyList<Int, space>. Hence, generic prototypes
work like functions that take arguments and return a type.

Other Mechanisms. MetaFJig★ [SZ13] allows the combination of classes by a set of composition
operators to support active libraries. A customized version of a class is created by composing
other classes and by calling methods that return classes. Since a class may have nested classes,
a customized version of a library can be created. MetaFJig★ assures that errors are never caused
by already compiled metacode. The MOP of Cyan has the power to generate prototypes at
compile-time. Thus, it has the power of creating customized libraries of prototypes. However,
there are neither static guarantees nor a DSL to help in this job.

5.2 Runtime Metaprogramming

Iguana/J [RC02] supports dynamic adaptation of behavior of classes and objects through
protocols. The operations that can be intercepted are object creation and deletion, method call,
method dispatch, method execution, and field access. Reflex [TNCC03] is a Java extension that
also supports behavioral reflection by modification of classes at loading time. Unlike Cyan,
Iguana/J and Reflex support only runtime metaprogramming and they do not support structural
changes like the addition of methods to classes.
Introspective reflection happens when a program can observe itself, discover its own structure.

A language supports a kind of reflection called intercession if a program can change itself.
Smalltalk [GR83] [NDP09] has a runtime Metaobject Protocol based on metaclasses, which
are the classes of classes. Almost everything in Smalltalk is an object, and every object is an
instance of a class. A class is also an object, an instance of its metaclass. The Smalltalk MOP is
fundamentally different from that of Cyan because it supports introspective reflection but not
intercession. A Smalltalk program can change itself at runtime using methods inherited from
fundamental classes such as Behavior which are outside of the MOP.
Metaprogramming in Python 3 [Ram15] is supported by a MOP and other language features.

Every class has a single metaclass that can modify its class. For example, it can add fields
and methods to the class. Python metaprogramming has very different characteristics when
compared with Cyan.

(a) Each class has only one metaclass in Python. This limitation drastically reduces the com-
plexity of metaprogramming in Python and, at the same time, limits its usefulness. The
equivalent restriction in Cyan would be to allow just one annotation to each prototype.
If this were the case, some of the problems described in section 2 would not exist such as
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OrderMatters, InfiniteMetaLoop, and CircularDependency. They only exist if there is more
than one metacode acting on the same code;

(b) Annotations in Cyan can be expressions. Code can be added after an annotation inside a
method. In Python, there is no similar functionality;

(c) Metaobjects in Cyan have access to the AST of the current prototype. In Python, the AST is
not readily available. To obtain it, one has to get the bytecodes of a class or its source code
and then built the AST;

(d) A metaobject method in Cyan can be called whenever a prototype is inherited or a base
method is overridden in a subprototype. Python does not have a similar feature;

(e) Cyan supports a compile-time MOP and Python, a runtime MOP. Hence, Python can change
classes with information only available at runtime. Hence, errors in metaprogramming are
only discovered at runtime too.

5.3 Static Analysis Tools

Static analysis tools, such as Spotbugs [Spo20] for Java and PMD [PMD20] for multiple lan-
guages, work by traversing the AST of a program. They use rules and patterns to detect
performance problems, errors, vulnerabilities, code style, and code quality issues. The function-
ality of static analysis tools that depend on the AST of a single source file can be implemented
by metaobjects in Cyan. This is true because, in phase afterSemAn, metaobjects have access
to the AST of the current compilation unit, which includes the current prototype. And the
AST will not be changed by metaobjects anymore. However, the Cyan MOP does not support
any mechanism for metaobjects associated with annotations of different source files to share
information. That would be unsafe since the order of compilation of source files is not fixed.
STLLint [GS06] is a static checker for C++ software libraries. It considers the semantics of

the library instead of the semantics of the language. STLLint can detect that, in a method call,
a wrong parameter will cause a runtime error. An example of error detection, detected by
STLLint, is an attempt to dereference a past-the-end iterator. A metaobject whose prototype
implement interface ICheckMessageSend_afterSemAn intercepts message passings and can
check its arguments. The metaobject has access to the AST of the method with the message
passing even when the metaobject annotation is in a different source file. Therefore, the Cyan
MOP can do some of the checks of STLLint.

5.4 Compile-Time Metaprogramming

The prime example of a Metaobject Protocol is that of CLOS [KdRB91] [KAR+93] [Pae93]
[BGW93] [DG87], an extension of Common Lisp [Ste90] with features for object-oriented
programming. The CLOS MOP acts at runtime, allowing the intercepting of several operations:
object creation, allocation of memory, calculus of superclass precedence,14 method calls, field
access, and many more. The MOP of this language uses metaclasses which are the classes of
classes and methods,15 which are objects too. By using a user-made metaclass for a class we
14The superclasses have to be ordered because the language supports multiple inheritance.
15CLOS have both methods and generic methods. To our goals, it is not necessary to distinguish them.
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change its expected behavior. For example, a metaclass can introduce a field into a class that
keeps how many objects were created. The method that creates instances of the class may
increment this field every time it is called.
OpenC++ [Chi95] is a C++ extension in which metaclasses for classes and methods are given

the opportunity of changing the AST after parsing. A metaclass for a class C may intercept
method calls whose receivers have type C. The method call may, after the interception, be
changed or replaced. The MOP of OpenC++ also allows interception of variable declarations,
creation of objects, and reading and writing in fields.
OJ [TCIK00] [Tat99] is a Java extension in which a class may be associated with a user-

defined metaclass. Methods of the metaclass have the opportunity of changing the AST. For
example, a method called translateDefinition of a metaclass may add methods to the class.
expandFieldRead can change the read of a class field. The user-defined metaclass can also
define methods for intercepting object creation, array allocation, writing to fields, method calls,
and casts to the class.
Languages Xtend [Xte20], Groovy [K0̈7], and Nemerle [Nem18] [Ska05] support compile-time

metaprogramming without a Cyan-like Metaobject Protocol. We will say that these languages
support metaprogramming features. They share many similar characteristics, described below,
and therefore will be considered together.

(a) annotations are attached to classes, methods, and other declarations;
(b) an annotation is linked to a Processor Class (PC) that can implement interfaces and define

methods that change the compilation;
(c) methods of the PC are invoked in several phases of the compilation, like before parsing,

after parsing, before typing members (similar to afterResTypes of the Cyan compiler), after
semantic analysis, during code generation, etc;

(d) methods of the Processor Class have parameters that represent language elements that can
be changed at compile-time. For example, the AST object of the annotated class or method
is passed as an argument. Methods of the PC can, using these AST objects, add methods to
an annotated class, change inheritance, add statements to an annotated method, change
method statements, and so on. Any AST object reachable from the method arguments can
be changed. Therefore, a method can be added to a class that is not annotated or directly
related to the annotated class. The class may be, for example, just the type of a parameter
of a method accessible to the PC method;

(e) a method of the Processor Class that overrides an interface method is used in the compilation
phase associated with that interface (much like Cyan). However, there is no order among
the classes or the annotations of a class. Consequently, the view of a class by methods of a
PC is not well-defined.

A compiler plugin is composed of metacode called in hooks of a language’s compiler. These
plugins change the compilation process and, therefore, add compile-time metaprogramming
features to the language. The difference, in usage, between the terms compiler plugin and
metaprogramming is the emphasis in the implementation aspects of the first and conceptual
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aspects of the later. Languages Scala [ST20], Java [Ora23], X10 [NS07], Kotlin [Kot20], Type-
Script [typ20], and Rust [Rus20] support compiler plugins. Java annotation processors [Dar06]
are compiler plugins for Java that allow checks but not code modifications. They are used,
for example, for implementing pluggable types [che18]. Project Lombok [Kim10] is a Java
annotation processor whose supported annotations can add code to classes because it uses
non-supported downcasts. Compiler plugins will not be discussed in depth in this paper because
there is a shortage of good documentation about them. However, languages whose compil-
ers accept plugins have all of the main characteristics of languages supporting compile-time
metaprogramming without a Metaobject Protocol, discussed above.
BSJ [PS11] (Backstage Java) supports metaprogramming without a Cyan-like MOP. Like

Xtend, Groovy, and Nemerle, the AST is handled directly. Unlike these languages, BSJ was
created to prevent some common problems with metaprogramming. Therefore,

(1) the language prohibits non-local changes. A metacode associated with a class can only
change the class, a metacode inside a method can only change the method;

(2) the compiler detects conflicts between different parts of the metaprogram, like two meta-
codes trying to add code at the start of a method. Depending on the order of insertion, the
results would be different;

(3) there is a mechanism to give the order of execution of the metacodes. The compiler
creates a dependence graph based on directives #target and #depends of metacodes. The
metacode of a target is executed before its dependents and it can view the changes made
to the AST by them. This is complex because a metacode can create itself metacode.

Metaprogramming extensions are frequently implemented using a non-extended language,
which is called the base language. The former are implemented in terms of the later leading to
the conflating of both. Lamping, Kiczales, and Chiba [CKL96] give an example: a metaclass adds
a history field to a class and generates code that intercepts all field accesses that are recorded
in the history field. The extension, also called the implemented level, has objects with field
access history. The implementing level is the base language, which does support field access
history. There are two problems with that caused by the conflation of both levels. The first is
that users of the class will view the history field because the conflation mixes the original
fields, the implementing level, with the extended fields, the implemented level. In most cases,
this field should not be visible since it is just an implementation scheme. The second problem is
that the metacode translating the implementor level into the implementing level also mixes up
both levels. In this example, a careless code that records field accesses into history would also
record the accesses to this field, resulting in an infinite recursion. The meta-helix architecture
[CKL96] separates two or more levels of implementation automatically: the implementing level
does not mix up with the implemented level. This prevents the problems with implementation
level conflation.
In Cyan, there is a conflation of levels, which are not automatically separated from each

other. However, metaobjects can differentiate fields and methods added by metaobjects from
the original ones:
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(a) in phase afterResTypes, the signature of added fields and methods are passed as parameters
to method afterResTypes_codeToAdd;

(b) in phases semAn and afterSemAn, an AST object representing a field or method has a
method that returns true if the slot was created by a metaobject. This is also true for
statements, including expressions, in phase afterSemAn.

5.5 Metaprogramming Systems and their Problems

This subsection discusses the metaprogramming problems of section 2 that occur in languages
with metaprogramming powers similar to Cyan and, occasionally, with other languages. Lan-
guages with more limited capabilities have, because of this lack of power, fewer problems:

(a) if the language generates code using class patterns, it cannot have any of the problems.
Usually, a language use patterns and some other form of code generation and it may have
some of the problems;

(b) languages supporting a single metaclass for each class cannot have the WhoDidWhat,
OrderMatters, InfiniteMetaLoop, and CircularDependency problems because they only exist
if there is more than one metacode acting on the same code;

(c) runtime metaprogramming cannot have the problems associated with compilation like
WhoDependsOnWho, Compiler-Interactions, and CircularDependency;

(d) some languages allow the interception of operations like object creation and message
passing but not the addition of code. Problems MessWithOthers and OrderMatters cannot
occur with them.

The problem name is in boldface and a short description of it is in italics.

MessWithOthers A metacode in a file changes another source file.
Languages OJ, Xtend, Groovy, and Nemerle allow non-local changes by AST handling. CLOS,

OpenC++, and BSJ limit the changes to the scope of the metaclass or metacode. Cyan addresses
this problem by a series of mechanisms, a metaobject can only change external files if the
change is expected.
In AspectJ, cross-cutting concerns of a program are codified in one or more aspect language

source files. Therefore, these files may change several other files. This is the expected behavior
because, by definition, some program features are grouped into aspect language files. Anno-
tations of languages supporting metaprogramming are inside regular source files. If they are
allowed to change other source files, the developer may not be aware of which files will be
changed. And which annotations of other files will change a given source file. Unlike AOP,
which uses a static aspect language, the metacode associated with an annotation decides the
source file it will change at runtime (runtime for the metaobject, compile-time for the base pro-
gram). The source files changed could even vary from compilation to compilation. We conclude
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that non-local changes, made by metacode, is justified for AOP but not for metaprogramming
with annotations.

WhoDependsOnWho Metacode are not taken into account when the compiler builds the depen-
dency graph among source files.
In OpenC++, metacode associated with a class does not have information on other classes. In

all other languages with metaprogramming features, the dependencies caused by metacode is
not computed by the compiler. Cyan stores the dependencies in a table and, therefore, addresses
this problem.

KnowsFriendsSecrets Metacode in one source file know private information of another file.
We are unaware of any language other than Cyan that: (a) supply AST objects to metacode

and (b) limits the visibility of the AST objects by security checks.

Compiler-Interactions Metacode interact with compiler low-level structures.
Compiler plugins and languages with metaprogramming features strongly depend on internal

compiler details. They have all of the Compiler-Interactions problems. The OJ MOP permits
direct changes in the AST although it supplies a simplified version of the AST classes to the
metacode. Cyan metaobjects view restricted and read-only compiler data structures, thus
addressing this problem.

WhoDidWhat The compiler does not link an inserted code to the metacode that made the insertion.
Converge [Tra08] tracks who produced which code to issue precise error messages. It goes

beyond Cyan in two aspects: (a) every bytecode16 knows its origin, which can be used in
runtime error messages, and (b) an AST node can be associated with more than one location (an
error may be associated with more than one source). Cyan keeps track of which metaobjects
did what.

OrderMatters The order metacode is called inside a source file changes metacode behavior.
This problem occurs in all languages that allow direct handling of the AST:

(a) a metacode views the changes made by metacode executed before it. If the metacode call
order is changed, the view is changed too;

(b) usually, there is no way of specifying that, after a certain compilation phase, the AST is
read-only. Therefore, checks made by a metacode may be invalidated by code added by
other metacode.

In AspectJ, a keyword may declare the execution order of the metacode. In BSJ, metacode may
declare its dependencies. A metacode with clause #depends label is only executed after a
metacode with a #target label clause. The later metacode can view the changes made by the
previous one. Cyan addresses this problem except in two cases: (a) code addition at the start of
base methods (the addition is made in annotation order) and (b) in phase semAn, metaobjects

16Source code is translated into bytecodes of a Converge VM.
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whose annotations come later view a more detailed AST of the statements that come before
(types are resolved).

InfiniteMetaLoop Metacode can generate metacode that, in its turn, generate metacode, and so
on.
Any sufficient powerful metaprogramming system has this problem, as CLOS and OpenC++.

If metacode can generate metacode that is analyzed in the same compilation phase, then infinite
loops may arise. Cyan addresses this problem because: (a) annotations inside code that was
generated by metaobjects are only active in the next compilation phase and (b) algorithm
FixMeta of subsection ?? always finishes its execution.

Nontermination Metacode may not finish its computation.
SafeGen, MorphJ, and Meta-traits [RT07] ensure termination of code generation [SZ13].

In general, the termination of code generation is guaranteed only if the generated code is
composed of code patterns or the metacode is limited to a few kinds of statements. Cyan does
not address this problem.

Nondeterminism Metacode is nondeterministic.
Every metaprogramming system that allows the use of external code is nondeterministic

because this code can, for example, access a file. Therefore, only very limited systems, as C++
templates, are deterministic. Genoupe [DLW05b] uses memoization to evaluate expressions
at compile-time in a class generator. Thus, two identical expressions always return the same
value, even if they return a random number. However, this does not prevent nondeterminism
because a class generator may call code that returns a different value in each compilation, even
with the same parameters to the class.

NoGeneratedCodeGuarantees Metacode may generate defective code.
Only a few languages offer a high degree of safety in code generated at compile-time: Genoupe,

SafeGen, CTR, and MorphJ. They are all pattern-based. DynJava [OMY01] is a Java extension
that supports quasi-quotes with information on the context in which they can be used. The
context includes the name of the base class, the local variables, the fields and methods, and so
on. These typed quasi-quotes and rules of the language assure that code produced at runtime
is type-safe. Cyan offers no guarantees in relation to the generated code.

NoContracts The contract between the metacode and the base code is explicitly stated.
SafeGen arguments to metacode may be restricted by predicates. For example, a metacode

can accept only non-abstract classes as arguments. The pattern in a transformer of CTR limits
the classes it can match, therefore working as a contract between meta and base code. The
requires clause of a trait function of model MTJ imposes constraints on real arguments
and the provides clause supplies the code added to a class. MTJ has the best solution to the
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NoContracts problem. Metaobject concept of subsection B.3 can specify a contract between
metacode and the base code. Since its use is optional, Cyan does not enforces this contract.

CircularDependency Metacode may depend on information produce or changed by other
metacode. This dependency relation may be circular.
Circular dependency occurs in compiler plugins and language with metaprogramming fea-

tures. In BSJ, the execution order of metacode may be specified. This does not solve this problem
because there may be no correct order of execution — remember example with metaobject
addFieldInfo in subsubsection 4.2.3. Cyan addresses this problem in all but one case: metaob-
jects associated with several prototypes in phase afterResTypes. A solution to this case would
demand the extension of algorithm FixMeta of Listing 6 to several prototypes, a complex
solution for a not-to-common problem.

6 Conclusion

The Cyan MOP combines a full MOP, like that of CLOS, with metaprogramming features of
recent languages such as Groovy and BSJ. It addresses total or partially the metaprogramming
problemsMessWithOthers,WhoDependsOnWho, KnowsFriendsSecrets, Compiler-Interactions,
WhoDidWhat, OrderMatters, InfiniteMetaLoop, Nontermination, and CircularDependency. The
Cyan MOP fails in Nondeterminism, NoGeneratedCodeGuarantees, and NoContracts. These
problems are not addressed by any metaprogramming system using an irrestrict metalanguage.
The more freedom to generate code, the more difficult it is to solve these problems.
The design of a metaobject class or prototype in Cyan starts with the choice of the interfaces

it should implement. The interfaces are chosen to match the goals of the metaobject. Therefore,
the metaprogrammer, guided by the goals, make the most important decisions before starting
coding. In each compilation phase, metaobject methods ask the compiler to add code. As a
result, the metaprogram acts passively in relation to the compiler, who is in control of the
execution flow of the metaprogram. This architecture makes it relatively easy to build metacode
when comparing with other metaprogramming systems with the same powers. In the later
ones, the decisions are taken at metacode runtime with the help of the original compiler data
structures.
The compile-timeMetaobject Protocol of Cyan effectively allows the extention of the language

with new functionality, brought to life using annotations. Metaobjects can be used to: code
testing, optimize code, log events, document code, define embedded DSLs, support concepts
for generic prototypes (subsection B.3), enforce code style, associate metadata to declarations,
generate boilerplate code, assure static properties of prototypes (as immutability), support
object replication in distributed systems, evaluate code at compile-time, and implement Design
Patterns.
The Cyan MOP supports six kinds of metaobject annotations. Only the most important of

them was described in this paper. The other annotation kinds are: (a) literal numbers ended
by an identifier (like 101bin or 0AH2_Hex), (b) literal strings starting with an identifier (like
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xml"<s>XML code</s>"), (c) macros (each start with an identifier after which any syntax is al-
lowed), (d) annotations to types that implement pluggable types [Bra04] [che18] [PAC+08] (like
String@regex("a*[A-Z]") or Char@letter), and (e) Codegs (code + eggs), visual metaobjects
that demand a plugin to an IDE17 (an annotation @color(red) allows one to choose a color
using a menu, during editing time). The metaobject classes or prototypes of all metaobject
kinds can implement most interfaces of subsection 4.2. For example, the metaobject of a number
annotation, like 101bin, could add fields and methods to the current prototype (it does not). It
certainly generates number 5 as code in phase semAn.
There are several planned future works for the Cyan MOP. One of them is to allow metaob-

jects to change the original source files, if they ask for that. Other future work is to support
variable ownership like language Rust [KN22]. The Cyan compiler is available for download at
cyan-lang.org. There one can find the language manual, a complete description of the Cyan
MOP, and a list of around one hundred metaobjects with examples.
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A Metaobject myproperty Implemented in Cyan

package main

import meta

import java.lang

import java.util

object CyanMetaobjectMyProperty

extends cyan.reflect.CyanMetaobjectAtAnnot

implements cyan.reflect.IAction_afterResTypes

/* Cyan do not support enum types yet. Therefore, strings

are used in the second and third parameters in the

'super init:' message passing

*/

func init {

super init: "myproperty", "ZeroParameters", [ "field" ]
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}

override

func afterResTypes_codeToAdd:

ICompiler_afterResTypes compiler,

Array<

Tuple< WrAnnotation,

Array<ISlotSignature>

>

> infoList

-> Tuple<String, String> {

// cast a Java value of class IDeclaration to

// the Java class WrFieldDec

var WrFieldDec field = JavaCast<WrFieldDec>

asReceiver: getAnnotation getDeclaration;

var String fieldName = field getName;

var nameUpper = (fieldName[0] toUpperCase) ++

(fieldName substring: 1);

var String ivTypeName = field getType getFullName;

var String methodGet = " func get$nameUpper -> $ivTypeName ";

var String methodSet = " func set$nameUpper: $ivTypeName other ";

var methodsSignature = "$methodGet;\n $methodSet; ";

var methodsCode = "$methodGet = $fieldName;\n" ++

"$methodSet { self.$fieldName = other; }\n";

return [. methodsCode, methodsSignature .];

}

override

func runUntilFixedPoint -> java.lang.Boolean = false;

// methods that override methods of interface IAction_afterResTypes

// go here. These methods do nothing
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end

B Metaobjects in Action

Metaobjects can generate new code and do checks in a program, two activities that pervade all
software domains. It is therefore not a surprise that the Cyan MOP is used in several areas with
an enormous diversity of objectives. More than one hundred metaobject classes and prototypes
were created for a variety of goals. To show the power of the Cyan MOP, we will present some
of the most important metaobjects in the next subsections.

B.1 Metaobjects in Interpreted Cyan

A metaobject prototype, after successfully compiled, should be put in a special directory of
a package. To use the metaobject, a compilation unit18 imports that package. To streamline
this process, package cyan.lang supplies some metaobjects that accept attached DSL code in
interpreted Cyan. For example, annotation onOverride takes an attached DSL code that is run
whenever the associated method is overridden in a subprototype.

@onOverride{*

if (method getStatementList:

env) getStatementList size < 10 {

metaobject addError:

(method getFirstSymbol: env),

"method test should have at least 10 statements"

}

*}

func test {

}

In this case, the interpreted Cyan code demands that the overridden method has at least
ten statements. Each metaobject of cyan.lang accepting interpreted Cyan code as attached
code has pre-defined variables like method, env, and metaobject in this example. There are
variables for each parameter of the metamethod used (as method) and for the current metaobject
(metaobject) and compilation environment (env).
Package cyan.lang has more complex metaobjects whose attached interpreted Cyan code

can do multiple tasks like add fields and methods to the current prototype, communicate with
other metaobjects, create new prototypes, do checks in phase afterSemAn, and so on. The
interpreted Cyan code can be put in files and loaded by metaobjects, thus reusing them. As a
last example, Listing 7 shown anannotation that inserts 9 methods in the current prototype
whose names run from power_2 to power_10. The insert: method accepts two arguments:
the signature of a method and its full definition.

18A compilation unit is composed of a prototype and its import declarations.
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Listing 7. Annotation insertCode adds methods to the current prototype

1 @insertCode{*
2 // adds to the prototype functions like
3 // func power_num: Int n -> Int = n*n ... *n;
4 // "= $s;" is equal to "= " ++ s ++ ";"
5 for num in 2..10 {
6 var sig = "func power_$num: Int n -> Int ";
7 var s = "n";
8 // ++ is concatenation of strings
9 for p in 2..num {

10 s = s ++ "*n"
11 }
12 insert: sig,
13 sig ++ "= $s;"
14 }
15 *}

B.2 Metaobject grammarMethod

This metaobject simulates the existence of a method whose keywords are given through a
regular expression specified in an annotation attached to a method. That creates all virtual
methods that match the regular expression; that is, methods whose keywords match those of
the regular expression. Calls to these methods are redirected to the annotated method.
In the next example, annotation grammarMethod is attached to method meet of Schedule.

Its attached DSL specifies a keyword pattern using a regular expression. Symbols ?, *, and +

mean that the preceding expression is optional, can be repeated zero or more times, and can be
repeated one or more times, respectively.

object Schedule

@grammarMethod{*

(name: String (at: String)? (with: String)* )+

*}

func meet: Array<Tuple<String,

Union<some, String, none, Any>,

Array<String>>> p {

// elided

}

end

Message passings to expressions of type Schedule that do not match any methods are matched
against the regular expression. If there is a match, method meet: is called passing the argu-
ments packed as a single parameter. The following is a single message passing intercepted by
metaobject grammarMethod, which replaces it by an expression that packs the arguments and
calls method meet:. Since the language is prototype-based, prototypes are objects that can
receive messages.
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Schedule name: "Kandinsky" at: "Garden" with: "Matisse"

name: "Frida" with: "Picasso" with: "Mondrian"

name: "Leonardo";

The arguments are packed in an array of tuples, in this example. There are rules to discover
the type of the annotated method parameter, which depends on the regular expression. The
metaobject will tell the correct type if a wrong one is given.
A functional metaobject is any metaobject whose class or prototype implements interface

IActionFunction and declares an eval method. In the attached DSL to a grammarMethod

annotation, a list of functional metaobjects may be given after the regular expression. Method
eval of each functional metaobject is called passing as parameter a tuple consisting of the
receiver expression and the message, two AST objects that describe completely the original
message passing.
Prototype Out of package cyan.lang has a virtual C-like method printf: which takes a

format string followed by parameters to be printed. If the first parameter is a literal string, a
functional metaobject checks if the parameters match the string. If not, a compile-time error is
issued.

B.3 Metaobject concept

Concepts were devised to help the compiler issue clearer error messages in the instantiation
of a template class in C++. Gregor et al. [GJS+06] proposed this feature for the language C++,
although it has not been accepted yet.19 Concepts are predicates on template/generic parameters.
They are implemented in Cyan using metaobject concept, without any help from the language
itself. The DSL code attached to the annotation specifies the restrictions that the generic
parameters should obey. In the example that follows, T is required to define three methods:
unit, *, and inverse, with the given signatures.

@concept{*

T has [ func unit -> T func * T -> T func inverse -> T ]

*}

object GroupList<T> ... end

The DSL of the code attached to the concept annotation has statements for requiring that a
prototype inherits another, a prototype implements another interface, that a parameter is an
interface or a non-interface, a prototype declares a set of methods (used in the above example),
a prototype belongs to a set of prototypes, and the negation of every of these statements. There
are two statements that are not restrictions on parameter types: one loads a statement list from
a file and executes them and the other creates test files. Both use special package directories
managed by the Cyan MOP. The environment object and the restricted compiler object, passed
as parameters to interface methods described in subsection 4.2, have methods to read and write
to files of these special directories. Each Cyan package can have the directories --data (for
19Concepts may be added to the upcoming language version.
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DSL code like those of metaobject concept), --test (for tests), and others not described in
this paper.

B.4 Metaobject in the Cyan Libraries

Package cyan.lang is imported by every Cyan source file and defines prototype Any, the
top-level prototype, generic prototypes for tuples, unions, and anonymous functions, the
Array<T> prototype, and all basic prototypes such as Int, Char, and String. Metaobjects are
used extensively in this package. Since there is a large interaction between it and the Cyan
language, we can assure that not only package cyan.lang but also the Cyan language would
be very different without the Cyan MOP. A small list of metaobject use by this package follows.
Metaobjects check that methods eq: and neq:, for testing object references, are only defined

in Any and basic types. Metaobjects create fields and methods for instantiations of the generic
prototypes Function and Tuple, with any number of parameters. The code varies with the
number of parameters and methods such as == are added to the code of an instantiation of
Tuple based on the tuple elements. Method sort is inserted in an instantiation Array<P>

of Array if P defines a method <=>. Prototypes of basic types inject code into their Array
instantiations. As a result, there is a method sum that returns the sum of all elements of an
object of Array<Int>. Method isA: tests if the receiver object is an instance of the parameter.
A metaobject tests whether the argument is really a prototype. Metaobjects of annotations
attached to method == of Any check whether the argument is compatible with the receiver. For
example, it is a compile-time error to compare an Intwith a Char because the result will always
be false. Another metaobject demands that, if == is overridden in a subprototype, hashCode
has to be overridden too. And yet another metaobject generates code for testing the overridden
method. This code is put in a special directory of the package.
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