
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Concepts for Generic Prototypes in Cyan
Anonymous Author(s)

ABSTRACT
Generics are classes, prototypes, or algorithms parameterized by
types. Concepts are constraints on real arguments to generics that
express the generics’ restrictions on the use of the type parame-
ters. Their main goal is to give clear error messages to developers.
Concepts are supported as a feature by several languages. This
paper shows how the prototype-based object-oriented language
Cyan supports concepts by employing a compile-time metaobject
linked to a code annotation. A simple Domain Specific Language
(DSL) code attached to the annotation allows a comprehensive set
of concept constraints. As a result, not only concepts are easy to
specify but it would be easy for developers to change and modify
our metaobject to support a different concept DSL.

KEYWORDS
Object-oriented programming, Generic programming, Concepts,
Metaprogramming, Prototype-based language
ACM Reference Format:
Anonymous Author(s). 2021. Concepts for Generic Prototypes in Cyan. In
Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Types can be abstracted over other types and algorithms using the
technique of generic programming which is supported by generic
classes in Java [10] and C♯ [7], templates in C++ [19], type classes
in Haskell [22], and similar mechanisms in other languages. As
a representative of constructs for generic programming, we will
use generic classes, which are classes with type parameters that are
replaced by real arguments at compile-time. A real argument is a real
type that, when supplied, causes the creation of a specialized version
of the class. For example, type Int is supplied to SortedList<T> in
SortedList<Int> for creating an Int list. The code of the generic
class may be duplicated for each instantiation or not.

The generic class may implicitly assume that the real argument
has some characteristics such as the declaration of some public
methods or some specific semantics. The code of the class assumes
that the supplied types obey some contraints. If they do not, there
is a compilation or runtime error that is usually unclear because it
is issued in the context of the generic class code.1 Therefore, the
developer that is a user of the generic class has to understand its
1In case of a mismatch in the expected semantics, there may be no runtime warnings
or errors. But the error is caused by the generic class code anyway.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 package main
2 o b j e c t P a i r
3 func i n i t : S t r i n g f i r s t , I n t l a s t {
4 s e l f . f i r s t = f i r s t ;
5 s e l f . l a s t = l a s t
6 }
7 func g e t F i r s t −> S t r i n g = f i r s t ;
8 func s e t F i r s t : S t r i n g f i r s t {
9 s e l f . f i r s t = f i r s t
10 }
11 func g e t L a s t −> I n t = l a s t ;
12 func s e t L a s t : I n t l a s t {
13 s e l f . l a s t = l a s t
14 }
15 var S t r i n g f i r s t
16 var I n t l a s t
17 end

Listing 1: Prototype Pair in Cyan

source code to correct the error. Concepts are constraints on types
that act as a filter between the generic class and the types that are
its real arguments. A concept may point out that a real argument,
a type, does not satisfy one or more constraints before the real
argument replaces the type parameter. This results in clearer error
messages. If the language duplicates the generic class code for every
new set of real arguments, the resulting class is compiled after the
real arguments replace the formal parameters. At this point, there
may be compilation errors caused by non-compliance with the
restrictions.

Concepts are supported by several object-oriented languages
such as Java, the new C++ version [1], C♯, G [17], C♯𝑐𝑝𝑡 [6], Magno-
lia [3], JavaGI [23], and Genus [24]. However, no language has ideal
support for concepts [9] [5]. In every one of these languages, there
are missing features that, for example, prevent some constraints to
be expressed or some valid types to be used as real arguments.

This paper presents concepts in the language Cyan. Unlike any
other language, concepts are implemented using metaprogramming
through a compile-time metaobject. The result is a very expressive
system that features a Domain Specific Language (DSL) for con-
straint specification. This paper is organized as follows. Section 2
introduces the language Cyan and metaobjects. The metaobject
that supports concepts is presented in section 3. Section 4 compares
Cyan with other languages with relation to support for concepts.

2 CYAN AND METAOBJECTS
The Cyan language is a statically-typed prototype-based lan-

guage that relates closely to class-based languages such as Java [10]
and C♯ [7]. A prototype describes fields and methods as shown in
Listing 1. Prototype Pair defines a constructor, which is always

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

1 package main
2
3 @ini t (f i r s t , l a s t)
4 o b j e c t P a i r
5 @property
6 var S t r i n g f i r s t
7 @property
8 var I n t l a s t
9 end

Listing 2: Prototype Pair with annotations

called init or init: (if it has parameters), and get and set methods
for first and last (called fields or instance variables). A prototype
is both a type and an object. Prototypes String and Int, for exam-
ple, are used as the types of fields first and last. They are also
objects and can be used in expressions:

1 a s s e r t I n t == 0 && I n t ∗ I n t + I n t == 0 ;
2 a s s e r t S t r i n g == " " && S t r i n g s i z e == 0 ;
3 a s s e r t ! (S t r i n g endsWith : " abc ") ;

“String size” in line 2 is a message passing whose selector is size
and whose receiver is String (here, String is an object). This state-
ment would be String.size() in most OOL. Line 3 shows another
message passingwhose receiver is also String. “endsWith: "abc"”
is a keyword message with "abc" as argument. Cyan supports Java-
like interfaces whose declaration starts with keyword interface
instead of object. Interfaces are prototypes and therefore objects
like any other.

Listing 2 illustrates the use of annotations, which are identifiers
that start with @ and may be followed by arguments between paren-
theses. An annotation like init in line 3 is linked to a metaobject
at compile-time.2 The compiler calls methods of each metaobject
according to a metaobject protocol, MOP, which defines exactly the
metaobject methods (their names and parameters) are called in
which compilation phase. As an example, method

afterResTypes_codeToAdd
is called after the first semantic analysis phase. In this example, the
metaobjects associated with both init and property define this
method and they generate a constructor and get and set methods
for the two fields. The result is as if prototype Pair were declared
as in Listing 1. From now on, instead of writing “metaobject asso-
ciated to annotation” property, we will use simply “metaobject
property”.

An interesting metaobject is insertCode, whose annotations
take Cyan statements between delimiters that usually are {* and
*}. The Cyan statements are interpreted at compile-time. The text
between the delimiters is called attached Domain Specific Language
(DSL) code of the annotation or simply the attached text of the
annotation.

1 var Array <Char > a l ph a b e t = Array <Char > () ;
2 @insertCode { ∗
3 f o r ch in ' a ' . . ' z ' {
4 i n s e r tCode : " a l p h a b e t add : ' $ch ' ; " ;

2This paper will not detail how the compiler links the name to the metaobject.

5 }
6 ∗ }

When used inside a method body this annotation can be used for
generating method statements. In the above example, it generates
statements like

alphabet add: 'a';
from ’a’ to ’z’.3 When used outside a method body, metaobject
insertCode can generate fields and methods. This metaobject can
be used for checking any property of the prototype such as “the
prototype defines a method add: Int that has an if statement”,
“the prototype inherits from prototype X and implements interface
IA”, or any other property that can be checked using the prototype
Abstract Syntax Tree (AST).

3 CONCEPTS IN CYAN
Listing 3 shows a generic Pair prototype in Cyan with two formal
parameters, First and Last. To use this prototype, one has to
supply two real arguments as in this example:

var Pa i r < S t r i ng , In t > p =
Pa i r < S t r i ng , In t > new ;

When the compiler finds Pair<String, Int>, it creates a new pro-
totype, Pair<String, Int>, in which every occurence of First
and Last is replaced by String and Int, respectively. This is a
textual replacement, a new source file is created for every new
combination of real arguments. The language itself does not restrict
what the parameters can be, any errors are discovered when the
new prototype is compiled. The process of replacing formal pa-
rameters by real arguments and compiling the new prototype is
called instantiation of the generic prototype. Note that, in the above
example, there are two occurrences of the generic prototype Pair,
one as type and one as an expression, but only one instantiation.

The Cyan compiler replaces a formal parameter T by the real
argument if T appears:

(1) after #, which is a symbol, a short form of string. Therefore,
#cyan is the same as "cyan". If the formal parameter T is
replaced by cyan, #T is replaced by #cyan;

(2) anywhere a type may appear;
(3) as a package name or a type name in a full-specified type

as “packageNameA.T.Person”. If T is a formal parameter,
it would be replaced by a real argument in an instantiation;

(4) as a method keyword and an unary method name, both
at the declaration or inside an expression. In this case, T
would be part or all of a method name;

(5) as argument to an annotation or inside the attached anno-
tation text.

A generic prototype instantiation A<X> may cause another in-
stantiation B<Y>, which may cause yet another instantiation C<Z>.
Hence, there may be a sequence of nested instantiations. If an error
occurs in C<Z>, the Cyan compiler will print an error message and
the stack of instantiations. For everyone, the compiler will print
the line and file in which it is.

3$ch inserts the value of the variable ch into the literal string.
2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Concepts for Generic Prototypes in Cyan Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

1 package main
2 o b j e c t Pa i r < F i r s t , Las t >
3 func i n i t : F i r s t f i r s t , L a s t l a s t {
4 s e l f . f i r s t = f i r s t ;
5 s e l f . l a s t = l a s t
6 }
7 func g e t F i r s t −> F i r s t = f i r s t ;
8 func s e t F i r s t : F i r s t f i r s t {
9 s e l f . f i r s t = f i r s t
10 }
11 func g e t L a s t −> La s t = l a s t ;
12 func s e t L a s t : L a s t l a s t {
13 s e l f . l a s t = l a s t
14 }
15 @doc { ∗
16 r e t u r n −1 i f s e l f < o ther ,
17 0 i f s e l f == other , and
18 1 i f s e l f > o th e r . L a s t i s
19 only used in the compar ison
20 i f ' f i r s t == o the r g e t F i r s t '
21 ∗ }
22 func <=> Pa i r < F i r s t , Las t > o the r {
23 var f c = f i r s t <=> o the r g e t F i r s t ;
24 i f f c != 0 { r e t u r n f c }
25 r e t u r n l a s t <=> o the r g e t L a s t
26 }
27 var F i r s t f i r s t
28 var L a s t l a s t
29 end

Listing 3: Generic prototype Pair

3.1 Concepts with Examples
Method <=> of prototype Pair<First,Last> follows the expected
semantics for methods with this name, as asserted by the documen-
tation given in annotation doc. Lines 23 and 25 of the code demand
that First and Last should also define a <=> method and both of
them should follow the same semantics as the prototype method.
The Cyan compiler cannot check whether both real arguments have
a <=> method before the instantiation. This task could be made by
concepts, which are predicates or constraints on template/generic
parameters. Concepts could be just comments in the code and, in
this case, the programmer is responsible for using appropriate real
arguments. Or they could be defined in the generic prototype code
through an ad-hoc language mechanism that would trigger the
compiler to do the checks. In the latter case, if the real argument for
First does not define a <=>method, theconcept feature would issue
an error. This is done before instantiation, which means the devel-
oper views the error message issued by the concept feature, not the
possible confusing error message of the compiler after processing
the code of the generic prototype.

Concepts were proposed by Stroustrup [18] [21] and recently
incorporated into the current version of language C++ [1]. From
this point on, concepts always refer to the language feature, never as

simply comments in the code that does not have the power of doing
checks. There are two main reasons for using concepts: better error
messages and code documentation. The compiler can point out
errors before the instantiation and, therefore, the user will not view
error messages in the context of the code of the generic prototype
or template class. Concepts also play the role of documentation
since they describe the requirements for the use of the generic code.
In some languages, concepts are also used for test case generation.

Although the Cyan language does not have special language
features for supporting concepts, they can be implemented using
metaobjects. In particular, there is a metaobject whose name is
concept defined in package cyan.lang. Since this package is au-
tomatically imported by any Cyan source code, this metaobject is
available everywhere.

Metaobject concept can be used to guarantee that both First
and Last define a <=> method, as shown in Listing 4. In the anno-
tation concept, between {* and *}, there should appear the code
of a concept DSL. In this example, only one statement kind is used,
“has”. After this keyword, there should appear a list of methods that
the formal parameter, put before has, should have. Optionally, after
], there may appear a literal string with a tailored error message. If
not present, a standard message is used. The parameter names that
appear inside the literal strings are replaced by the real arguments
to the generic prototype. Therefore, if prototype P does not define
a method

func <=> First -> Int
the instantiation

Pair<P, Int>
will fail because metaobject concept will issue the compile-time
error message

"P should define method <=>"
Between [and], after a has keyword, there may appear a list

of comma-separated func declarations, each one optionally suc-
ceded by a literal string. As an example, we could have, in another
prototype, the following code in annotation concept:

T has [
func <=> T −> I n t " E r r o r 1 " ,
func < T −> Boolean

] , " E r r o r 2 "
T has [func > T −> Boolean]

If, in an instantiation, the real argument that replaces T does not
define method <=> (with the adequate parameters), message "Error
1" is issued. If < is missing, message "Error 2" is issued. If the
real argument does not define >, metaobject concept signals the
standard error message for has, which names the missing method.

In the instantiation of Pair<P, Int>, the compiler first replaces
the formal parameters by the real arguments P and Int. This re-
placement takes place even in the DSL code of the annotations
of the prototype Pair<First, Last> (that between {* and *}).
Hence, every “First” inside the text of annotation concept of List-
ing 4 is replaced by P (even inside a literal string). After that, the
compiler calls a method of metaobject concept that interprets the
DSL code (which does the checks and issues error messages, if any).

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

1 package main
2 @concept { ∗
3 F i r s t has [func <=> F i r s t −> I n t] ,
4 " F i r s t shou ld d e f i n e method <= >" ,
5 L a s t has [func <=> La s t −> I n t] ,
6 " L a s t shou ld d e f i n e method <=>"
7 ∗ }
8 o b j e c t Pa i r < F i r s t , Las t >
9 / / e l i d e d , same as b e f o r e
10 end

Listing 4: Generic prototype Pair with annotation concept

1 . . .
2 @concept { ∗
3 Opt imizeFor in [speed , memory]
4 ∗ }
5 o b j e c t BinTree <T , Opt imizeFor >
6 func add : T va lue {
7 @insertCode { ∗
8 i f # Opt imizeFor == # speed {
9 i n s e r tCode : " / ∗ use a r r ay ∗ / "
10 }
11 e l s e {
12 / / use l i n k e d l i s t
13 i n s e r tCode : " / ∗ use r oo t ∗ / "
14 }
15 ∗ }
16 }
17 . . .
18 end

Listing 5: Use of real arguments to control code generation
using insertCode

All formal parameters to a generic prototype should start with
an uppercase letter. The real arguments can be prototypes or iden-
tifiers that start with a lowercase letter, which are called identifier
parameters.

va r BinTree < In t , speed > b inTreeFo rSpeed ;
var BinTree < In t , memory> binTreeForMemory ;

Here, speed and memory are identifier parameters. Of course, the
second formal parameter to BinTree of both declarations cannot
be used as a type because Cyan assumes that all types start with
an uppercase letter. However, this formal parameter can be used in
all other situations a formal parameter can. In particular, it can be
used in the text of an annotation as shown in Listing 5. If the real
argument is speed, the BinTree methods use an array, which is
faster than using a linked list. The concept of this generic prototype
demands that OptimizeFor be one of speed or memory.

Listing 6: Example with all statement kinds of the concept
language

1 @concept { ∗
2 t yp eo f (T s i z e) i s t yp eo f (R l eng t h) ,
3 t yp eo f (T g e t P r oduc t : 0) implements
4 IP roduc t <R> ,
5 t yp eo f (I P r o du c t rep : Long)
6 subp ro t o t ype Map<T , R> ,
7 Element <T> supe r p r o t o t yp e Item <T> ,
8 IP roduc t <R> i n t e r f a c e ,
9 Element <T> non i n t e r f a c e ,
10 / / S i s a fo rma l paramete r too
11 T has [func S −> t ypeo f (T s e t : I n t)] ,
12 t yp eo f (R g e t I d) i n [Short , I n t , Long] ,
13 S in [speed , memory] ,
14 S i d e n t i f i e r ,
15 ! t yp eo f (T s e t : S t r i n g) i n t e r f a c e
16 ∗ }
17 o b j e c t GenProto <T , R , S>
18 . . .
19 end

3.2 The Concept Language
This subsection describes the concept language used by metaobject
concept. The description uses the compile-time function typeof
which returns the type of its argument, which should be an expres-
sion.

t y p eo f (T g e t P r oduc t : 0) i s
t y p eo f ((R a t : I n t) getName)

Here, typeof(T getProduct: 0) is the type of themessage passing
“T getProduct: 0” whose receiver is T (this prototype name is
used as an expression here). This is the same as the return type of
method getProduct: Int of prototype T. Instead of 0, we could
have used Int, which would be considered as an expression whose
type is Int. If Cyan were not a prototype-based language, different
syntactic constructs would be used to express types and expressions.
“(R at: Int) getName” is the return type of method getName of
the prototype that is the return value of “R at: Int”.

In the following explanation of the concept language, letters S, T,
and U are types which can be formal parameters to the generic pro-
totype, a real prototype (such as Int), or a call to the compile-time
function typeof. The kinds of statements of the concept language
of metaobject concept and their meanings follow.

(1) T is U, T should be equal to U;
(2) T implements U, T is a prototype that implements inter-

face U. Cyan interfaces are very similar to Java and C♯ inter-
faces. A Cyan interface is a prototype that declares methods
with empty bodies4. An interface may be implemented by a
noninterface prototype P meaning that P should define all
methods declared in the interface;

(3) T subprototype S, T should be a subprototype of S;

4Methods with default bodies are not allowed yet.
4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Concepts for Generic Prototypes in Cyan Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Listing 7: Example of use of concept files
1 @concept { ∗
2 cyan . l ang . a r i t hm e t i c (Matr ix <R>) ,
3 " Matr ix <R> shou ld d e f i n e + , − , ∗ , and / " ,
4 cyan . l ang . a r i t hm e t i c (R)
5 ∗ }
6 o b j e c t Matr ix <R>
7 / / e l i d e d
8 end

(4) S superprototype T, S should be a superprototype of T;
(5) T interface, T should be an interface;
(6) T noninterface, T should be a prototype that is not an

interface (as Pair);
(7) T has [method signature list], T should implement

the methods of the list. Each method signature starts with
keyword func followed by themethod keywords and param-
eter types (parameter names are optional). In a declaration

func add: Int value account: Long c
add: and account: are method keywords;

(8) T in [prototype list], T should be one of the proto-
types in the list;

(9) I in [list of identifiers], the identifier parameter
I should be in the list;

(10) I identifier, I should be an identifier;
(11) ! any predicate, the negation of the predicade, any of

the above, should be true;
(12) a concept file call, described in subsection 3.3. This allows

the reuse of concept statements;
(13) axioms, explained in subsection 3.4.

Note that each kind of statement is a kind of predicate or constraint.
The last one is a semantic constraint and it cannot be verified at
compile-time. The others are syntactic predicates. Listing 6 presents
an example of each possible statement kind of the concept language
(except axioms).

3.3 Reusing Concept Code
Some predicates on types are largely used, such as those that de-
mand that a type defines the comparison operators, arithmetical
operators, iterator methods, methods object constructors, and so
on.5 Instead of defining the same predicates in the concept at-
tached annotation texts of several generic prototypes, it is possible
to create a library of concepts. Hence, concepts can be reused just
like procedures and functions.

Listing 7 shows a Matrix<T> prototype. The attached text of
the concept annotation demands that both the prototype itself
(line 2) and the real argument T (line 4) have arithmetic operators.
This is demanded by concept file calls in lines 2 and 4. There is a
file “arithmetic(T).concept” in a special directory of package
cyan.lang, which is called a concept file. Listing 8 presents a sketch
of this file. It is just composed of predicates on type T, the same
parameter that appears in the file name.

5See this list of C++ concepts: https://en.cppreference.com/w/cpp/header/type_traits.

Listing 8: A concept file
1 T has [
2 func + T −> T
3 . . . / / − , ∗ , /
4] ,
5 axiom . . .

In an instantiation Matrix<Int>, the concept metaobject re-
places R by Int and line 2 of Listing 7 becomes

cyan.lang.arithmetic(Matrix<Int>),
The metaobject reads file “arithmetic(T).concept” and replaces
all identifiers T inside it by Matrix<Int>. After that, the resulting
file is compiled by the metaobject and its predicates become part
of the list of predicates of the concept annotation. Hence, the file
is treated as a poor man generic file parameterized by the param-
eter between parentheses. There may be two or more parameters
separated by commas. A concept file may contain concept file calls.

Package cyan.lang has several concept files for common sets
of requirements such as addable (has a + method), arithmetic,
comparison (has the comparison methods), init, iterator etc.

3.4 Test-case Generation
The text of an annotation concept can specify simple type-related
requirements, which are syntactic constraints. However, the text
cannot demand any semantic properties because they mean runtime
properties. By the Rice theorem [13], the runtime properties of
programs cannot be checked at compile-time. For example, the text
of Listing 4 could not be improved for demanding that method <=>
of First be commutative. The alternative that metaobject concept
offers for semantic checking is a mechanism that automatizes part
of the generation of test cases. This is made through the use of
axioms, which are semantic specifications of types [20].

In the text of an annotation concept, an axiom starts with key-
word axiom followed by a keyword method declaration (there
should be at least one parameter).
axiom s p a c e S h i p T e s t F i r s t : F i r s t a , F i r s t b {%

i f (a <=> b) != (b <=> a) {
r e t u r n " Method <=> o f F i r s t i s not " ++

" commutat ive "
}
r e t u r n N i l

%}
axiom sp a c e S h i pT e s t L a s t : L a s t a , L a s t b {%

i f (a <=> b) != (b <=> a) {
r e t u r n " Method <=> o f L a s t i s not " ++

" commutat ive "
}
r e t u r n N i l

%}

Instead of using { and } to delimit the method statements, use6 {%
and %}. The method should not declare a return type because it is
always the union String|Nil. That is, the method should either
6There are alternatives for these delimiters but this is not important here.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

return Nil (if there is no error) or a literal string (with an error
message).

If annotation concept takes a parameter “test”,
@concept(test){* ... *}

the metaobject generates a prototype with a method for each axiom
in a special directory. It is up to the programmer to create test cases
that call the test methods. This task cannot be automatized.

The statements of a concept attached annotation text may be
inconsistent. For example, they may demand that T is a prototype
and superprototype of R and, at the same time, that T is an interface
and subprototype of R. Or that T has a method get -> Int and an-
other get -> String. When an annotation of metaobject concept
takes a test parameter, the metaobject generates a package and
prototypes used to help to discover inconsistences in the code of
the concept attached annotation text. When the generic prototype
is instantiated with these metaobject-created prototypes, there may
be instantiation errors that reveal failures in the code attached to
annotation concept.

Let us explain how these test prototypes are created. The metaob-
ject creates a new package, a test prototype, and a prototype for
every formal parameter of the generic prototype (with the same
name as the formal parameter). For example, the metaobject creates
a prototype T in the test package if there is a formal parameter with
this same name in the generic prototype. Prototype T obeys the
statements of the annotation text in which the formal parameter
appears. As an example, for the Pair<First, Last> prototype
of Listing 4, the metaobject would create a prototype First with
method <=>. If the attached annotation text had the statements

F i r s t s ubp ro t o t ype Elem ,
F i r s t implements IElem

themetaobject wouldmake First inherit from Elem and implement
interface IElem. Of course, some concept statements cannot be
checked, such as those that involve typeof, in, identifiers, and the
use of the formal parameters in the right-hand side of a statement.
For example, the following statements are not used for test-case
generation.

/ / assume T i s a fo rma l paramete r
Person subp ro t o t ype T ,
t yp eo f (T ge t) implements IElem

Therefore, to partially test the consistency of a concept annotation
test, the developer should use the real argument test and, after the
compilation, compile the test package produced by the metaobject.
If this compilation fails, there is at least one inconsistency in the
annotation statements.

4 COMPARISONWITH OTHER LANGUAGES
In this section, a constraint (or a predicate) is a restriction on one
or more types (or identifiers, in Cyan) and corresponds to a state-
ment in the language of our metaobject. As usual in the literature,
the word “concept” will be used with two meanings: (a) the set of
constraints (or statements of a concept language) or (b) the pro-
gramming language features supporting concepts in the sense (a).
Garcia et al [8], Siek [16] and Belyakova [5] have made detailed
comparisons of support for concept features by a set of languages
(SL), which are G [17], C++ [1], JavaGI [23], Java, Scala [12] [15],

1 c l a s s GraphVertex { . . . } ;
2 c l a s s GraphEdge { . . . } ;
3 c l a s s Graph {
4 p u b l i c :
5 t y p ed e f GraphVertex Ver t ex ;
6 t yp ed e f GraphEdge Edge ;
7 } ;
8 c l a s s GraphAdj {
9 p u b l i c :
10 t yp ed e f i n t Ver t ex ;
11 t yp ed e f pa i r < in t , i n t > edge ;
12 } ;
13
14 t emp la t e <typename T>
15 s t d : : l i s t <typename T : : Vertex >
16 ∗ connectedTo (T ∗ g , typename T : : Ver t ex v) {
17 . . .
18 }

Listing 9: Associated types in C++

C♯𝑐𝑝𝑡 [6], Haskell [22], Rust [11], C♯ [7], and Genus [24]. The com-
parisons are not repeated here because that would be redundant
(and there is no space for it too). Unless stated otherwise, it should
be assumed that most languages of SL (set of languages) support a
concept feature when it is first described.

A concept is multi-type if several types are constrained. For
example, the concept annotation of Listing 6 falls in this category
because it restricts the formal parameters T, R, and S. Therefore, it
will be asserted that metaobject concept supports multi-types. The
annotation text of the listing place several restrictions on type T in
lines 2, 3, 6, 7, 9, 11, and 15. Hence, metaobject concept supports
multiple constraints. An associated type [9] is obtained from other
types. For example, types of edges and vertices are associated to
the Graph type. Listing 9 shows an example in C++. The template
function connectedTo accepts a template parameter T that should
be either an object of Graph or GraphAdj (assume that, otherwise,
there would be a compilation error in the template instantiation).
These two classes have associated types Vertex and Edge. The
associated type Vertex to parameter T is refered to using the syntax

typename T : : Ver t ex
Hence, when the first parameter to connectedTo is a GraphAdj,
the compiler will demand that GraphAdj::Vertex is the second
parameter, which is int.

Cyan offers a partial support to associated types through the use
of method return types and the compile-time function typeof. For
example, a variable inside a method of GenProto could be declared
as

var t yp eo f (T ge t P r oduc t : 0) aP roduc t ;
The support is partial for two reasons: (a) only method return
types can be associated types and (b) typeof cannot appear as
method parameter type or return type. Therefore, a method similar
to connectedTo is illegal in Cyan, it should belong to a generic
prototype with formal parameters T and Vertex. That is, Vertex

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Concepts for Generic Prototypes in Cyan Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

should be explicitly given, it could not be deduced using T. As-
sociated types decrease the number of real argument types the
developer is required to supply to a generic class or algorithm. In
the C++ example, instead of supplying two types, a Graph and the
vertex type, only the first needs to be specified (the compiler may
be able to deduce the types). Java, C♯, JavaGI, and Genus do not
support associated types.

A type models a concept when the type obeys the restrictions of
the concept. For example, suppose a concept C parameterized by T
demands that T has a method

func < T -> Boolean
In Cyan, prototypes Int and Stringmodel the C concept. Through
a model declaration, allowed in C♯𝑐𝑝𝑡 and Genus, a String may
model concept C in two different ways. One is using the usual <
method and another is considering just the string size ("x" < "ab").
Cyan does not allow multiple models although the Concept Design
Pattern [14] simulates it to a certain extend.7

Retroacting modeling is the ability to change the modeling rela-
tionships of a type. For example, a type may not define a < method
but some mechanisms may adapt the type to the concept. For ex-
ample, in Rust, methods lay outside structs and can be added later
to make a type adapt to a concept. The same reasoning applies to
extension methods of Swift, which add virtual methods to existing
classes (the source code is not changed). Hence, even if a class does
not define a < method, an extension may add this method to it.
Genus and C♯𝑐𝑝𝑡 have special mechanisms for the declaration of
models which can be created after a class to adapt it to be a real
argument to a generic class. Therefore, both languages, Swift, and
Rust support retroacting modeling and so do Haskell, G, and JavaGI.
Cyan does not because there is no way of specifying a model.

A generic class or prototype may be compiled and put in a library
before any instantiation. This occurs in Java because the code of a
generic class is reused for all instantiations. In Cyan, the code of
a generic prototype is parsed and any syntactic errors are discov-
ered. However, a new prototype is created for each new set of real
arguments to a generic prototype. Only when this newly-created
prototype is compiled the semantic errors, if any, are discovered.
Another dimension for comparing generic programming support is
concise syntax, which can be achieved by several language mecha-
nisms:

(1) type deduction by the compiler so the user do not need to
supply all the generic types when using a generic class. In
Java, the code

Set<Int> s = new Set<>();
is legal. The compiler deduces the real argument in the
right side. Cyan does not allow this but, if the type is not
supplied in a variable declaration, it is assumed to be the
initializing expression type:

var s = Set<Int> new;
Hence, the real argument to Set is also supplied just one
time.

(2) type deduction of the real arguments to a generic function
or method. In C++, an example using Listing 9 could be
list = connectedTo(g, v);

7Extra formal parameters are added to supply extra features, like a parameter that tells
a sort method how to compare elements.

instead of
list = connectedTo<Graph>(g, v);

Cyan does not support either functions (outside prototypes)
or generic methods;

(3) the use of type aliasing features, such as typedef of C/C++,
which is not supported by Cyan;

(4) associated types. Instead of supplying Graph, Vertex, and
Edge to one instantiation, as in

GraphTool<MyGraph, MyVertex, MyEdge>
one could supply just Graph, which has associated types for
vertices and edges. Cyan supports associated types partially.

Can concepts place restrictions on associated types? They can-
not in C♯, Java, JavaGI, and Genus. They can in Cyan, as shown in
Listing 6. In line 2, the return type of method size of T should be
the same as the return type of method lenght of R. These types are
associated with T and R. In some languages such as Scala and C♯𝑐𝑝𝑡 ,
a type may be restricted to be a supertype or subtype of another.
Languages Java, C♯, and Swift offers just subtype constraints. That
is, a real argument should be a subtype of a type that restricts the
corresponding formal parameter. Metaobject concept of Cyan sup-
ports the relations “subtype of”, “supertype of”, and “implement”.
Another desirable feature for generics is the support for concept re-
finement or inheritance. That is, sets of constraints can be imported
to a concept and reused. All languages used in this section support,
through many different mechanisms, concept refinement. This is
achieved in Cyan through the use of concept files (section 3.3).

C++, Rust, and G [17] support concept-based overloading. There
may be multiple versions of a generic function and the compiler
chooses the most specific one. Although Cyan does not support
this feature, different versions of a prototype body are easily gen-
erated by metaobjects according to the real arguments, as shown
in Listing 5. Metaobjects are used to generate code according to
the parameters. This feature is used, for example, in prototype
cyan.lang.Array<T>: if T defines method <=> T -> Boolean, a
metaobject adds a method sort to Array<T>.

Separate compilation of generics is supported by languages Java,
Scala, C♯, and G. Therefore, type checking is made before any
instantiations which share the same code. Cyan duplicates the code
for each instantiation with new arguments. It could not be different
because metaobjects can add code (fields and methods) depending
on the real argument, as occurs with Array<T>. The sharing of code
by several instantiations is hard to achieve and can even lead to
unsound type systems [2]. No type error is introduced in Cyan by
either the metaobject concept or generic prototypes. The reason
is that every new instantiation of a generic prototype is compiled
as a regular prototype.

Bagge et al. [4] proposed a C++ extension for generating test
cases based on axioms, which are part of the concept DSL. Axioms
are conditional equations that are transformed and used for gen-
erating test cases automatically. Language Magnolia [3] was built
based on this C++ extension. Cyan axioms are much less sophisti-
cated: they describe methods for testing which are output to test
prototypes almost unmodified.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

5 CONCLUSION
The CyanMetaobject Protocol gives to regular developers the power
of adapting the language to their needs. Metaobjects work like plu-
gins to the compiler and can change the compilation by adding
new checks and generating code. The new checks feature is used by
metaobject concept for constraining the real arguments to generic
prototypes through a concept language. The parsing and interpreta-
tion of this language aremade by themetaobject itself. Therefore, no
new Cyan language construct or feature is needed for concept sup-
port. There can be other metaobjects for concept specifications. In
particular, it is easy copy-and-pastemetaobject concept and change
it. In this new concept metaobject, the concept language may be
different and it can have fewer or more statement kinds. None of
the languages cited in this paper allows developers to change the
support for concepts without changing the compiler. However, it
should be noted that some features cannot be implemented using
Cyan metaobjects: retroactive modeling, default method imple-
mentations, and multiple models. Future research could make the
metaobject support associated types.

The concept language is expressive: there are 13 different state-
ment kinds and all common uses are supported. There are 12 state-
ments for syntactic checking and one, axiom, for helping to build
test cases for the semantic restrictions. Through the use of typeof,
the concept language can express constraints that are difficult or im-
possible to define in other languages. Developers can give their own
error messages. Annotations of metaobject concept may be used
with non-generic prototypes. Therefore, it may work as a checker
for prototype characteristics such as the definition of methods with
a given signature (using the has statement). An annotation can also
generate test cases outside the current prototype.

Metaobject concept does not support all concept features cited
in this article, like any other language. However, it supports a real
DSL concept language and achieves an excellent balance between
power and ease of use.

REFERENCES
[1] ISO/IEC JTC 1/SC 22. 2021. ISO/IEC 14882:2020 Programming languages — C++.

https://www.iso.org/standard/79358.html
[2] Nada Amin and Ross Tate. 2016. Java and Scala’s Type Systems Are Unsound:

The Existential Crisis of Null Pointers. SIGPLAN Not. 51, 10 (Oct. 2016), 838–848.
https://doi.org/10.1145/3022671.2984004

[3] Anya Helene Bagge. 2009. Constructs & Concepts: Language Design for Flexibility
and Reliability. Ph.D. Dissertation. University of Bergen, PB 7803, 5020 Bergen,
Norway. http://www.ii.uib.no/~anya/phd/

[4] Anya Helene Bagge, Valentin David, and Magne Haveraaen. 2009. The Axioms
Strike Back: Testing with Concepts and Axioms in C++. SIGPLAN Not. 45, 2 (Oct.
2009), 15–24. https://doi.org/10.1145/1837852.1621612

[5] Julia Belyakova. 2016. Language Support for Generic Programming in Object-
Oriented Languages: Peculiarities, Drawbacks, Ways of Improvement. In Pro-
gramming Languages, Fernando Castor and Yu David Liu (Eds.). Springer Inter-
national Publishing, Cham, 1–15.

[6] Julia Belyakova and Stanislav Mikhalkovich. 2015. Pitfalls of C# generics and
their solution using concepts. Proceedings of ISP RAS 27, 3 (2015), 29–46. https:
//doi.org/10.15514/ISPRAS-2015-27(3)-2

[7] Csharp 2020. C# Language Specification. https://docs.microsoft.com/en-us/
dotnet/csharp/language-reference/language-specification/introduction

[8] Ronald Garcia, Jaakko Jarvi, Andrew Lumsdaine, Jeremy Siek, and Jeremiah
Willcock. 2003. A comparative study of language support for generic program-
ming. Proceedings of the 18th ACM SIGPLAN conference on Object-oriented
programing, systems, languages, and applications - OOPSLA ’03 (2003), 115.
https://doi.org/10.1145/949305.949317

[9] RONALD GARCIA, JAAKKO JARVI, ANDREW LUMSDAINE, JEREMY SIEK,
and JEREMIAH WILLCOCK. 2007. An extended comparative study of language
support for generic programming. Journal of Functional Programming 17, 2

(2007), 145–205. https://doi.org/10.1017/S0956796806006198
[10] James Gosling, Bill Joy, Guy L. Steele, Gilad Bracha, and Alex Buckley. 2014.

The Java Language Specification, Java SE 8 Edition (1st ed.). Addison-Wesley
Professional.

[11] Steve Klabnik and Carol Nichols. 2018. The Rust Programming Language (second
ed.). No Starch Press. https://doc.rust-lang.org/book/2018-edition/index.html

[12] Bill Venners Martin Odersky, Lex Spoon. 2016. Programming in Scala: Updated for
Scala 2.12 : a comprehensive step-by-step guide (3ed. ed.). Artima, Incorporated.,
Artima Press [Imprint.

[13] P. Odifreddi. 1992. Classical Recursion Theory: The Theory of Functions and Sets of
Natural Numbers. Elsevier Science. https://books.google.com.br/books?id=zgE-
lQEACAAJ

[14] Bruno C.d.S. Oliveira, Adriaan Moors, and Martin Odersky. 2010. Type Classes
as Objects and Implicits. In Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and Applications (Reno/Tahoe,
Nevada, USA) (OOPSLA ’10). Association for Computing Machinery, New York,
NY, USA, 341–360. https://doi.org/10.1145/1869459.1869489

[15] Artem Pelenitsyn. 2015. Associated types and constraint propagation for generic
programming in Scala. Program. Comput. Softw. 41, 4 (2015), 224–230. https:
//doi.org/10.1134/S0361768815040064

[16] Jeremy G. Siek. 2005. A Language for Generic Programming. Ph.D. Dissertation.
Indiana University.

[17] Jeremy G. Siek and Andrew Lumsdaine. 2011. A Language for Generic Pro-
gramming in the Large. Sci. Comput. Program. 76, 5 (May 2011), 423–465.
https://doi.org/10.1016/j.scico.2008.09.009

[18] Bjarne Stroustrup. 2003. Concept Checking - A More Abstract Complement to
Type Checking. Technical Report N1510=03-0093. C++ Standards Committee
Papers. ISO/IEC JTC1/SC22/WG21. http://www.stroustrup.com/n1510-concept-
checking.pdf

[19] Bjarne Stroustrup. 2013. The C++ Programming Language (4th ed.). Addison-
Wesley Professional.

[20] Andrew Sutton and Bjarne Stroustrup. 2011. Design of Concept Libraries for
C++. In Revised Selected Papers of the Fourth International Conference on Software
Language Engineering (Lecture Notes in Computer Science, Vol. 6940), Anthony M.
Sloane and Uwe Assmann (Eds.). Springer International Publishing, 97–118.
https://doi.org/10.1007/978-3-642-28830-2_6

[21] Andrew Sutton and Bjarne Stroustrup. 2013. Concepts Lite: Constraining Tem-
plates with Predicates. isocpp.org retrieved march 2021.

[22] P. Wadler and S. Blott. 1989. How to Make Ad-Hoc Polymorphism Less Ad
Hoc. In Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (Austin, Texas, USA) (POPL ’89). Association for
Computing Machinery, New York, NY, USA, 60–76. https://doi.org/10.1145/
75277.75283

[23] Stefan Wehr and Peter Thiemann. 2011. JavaGI: The Interaction of Type Classes
with Interfaces and Inheritance. ACM Trans. Program. Lang. Syst. 33, 4, Article
12 (July 2011), 83 pages. https://doi.org/10.1145/1985342.1985343

[24] Yizhou Zhang, Matthew C. Loring, Guido Salvaneschi, Barbara Liskov, and
AndrewC.Myers. 2015. Lightweight, Flexible Object-orientedGenerics. SIGPLAN
Not. 50, 6 (June 2015), 436–445. https://doi.org/10.1145/2813885.2738008

8

https://www.iso.org/standard/79358.html
https://doi.org/10.1145/3022671.2984004
http://www.ii.uib.no/~anya/phd/
https://doi.org/10.1145/1837852.1621612
https://doi.org/10.15514/ISPRAS-2015-27(3)-2
https://doi.org/10.15514/ISPRAS-2015-27(3)-2
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/introduction
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/introduction
https://doi.org/10.1145/949305.949317
https://doi.org/10.1017/S0956796806006198
https://doc.rust-lang.org/book/2018-edition/index.html
https://books.google.com.br/books?id=zgE-lQEACAAJ
https://books.google.com.br/books?id=zgE-lQEACAAJ
https://doi.org/10.1145/1869459.1869489
https://doi.org/10.1134/S0361768815040064
https://doi.org/10.1134/S0361768815040064
https://doi.org/10.1016/j.scico.2008.09.009
http://www.stroustrup.com/n1510-concept-checking.pdf
http://www.stroustrup.com/n1510-concept-checking.pdf
https://doi.org/10.1007/978-3-642-28830-2_6
isocpp.org
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/1985342.1985343
https://doi.org/10.1145/2813885.2738008

	Abstract
	1 Introduction
	2 Cyan and Metaobjects
	3 Concepts in Cyan
	3.1 Concepts with Examples
	3.2 The Concept Language
	3.3 Reusing Concept Code
	3.4 Test-case Generation

	4 Comparison with Other Languages
	5 Conclusion
	References

