
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Issues with Annotation-based Compile-time Metaprogramming
Anonymous Author(s)

ABSTRACT
Metaprogramming can be made by annotations in the source code
linked to metacode that change the compilation process. At compile-
time, the metacode can add code, do additional checks, support
new syntax, and change the semantics of the language elements.
The unrestrained power of metaprogramming damages several
expected software features such as code readability, modularity,
manutenability, and even determinism. This paper lists several
issues with compile-time metaprogramming made with source code
annotations. A few of the issues were known and have been stated
before. Most of themwere intuitively known but they have not been
precisely described and their consequences have not been given.
The article concludes with suggestions on how to work around the
solvable issues.

CCS CONCEPTS
• Software and its engineering → Object oriented languages;
Data types and structures; Domain specific languages; Exten-
sible languages; Source code generation; Macro languages.

KEYWORDS
Object-oriented programming, Metaprogramming, Metaobjects,
Compilers, Software Engineering

ACM Reference Format:
Anonymous Author(s). 2023. Issues with Annotation-based Compile-time
Metaprogramming. In Proceedings of ACM Conference (Conference’17). ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Metaprogramming is the programming that occurs when a pro-
gram handles another one. A metaprogram handles a base program
which can be changed, checked, analyzed, or transformed into an-
other program. The semantics of the language can be modified
and new syntax can be introduced. The metaprogram can be a
snippet of the base program itself and the handling can occur at
pre-processing time, compile-time, or runtime. Metaprogramming
is a broad area [2] [9] with many different subareas that employ a
myriad of terminologies. In this paper, we are interested only in
compile-time metaprogramming (CTMP) made by annotations in
the base program.

As the name implies, CTMP occurs during the compilation of
a base program and, therefore, demands the collaboration of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

@immutable
c l a s s Employee {

. . .
@po s i t i v e I n t
p r i v a t e i n t age ;
p r i v a t e @NonNull Company company ;

}
Listing 1: An example with annotations

compiler. Annotations in the base program are syntactic elements
linked to metacode, which in this article are considered as snippets
of the metaprogram. They can be thought of as functions, subrou-
tines, or procedures of the metaprogram. CTMP with annotations
requires collaboration among the compiler, the program, and the
metaprogram (composed of metacode). A protocol describes how
these elements collaborate which is, in some languages [6], called
Metaobject Protocol (MOP).

This article reports some problems with compile-time metapro-
gramming made with annotations. A problem is either intrinsic to
the area and, therefore, not completely soluble, or linked to the
metaprogramming support by current languages. There is a blurred
borderline between bad metaprogramming (developers’ fault) and
metaprogramming issues (language fault). We consider that a lan-
guage characteristic is a problem if it makes it difficult to create
correct metaprograms. That borders bad programming because a
careful developer would produce correct code even in the presence
of the issue. But maybe at a high cost in time and producing fragile
code.1

The metaprogramming protocol is defined by a language and
encompasses the compiler behavior. Hence, the language also spec-
ifies how the compiler interacts with the program and metacode.
Metaprogramming system is generally used, instead of language,
when the text emphasizes the compiler part of the combination
language-compiler. This article is organized as follows. The issues
with metaprogramming are presented in section 2. Section 3 shows
some possible solutions.

2 ISSUES WITH COMPILE-TIME
METAPROGRAMMING

This section assumes that the background is class-based object-
oriented languages in which metacode can change the compilation
process. In the examples, given in a Java-like language, metacode
are linked to syntactic elements of the source code2 such as classes,
methods, fields, variables, and statements through the use of an-
notations that start with @. Listing 1 shows annotation immutable
attached to the class and annotations positiveInt and NonNull
attached to fields. Figure 1 illustrates the relationships among the
compiler, the metacode associated with annotation immutable, and

1Code that becomes invalid at the slight change in the base program.
2Source code is synonymous to source file, a single file with one or more classes.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Figure 1: Relations between an annotation, its metacode, and
the compiler

Figure 2: File A changes files A and B

the source code. The metacode for immutable is called by the com-
piler when it finds the annotation. The metacode can call methods
of compiler objects. The list of issues with CTMP follows.

MessWithOthersAmetacode associatedwith a source file changes
another source file, which is called obliviousness [1]. An example
is shown in Figure 2 in which annotation relation is attached to
class Employee. This annotation is linked to a metacode that, at
compile-time, adds fields and methods to both classes Employee
and Company to implement a many-one relation between them.

From now on, we will use the annotation name as the metacode
name. Class Employee is in file A and Company in file B. Hence,
a metacode linked to file A changes another file, B. That breaks
modularity because, to understand a source file, the developer has
to understand potentially all source files in the program. It is not
enough to read the documentation of class Company and its source
code to know which methods it supplies.

A light version of this problem happens even inside a class be-
cause a metacode associated with a method could change another

@toJSON (Employee , Company)
c l a s s JSONMaster { / ∗ empty ∗ / }

Listing 2: toJSON generates methods like employeeToJSON for
converting an Employee object into JSON code

method; add statements to it, for example. Non-local changes like
those described make it hard to understand the code.

WhoDependsOnWho The compiler of an object-oriented lan-
guage typically builds a class dependence graph representing the
relations between its classes. To make the explanation simpler, sup-
pose there is a one-to-one correspondence between source files and
classes. In this graph, vertices are classes and there is an edge from
R to S if S has to be recompiled whenever R changes. This is the
case if S inherits from R or declares a variable whose type is R.

Metacode have to be taken into account to build the class de-
pendence graph. Whenever a metacode associated with class S uses
information about class R, there should be an edge from R to S. This
cannot be done if metacode acts in the compiler data structures
directly, as when an AST node is passed to a metacode function or
method. The handling of the AST node by the metacode is unknown
to the compiler and, therefore, it cannot build a class dependence
graph based on it. An example will be described using the code
of Listing 2. The metaobject associated with annotation toJSON,
attached to the JSONMaster class, creates at compile-time a method
for each of the annotation parameters, which must be class names.
For the first parameter, the method created is

String employeeToJSON(Employee obj) { ... }
The metaobject uses the fields of Employee to generate the method
code. Information on the fields is usually got from the AST of the
class. After passing the Employee AST to metaobject toJSON, the
compiler generally does not know which AST methods were called.
Hence, the metaobject uses information on this class without the
knowledge of the compiler and there will be no edge from Employee
to JSONMaster in the class dependence graph. The consequences
are that, if the former class is changed, the latter will be outdated.

KnowsFriendsSecrets A metacode associated with a class S may
generate code or do checks based on private information of class R
as its list of fields, its list of private methods, or even statements
of its methods. The use of private information from other source
files destroys modularity because class S cannot be understood
without the knowledge of private information of R. This issue
with metaprogramming occurs with metaobject toJSON of Listing 2
because JSONMaster uses fields of Employee, which may be private
to the class. Knowing private information of objects at runtime,
through runtime reflection, has its own problems. However, it is not
as bad as having this knowledge at compile time because modularity
is not destroyed.

Compiler-Interactions A metacode interacts with the compiler
using low-level compiler data structures, like the AST, in several
compilation phases. This approach has several drawbacks [17]:

(1) it demands a deep knowledge of the design and implemen-
tation of the compiler, which includes details of all the

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Issues with Annotation-based Compile-time Metaprogramming Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

compilation phases and the data structures used. The meta-
code may require complex AST transformations that should
keep compiler invariants (often undocumented);

(2) incorrect AST handling may crash the compiler or make it
generate incorrect code;

(3) metacode may bypass compiler checks causing the accep-
tance of flawed source code. That is, metacode may add
code after the compiler does some checks that will never
be done in the added code.

Moreover, metacode become tied to the compiler data structures.
Changes to these data structures, like the AST classes, invalidate
metaprograms.

This issue happens in languages supporting compiler plugins
such as [18], Java [12], X10 [11], Kotlin [8], TypeScript [23], and
Rust [15]. A compiler plugin is composed of metacode called in
specific phases of the compilation that interact with the compiler
low-level structures. An example of this interaction is that, using
the Java plugin, the metacode can set the body of a method (its set
of statements) to null, crashing the compiler. The developer has
to deeply know the compiler to design the metacode because there
is no simplified API for compiler plugins, the whole compiler is
offered.

The problems cited above happen with any badly designed
API and, therefore, one could argue that they are not issues with
metaprogramming per si but with many implementations of it. This
is correct for many of the issues cited in this paper and clearly
visible in Compiler-Interactions. The reason is that, if a problem
has a solution (however expensive to implement it is) then it is not
related to metaprogramming but to a specific implementation. But
this is the usual way of referencing problems in the literature, they
are problems only with our current technology.

WhoDidWhat A metacode that handles the compiler data struc-
tures directly leaves no traces of its activities. Therefore, if a meta-
code generates invalid code, detected in later compilation phases,
the compiler will issue an error. But it will be unable to point out
the metacode that generated the invalid code.

As an example, suppose a Java compiler plugin linked to an-
notation getset inserts a code, before semantic analysis, with a
semantic error:

void getAge() { return age; }
This is done by changing the compiler data structures directly and,
therefore, the compiler is unaware of it. The semantic error will
be later detected but there will be no indication of which plugin
caused the error. Even identifying the plugin is not enough because
the source code may have several annotations, like getset, linked
to the same plugin. A clear error message should also point out the
annotation that caused the problem.

OrderMatters
If a class has many metacode associated with it, they can be

called in an order that is not clear to the metaprogrammer [13] or
they may be called in an order that prevents them from producing
correct code or doing the intended checks.

An example of this issue is given using language Xtend [24].
Metacode are linked to active annotations and are processed in the
order the annotations appear in each source file. Hence, if a source

file uses annotatations reqrLog, addLog, reqrLog, addLog, in this
textual order, the compiler will call the metacode associated to
reqrLog first (two times) and then the metacode for addLog (two
times).3 This dependence of metacode call from textual order can
introduce errors.

c l a s s Zero { S t r i n g l og ; }
@addLog c l a s s F i r s t { }
@reqrLog c l a s s Second { S t r i n g l og ; }
@addLog @reqrLog c l a s s Thi rd { }

Assume that the active annotation @reqrLog requires that the class
it is attached to has a field called log. In this example, reqrLog
is attached to class Second that does have a log field. The active
annotation should issue a compilation error for class Third because
there is no such field. However, it does not because the addLog
annotation adds to its attached class a log field.

Since Xtend calls the metacode based on the textual order of
annotations, there will be no error because the metacode for addLog
is called first and add a log field to both First and Third. Only after
that the metacode for reqrLog is called and checks if Second and
Third have such a field. Suppose now the above code is changed
by the addition of annotation reqrLog to class Zero:

1 @reqrLog c l a s s Zero { S t r i n g l og ; }
2 @addLog c l a s s F i r s t { }
3 @reqrLog c l a s s Second { S t r i n g l og ; }
4 @addLog @reqrLog c l a s s Thi rd { }

Now the metacode linked to reqrLog is run first for classes Zero,
Second, and Third. Only after that the compiler calls the metacode
for addLog. The metacode linked to reqrLog will issue an error in
class Second because no log field will be found. We conclude that,
in Xtend, the introduction or removal of an annotation in one place
can affect the order the metacode will be called in another place.

There are two subproblems of OrderMatters. One is Differ-
entViews: different metacode may have different views of the
base program. An example, cited by Palmer and Smith [13], con-
siders a metacode A that adds to a class X a field for every class in
the same source file. The field name is the class name in lower-case
(y for Y). Initially, there is only class X in the file but a metacode B
adds another class Y. If A is run before B, metacode A adds only field
x to class X. If it is run after B, it adds fields x and y. If the semantics
of metacode A is “adds a field to X for every class in the final source
file, after all code addition made by metacode”, then metacode A
should be the last one to run. But many languages with support to
metaprogramming cannot guarantee that.

In the above example, the metacode called afterward can view
the changes caused by the metacode called previously. This is a
problem because the calling order may not be clear and also because
a change in the metacode textual order in a source file may change
the calling order (as in the Xtend example). The developer does not
expect that such subtle changes cause drastic code modifications.

Other subproblem of OrderMatters is InvalidateChecks. A
metacode checks the program that is later changed by another meta-
code, invalidating the check. For example, metacode CompanyStyle

3See the discussion group, https://groups.google.com/forum/#!topic/xtend-
lang/_RTAYBSTLMU

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 3: Metacode produces metacode indefinitely. The
dashed rectangle was produced by previous annotation

issues a compilation error if any class field uses underscore in its
name. Metacode AddColor, run after CompanyStyle, introduces a
field color_name. The check made by CompanyStyle is invalidated.

InfiniteMetaLoop Metacode may generate annotations added to
the source code, which in turn may generate metacode and so on,
creating an infinite loop. An example is shown in Figure 3. In a
step 0, the compiler calls the metacode associated with annotation
addFieldName attached to field age. The resulting code is in the
rectangle of step 1 with the newly added code shown in the dashed
rectangle, which is another field ageName. This new field is also
attached to an annotation addFieldName. The compiler then calls
themetacode associatedwith the annotation for ageName producing
the code in the dashed rectangle of step 2, and so on. The problem
here is that the compiler will never end its execution.

Nontermination
Metacode are called by the compiler. Therefore, if a metacode

does not finish its computation, the compiler does not finish either.
This is different from InfiniteMetaLoop because the cause of the
nontermination is in the metacode itself, not in the code it generates.

NondeterminismMetacode are not limited to interact with the
source code or the compiler. They can interact with the file system,
the network, and other running programs. That means metacode
may be nondeterministic. As an example, the metacode associated
with annotation addFileHere adds the content of a file to class
Company.

@addFi leHere (" f i e l d sAndMethods . t x t ")
c l a s s Company { . . . }

Different compilations may have different versions of class Company
even if the source code of the whole program did not change. This
may be what is intended. But it is nondeterministic anyway and,
therefore, confusing to the developers.

The compilation order of the source files of an object-oriented
program is given by its class dependence graph introduced in the
issue WhoDependsOnWho. Any topological ordering of this graph

Figure 4: Two graphs: one showing metacode generation and
the other showing which metacode uses information pro-
duced or changed by others

is a valid compilation order (there may more than one of them).
Hence, the ordering is generally not unique and the compiler may
choose different orders in different builds. This can be caused by
the introduction of new files or changes in the last-modified date
of source and binary files. The consequences are that the metacode
may behave differently in two different builds. Let us show an
example.

Class Worker has an annotation whose metacode adds methods
to the class based on public methods of class WorkContract. Class
Company has a similar annotation. Suppose that the classes are
compiled, in two different builds, in two different topological orders:

build 1: Worker WorkContract Company
build 2: Company WorkContract Worker

If a metaobject adds methods to WorkContract, only Company will
view these new methods in build 1 and only Worker will view them
in build 2.

NoContracts
A metacode may demand specific features from the base code it

is attached to and vice-versa [10]. For example, the metacode may
demand the base class T declares a method for comparing two T
objects. And the base code may demand that the metacode adds
to the class a method sort (built with the comparison method). In
this example, if either the base program or the metacode does not
fulfill its part of the agreement, there will be a compilation error.
But the compiler error message will not tell the developer that
there was an agreement and which part has not fulfilled it. Errors
may appear only in the final version of the source code which is
a mix of base code with that added by metacode. To discover the
errors, the developer has to examine the source file and scrutinize
code generated by metacode, which exposes their implementation
details.

A subproblem of NoContracts is NoGeneratedCodeGuaran-
tees, which may happen because metacode can generate arbitrary
code which may not match the metacode documentation. That
means the generated code: (a) does not do what is intended; (b)
does not compile; or (c) is malicious.

UnintendedCaptureId
This issue happens when metacode generates code that uses

identifiers already in use in the environment where the code is
inserted. Their semantics is equaled by accident. An example in
Lisp, cited by Duba et al. [7], is the macro

(or e1 e2)

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Issues with Annotation-based Compile-time Metaprogramming Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

which should be expanded to
(let v e1 (if v v e2))

The expansion of
(or nil v)

results in
(let v nil (if v v v))

The last v in this expression was supposed to be different from the
other occurrences of v (which are part of the macro definition).
This problem is solved by renaming identifiers. When the metacode
is a Lisp-like macro, this is called macro hygiene.

CircularDependency To explain this problem, we use two graphs
whose vertices are metacode. A code generation graph (CGG) is a
tree and there is a directed edge from A to B if metacode A generates
code containing an embedded annotation linked to metacode B.
Therefore, if there is an edge from A to B, the compiler runsmetacode
A that generates the annotation associated with B and, then, the
compiler runs metacode B. In a dependence graph (DG), there is a
directed edge from A to B if base-program information produced or
changed by metacode A is used by metacode B. This information
is any property of the base program such as the number of class
fields, the superclass, or the presence or absence of a given method.
An example of both the code generation and dependence graphs is
shown in Figure 4. The CGG is obviously a tree and uses dashed
edges. The edges of DC are continuous lines.

Problem CircularDependency happens when DG has a cycle.
This is a problem because the compiler has to choose a metacode in
a cycle to be the first to be run (of course, obeying first the CGG).
Using the cycle A-E-F of Figure 4, suppose the compiler chooses
metacode E to run first and then A and F. Metacode E generates code
or does checks based on information that will be later changedwhen
the compiler runs metacode A. The CircularDependency problem is
an extended version of OrderMatters that is not solved by changes
in the annotation order in the source code or an adequate choice of
metacode execution order.

We will give an example of this problem with two annotations,
rr and ss.

c l a s s P {
@rr
@ss

}

The metacode associated with annotation rr generates a field
numFields initialized with the number of class fields (the origi-
nal number of fields plus one because numFields is added too). The
resulting code is

c l a s s P {
@rr
@ss
i n t numFie lds = 1 ;

}

Now the compiler calls the metacode associated with annotation ss
that generates the declaration of field fieldCount initialized with
the number of fields of P, which is now 2. The resulting code is

c l a s s P {

@rr
@ss
i n t numFie lds = 1 ;
i n t f i e l dCoun t = 2 ;

}

This is wrong because the number of fields of P, in the final code, is 2
and, therefore, both fields should be initialized with 2. The problem
here is that the metacode associated with rr and ss depend on the
information, the number of fields, changed by both.

The circular dependence occurs even when the rr metacode
generates the ss annotation:

@rr =⇒
@rr
@ss
int numFields = 1;

=⇒

@rr
@ss
int numFields = 1;
int fieldCount = 2;

This kind of dependence is illustrated by vertices A and B of
Figure 4. Metacode A generates B and both depend on information
generated or changed by each other.

WeakLinkAnnotMetacode
The language may not enforce a direct link between annotations

in the program and themetacode. The developer does not knowwho
metacode will be called for a given annotation in the source code.
In Java [3], annotation processors (AP) are passed in the compiler
command line. They can do checks in the program. Each annotation
in the program is passed to each AP. If the processing method of one
AP returns false, the annotation is passed to the next annotation
processor. Therefore there is not a hard link between annotations
and APs, making it difficult to associate semantics to an annotation.

AfterCompilation
Compile-time metaprogramming happens at compile-time but

some later processing may be necessary. How to do this? This
problem is presented with an example. A positive annotation is
attached to a method and takes a single parameter which should
be an int parameter to the method. The metacode assures that the
real argument is greater or equal to zero.

c l a s s Person {
@pos i t i v e (age)
p u b l i c vo id se tAge (i n t age) { . . . }
. . .

}

The metacode may have two possible semantics. In semantics (A),
the metacode inserts an if statement into setAge for assuring
that age >= 0. This semantics does not demand any actions by
the metacode after compilation because all it has to do is made at
compile-time.

In semantics (B), annotation positive demands that only real
arguments that are provable >= 0 at compile-time are legal to
setAge. Suppose Person is compiled and put in a package L. An-
other source code U imports L, declares a variable of Person and
sends a message setAge(n) to it. When the compiler finds this mes-
sage passing, it has to call the metacode associated with positive
that will analyze the AST of the callee method to discover if n

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

>= 0. We will say that “file U activates the metacode”; that is, the
metacode is called in the environment of source file U because the
semantics of its associated annotation demands that.

Assume that there is only one class per source file. We will define
two terms: Src(Person) is the source file in which Person is and
Act(Person) is a list of files that activate metacode associated
with Person annotations. Usually this list has one file, which is
Src(Person) itself. In the example and using semantics (B), there
is at least one more file U in Act(Person). U is the source file that
imported package L with class Person.

Based on the above example, we can now define the AfterCom-
pilation issue as a list of related problems:

(1) if the compiler generates native code, how to add the meta-
code to binary files and how the linker deals with them?

(2) the metacode may need information of both Src(Person)
and a file U ≠ Person. In the example, the metacode needs
to check that the annotation parameter age is a formal
parameter of method setAge, which is made at compile-
time of Person. At a later time, after Person was compiled,
the metacode needs to check that the real argument to the
method is provable >= 0. These two activation times need
two environments for metacode execution;

(3) how to interoperate two programming languages one of
which supports annotations like positive that demands
actions after the compilation time of the source file it is in?

ToolsDoNotKnowMeta
Tools that handle source code such as static analyzers and Inte-

grate Development Environments (IDE) have to know about the
metacode. Otherwise, they cannot work correctly. As an example,
suppose a class declares a private field that is attached to an anno-
tation that will create get and set methods for it. If the field is not
used anywhere in the class, a static analyzer may point out that the
field can be removed.

To know all of the possible consequences of the annotations
used by a source code, a tool has to know everything about the
metacode associated with the annotations. This is only possible if
the metacode are run. But when they run, they can interact with
compiler data structures such as the code AST. Since the set of
metacode is not fixed, tools cannot discover metacode behavior.
For that, they should be a superset of the compiler. This is the
ToolsDoNotKnowMeta issue.

The original cause of this problem is that metacode change the
language and, for each code with annotations, the developer is
effectively using a different language that is unknown to the tools.

DeepUnexpectedChanges
Any sufficiently powerful metaprogramming system permits

deep changes in the program by the metaprogram. For example, the
metaprogram can modify the language semantics (as the meaning
of message passings), remove methods and fields, alter the super-
class of a class, remove implemented interfaces, remove method
statements, add or remove method parameters, change method re-
turn type, and rename classes, fields, or methods. Profound changes
make code unreadable. The developer has to know the meaning
of every metacode in a source file before assuring very basic facts
about that code. Therefore, the developer cannot be sure that a

method that is in the source code does exist in the final code (the
code produced after all changes made by the metacode). She or he
cannot be sure a message passing obeys the expected semantics.

If incorrectly used, a powerful metaprogramming system can
make the code very difficult to understand. However, it can also
make the language support important features as is the case with
CLOS [6], created to simulate several Lisp dialects.

3 POSSIBLE SOLUTIONS
This section discusses some possible solutions to the problems
presented previously.

MessWithOthers. Figure 1 shows the interactions between anno-
tations, metacode, and the compiler. To prevent MessWithOthers,
the objects passed from the compiler to the metacode should only
allow the latter to change the source code where the annotation
is. Therefore, the compiler cannot pass to the metacode an object
of its AST that gives access to AST objects of an external source
file and allows the changing of it. But, to prevent this issue, the
compiler should either never supply AST objects to metacode (too
drastic!) or define alternative AST classes (another AST only for
metacode). These other AST classes should not allow changes in
external source files either because they supply a restricted view of
external files or they check who is asking for the changes in the AST
(if it is an external file, issue an error). This problem happens with
OpenJava [21] [20] and languages supporting compiler plugins:
Scala, Java, X10, Kotlin, TypeScript, and Rust. CLOS and OpenC++
supportsmetaclasses and a metaclass can only change the class that
is its object. In BSJ [13], a security mechanism prevents non-local
changes.

WhoDependsOnWho Any powerful metaprogramming system
demands that code information flows from the compiler to the
metacode and, therefore, has this problem. The only solution is to
track every call to methods of the compiler objects made inside
the metacode. If the call introduces a dependence from a source
file R to S, the compiler-object method has to register that in the
class dependence graph (CDG) kept by the compiler. As an example,
the metacode associated with S calls a compiler-object method
that gives the names of public methods of a class in R. Therefore,
there should be an edge in the CDG from R to S. This problem
happens with all languages cited in this paper except OpenC++. In
this language, a class has no information on other classes.

KnowsFriendsSecrets The compiler objects passed to the meta-
code should never allow the leaking of private information from
other source files. The solution to this problem is, therefore, similar
to the solution to MessWithOthers. All languages that support a
compiler plugin have this issue. OpenC++ does not because it limits
the visibility to the class the metaclass is linked to.

Compiler-Interactions The object the compiler passes to the
metacode should be carefully designed to prevent this issue. There-
fore, the objects may be read-only or, if they are not, their meth-
ods should do checks to prevent any incorrect operation that can
damage the compiler. The metacode could, instead of changing
the compiler objects directly, ask the compiler to do the changes

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Issues with Annotation-based Compile-time Metaprogramming Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

through a Domain Specific Language (DSL). All languages with
compiler plugins have this problem.

WhoDidWhat The compiler has to associate every metaobject
with the changes it does in the program, as is done by the language
Converge [22]. That can be done by several mechanisms: (a) the
metacode ask the compiler to do code changes (they do not have
the power of changing the code themselves);4 and (b) the methods
of the compiler objects track and register which metacode called
every method that changed the code.

The compiler of the language Converge [22] tracks of who gen-
erates which code. Therefore, this issue is solved in this language.
Converge generates bytecodes and each of them knows who pro-
duced it, which can be used even for runtime error messages. An
AST object can be associated with more than one metacode that
handled it. Therefore, the compiler error messages can point out
all metacode that possibly caused an error.

OrderMatters The calling metacode order should be fixed and any
changes to the code should only be visible in the next compilation
phase. This guarantees thatmetacode called in the same compilation
phase view the same source code and, therefore, their calling order
is not important. All languages that allow handling of the AST, as
the languages with compiler plugins, have this problem. After a
metacode changes an AST object, all metacode view the changed
object.

InfiniteMetaLoop This problem happens when the metaobject
associated with annotation𝑚𝑖 generates code with annotation𝑚𝑖+1
for 𝑖 = 0, 1, The compiler can limit the maximum number of
nestings to a finite number. This problem occurs with any language
that, after compiling the code generated by metacode, processes
any introduced annotation. The articles and websites about the
languages cited in this text do not allow us to conclude which
languages have this problem.

Nontermination The compiler calls the metacode in a separate
process and kills it if it does not finish after some milliseconds. No
language cited in this paper solves this problem. However, there are
metaprogramming languages that do [16] as SafeGen [5], MorphJ
[4], and Meta-traits [14].

Nondeterminism A total solution to this issue demands drastic
measures: (a) the metacode is run in a container that prevents access
to the external world (files, network); (b) all of the compiler objects
passed as parameters to the metacode are read-only; and (c) Order-
Matters is solved because it also introduces nondeterminism. To
our knowledge, no annotation-based metaprogramming language
solves this problem. Only very limited systems for metaprogram-
ming like C++ templates [19] are deterministic.

NoContracts Ideally, there should be a contract DSL to specify
the agreements between the metacode and the base code. Even
so, the DSL code cannot specify everything. In particular, it can
specify only part of the semantic requirements because checking
the semantics of a (meta) code is incomputable. Therefore, the sub-
problem NoGeneratedCodeGuarantees can only be partially solved.
If there is no contract DSL, metacode can check by themselves at

4This could be done with the DSL cited in Compiler-Interactions.

least some of the demands they place on the base code. However,
these demands would be more precisely described using a DSL code
that is easily examined by the developer.

In its simplest form, the contract between the base code and
the metacode could be just a Java-like interface, which is a set of
method signature5 declarations. The metacode demands that the
class it is used with declares the methods of an interface MM and
the base code demands that the metacode generates the methods of
an interface BB. This is very similar to the requirements a generic
class in Java and C♯ may place on its real arguments that are types:

class MyList<T extends ISorteable> { ... }
Here, ISorteable should be either implemented or inherited from
the real argument type.

No language cited in this paper solves this issue. The metapro-
gramming language MTJ [14] is not annotation-based but it pro-
vides the best approach to this problem. It uses a feature called traits
which are Java-like interfaces.6 A trait has parameters and clauses
requires and provides that specify the contract between the trait
(which plays the role of an annotation) and the class that imple-
ments it (which plays the role of the source code the annotation
is).

UnintendedCaptureId The compiler can supply to the metacode
an object with a method for generating new variables that do not
appear in the base code. However, the problem can continue if the
metacode do not use this method. Another solution is to rename
all of the free identifiers in the metacode generated code so they
do not collide with the environment identifiers. If necessary, the
metacode could ask for using some of the environment identifiers.
No language cited in this paper automatically solves this issue.

CircularDependency This is an unsolvable problem in general
because it is caused by intrinsic circularity in the system. However,
each metacode may be aware of the code generated by other meta-
code and they can work together in search of an agreement. For
example, in the first step all of the metacode that change a class
may run and change the class. In a second step, each metacode
may change the code it generated based on the modifications made
by other metacode. That would continue in step 3, and so on till
all of the metacode reach an agreement. Although the problem
definition, by itself, does not allow a general solution, language BSJ
partially solves this issue because it allows the developer to spec-
ify the execution order of the metacode. This forcibly eliminates
circularity.

WeakLinkAnnotMetacode The language should specify how the
annotations are linked to the metacode. For example, metacode are
put in packages and, when the package is imported by a source file,
the annotation names associated with the metacode can be used.
Usually, this problem occurs in all languages supporting compiler
plugins because, in these languages, the code that processes the
annotations are put as options to the compiler.

AfterCompilation There is no general solution to this broad prob-
lem but some recommendations can decrease its dangerousness.

5A method signature specifies only the method name, parameter types, and return
value type.
6A Java interface defines a set of methods with or without body and it does not inherit
from the top-level class, Object.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

First, the format of the binary code must be changed to accommo-
date the metacode information. Second, an annotation should be
linked to two different metacode: one is run on the attached source
code (where the annotation is) and the other in the activation source
code. Each metacode may be a method of an object and, therefore,
they share information using the object fields. To our knowledge,
the compiled languages cited in this paper, X10 and Rust, avoid
the problems by not allowing the metacode to act after a code is
compiled.

ToolsDoNotKnowMeta Any static analyzer and IDE should be
integratedwith the compiler so they knowwhich code themetacode
generate andwhich checks they do. There is no other way of solving
this problem. We are not aware of any tool that works correctly
with a complete metaprogramming system.

DeepUnexpectedChanges Based on our own experience, deep
changes in the program structure are rarely necessary. Therefore,
it makes sense that metacode have limited power in changing the
program. For example, metacode should not be able to delete any
code (class, methods, fields, superclasses, etc), rename identifiers,
and change the types of fields, variables, and method parameters.
Metacode could do further code checks but not change the meaning
of any construct of the base language. All languages with compiler
plugins have this issue.

4 CONCLUSION
This paper listed some problems which are intrinsic to annotation-
based compile-time metaprogramming and others which are flaws
of current languages. It is difficult to put in a single category most
of the problems. For example, MessWithOthers can be considered
intrinsic because it is reasonable that the metaprogram changes the
program. That includes the fact that a metacode associated with a
file changes another one. But problem MessWithOthers can also be
diminished if the language prohibits or limits the changes a meta-
code associated with a file do with another file. Hence, this issue can
be, at least partially, solved by a language. There is no clear-cut dis-
tinction between the issues. For example, InfiniteMetaLoop causes
Nontermination and it is expected that a metaprogramming system
with the MessWithOthers issue has also KnowsFriendsSecrets.

Most of the issues of section 2 apply to some other flavors of
metaprogramming, in particular, to compile-time metaprogram-
ming. We focus on annotation-based compile-time metaprogram-
ming (ABCTMP) because this approach demands a minimal amount
of background knowledge and the examples can be easily under-
stood. Programs can interact with other (meta) programs in count-
less ways using a myriad of language features. For that reason, we
do not claim to have cited all of the problems with ABCTMP. To our
knowledge, no list of metaprogramming issues has been published
before.

REFERENCES
[1] Curtis Clifton and Gary T. Leavens. 2003. Obliviousness, Modular Reasoning,

and the Behavioral Subtyping Analogy. Technical Report 329. Computer Science
Technical Reports - Iowa State University.

[2] Robertas Damaševičius and Vytautas Štuikys. 2008. Taxonomy of the Funda-
mental Concepts of Metaprogramming. In Information Technology and Control.
Vol. 37. Kaunas University of Technology.

[3] Joe Darcy. 2006. Java Specification Request 269: Pluggable annotation processing
API. http://jcp.org/en/jsr/detail?id=269

[4] Shan Shan Huang and Yannis Smaragdakis. 2011. Morphing: Structurally Shaping
a Class by Reflecting on Others. ACM Trans. Program. Lang. Syst. 33, 2, Article 6
(Feb. 2011), 44 pages. https://doi.org/10.1145/1890028.1890029

[5] Shan Shan Huang, David Zook, and Yannis Smaragdakis. 2005. Statically Safe
Program Generation with Safegen. In Proceedings of the 4th International Confer-
ence on Generative Programming and Component Engineering (Tallinn, Estonia)
(GPCE’05). Springer-Verlag, Berlin, Heidelberg, 309–326. https://doi.org/10.1007/
11561347_21

[6] Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow. 1991. The Art of
Metaobject Protocol. MIT Press, Cambridge, MA, USA.

[7] Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce Duba.
1986. Hygienic Macro Expansion. In Proceedings of the 1986 ACM Conference on
LISP and Functional Programming (Cambridge, Massachusetts, USA) (LFP ’86).
ACM, New York, NY, USA, 151–161. https://doi.org/10.1145/319838.319859

[8] Kotlin 2020. Compiler Plugins (Kotlin). https://kotlinlang.org/docs/reference/
compiler-plugins.html

[9] Yannis Lilis and Anthony Savidis. 2019. A Survey of Metaprogramming Lan-
guages. ACM Comput. Surv. 52, 6, Article 113 (Oct. 2019), 39 pages. https:
//doi.org/10.1145/3354584

[10] Florian Lorenzen and Sebastian Erdweg. 2016. Sound Type-Dependent Syntactic
Language Extension. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (St. Petersburg, FL, USA)
(POPL ’16). Association for Computing Machinery, New York, NY, USA, 204–216.
https://doi.org/10.1145/2837614.2837644

[11] Nathaniel Nystrom and Vijay Saraswat. 2007. An annotation and compiler plugin
system for X10. Technical Report. Technical Report RC24198, IBM TJ Watson
Research Center.

[12] Oracle. 2023. Interface Plugin. https://docs.oracle.com/en/java/javase/11/docs/
api/jdk.compiler/com/sun/source/util/Plugin.html

[13] Zachary Palmer and Scott F. Smith. 2011. Backstage Java: Making a Difference
in Metaprogramming. SIGPLAN Not. 46, 10 (Oct. 2011), 939–958. https://doi.
org/10.1145/2076021.2048137

[14] John Reppy and Aaron Turon. 2007. Metaprogramming with Traits. In Proceed-
ings of the 21st European Conference on Object-Oriented Programming (Berlin,
Germany) (ECOOP’07). Springer-Verlag, Berlin, Heidelberg, 373–398.

[15] 2020. Compiler Plugins (Rust). https://doc.rust-lang.org/1.5.0/book/compiler-
plugins.html

[16] Marco Servetto and Elena Zucca. 2013. A Meta-Circular Language for Active Li-
braries. In Proceedings of the ACM SIGPLAN 2013 Workshop on Partial Evaluation
and Program Manipulation (Rome, Italy) (PEPM ’13). Association for Comput-
ing Machinery, New York, NY, USA, 117–126. https://doi.org/10.1145/2426890.
2426913

[17] Amanj Sherwany, Nosheen Zaza, and Nathaniel Nystrom. 2015. A Refactoring
Library for Scala Compiler Extensions. InA Refactoring Library for Scala Compiler
Extensions (Lecture Notes in Computer Science, Vol. 9031), Björn Franke (Ed.).
Springer, 31–48. https://doi.org/10.1007/978-3-662-46663-6.2

[18] Lex Spoon and Seth Tisue. 2020. Scala Compiler Plugins. https://docs.scala-
lang.org/overviews/plugins/index.html

[19] Bjarne Stroustrup. 2013. The C++ Programming Language (4th ed.). Addison-
Wesley Professional.

[20] Michiaki Tatsubori. 1999. An Extension Mechanism for the Java Language. Mas-
ter’s thesis. University of Tsukuba, Japan.

[21] Michiaki Tatsubori, Shigeru Chiba, Kozo Itano, and Marc-Olivier Killijian. 2000.
OpenJava: A Class-Based Macro System for Java. In Proceedings of the 1st OOP-
SLA Workshop on Reflection and Software Engineering: Reflection and Software
Engineering, Papers from OORaSE 1999. Springer-Verlag, London, UK, UK, 117–
133.

[22] Laurence Tratt. 2008. Domain Specific Language Implementation via Compile-
time Meta-programming. ACM Trans. Program. Lang. Syst. 30, 6, Article 31 (Oct.
2008), 40 pages. https://doi.org/10.1145/1391956.1391958

[23] typescript 2020. Using the Compiler API (TypeScript). https://github.com/
microsoft/TypeScript/wiki/Using-the-Compiler-API

[24] Xtend. 2020. Xtend — Modernized Java. https://www.eclipse.org/xtend/

8

http://jcp.org/en/jsr/detail?id=269
https://doi.org/10.1145/1890028.1890029
https://doi.org/10.1007/11561347_21
https://doi.org/10.1007/11561347_21
https://doi.org/10.1145/319838.319859
https://kotlinlang.org/docs/reference/compiler-plugins.html
https://kotlinlang.org/docs/reference/compiler-plugins.html
https://doi.org/10.1145/3354584
https://doi.org/10.1145/3354584
https://doi.org/10.1145/2837614.2837644
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.compiler/com/sun/source/util/Plugin.html
https://docs.oracle.com/en/java/javase/11/docs/api/jdk.compiler/com/sun/source/util/Plugin.html
https://doi.org/10.1145/2076021.2048137
https://doi.org/10.1145/2076021.2048137
https://doc.rust-lang.org/1.5.0/book/compiler-plugins.html
https://doc.rust-lang.org/1.5.0/book/compiler-plugins.html
https://doi.org/10.1145/2426890.2426913
https://doi.org/10.1145/2426890.2426913
https://doi.org/10.1007/978-3-662-46663-6.2
https://docs.scala-lang.org/overviews/plugins/index.html
https://docs.scala-lang.org/overviews/plugins/index.html
https://doi.org/10.1145/1391956.1391958
https://github.com/microsoft/TypeScript/wiki/Using-the-Compiler-API
https://github.com/microsoft/TypeScript/wiki/Using-the-Compiler-API
https://www.eclipse.org/xtend/

	Abstract
	1 Introduction
	2 Issues with Compile-time Metaprogramming
	3 Possible Solutions
	4 Conclusion
	References

